Math 314 Fall 2013 Homework 2

Due Wednesday Sept. 25 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $E \subseteq \mathbb{R}$. Prove that $\left(E^{c}\right)^{c}=E$.
Question 2. Let $A, B \subseteq \mathbb{R}$. Prove that
a) $(A \cap B)^{c}=A^{c} \cup B^{c}$;
b) $(A \cup B)^{c}=A^{c} \cap B^{c}$.

Question 3. Find infinitely many nonempty sets of natural numbers

$$
\begin{equation*}
\mathbb{N} \supset S_{1} \supset S_{2} \supset \cdots \tag{1}
\end{equation*}
$$

such that $\cap_{n=1}^{\infty} S_{n}=\varnothing$. You need to rigorously justify your claim.
Question 4. Prove by definition:
a) $(0,1) \cup(2,3)$ is open;
b) $[0,1] \cup[7,8]$ is closed.

Question 5. Let $E:=\left\{(-1)^{n}+e^{-n}: n \in \mathbb{N}\right\}$. Find $\max E, \sup E, \min E, \inf E$. Justify your answers.
Question 6. Let $A, B \subseteq \mathbb{R}$. Define their sum as the set $A+B:=\{x+y \mid x \in A, y \in B\}$. Prove that $\sup (A+B)=\sup A+\sup B, \inf (A+B)=\inf A+\inf B$.

