MATH 314 FALL 2013 HOMEWORK 2

DUE WEDNESDAY SEPT. 25 5PM IN ASSIGNMENT BOX (CAB 3RD FLOOR)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let $E \subseteq \mathbb{R}$. Prove that $(E^c)^c = E$.

Question 2. Let $A, B \subseteq \mathbb{R}$. Prove that

- $a) \ (A \cap B)^c = A^c \cup B^c;$
- $b) \ (A \cup B)^c = A^c \cap B^c.$

Question 3. Find infinitely many nonempty sets of natural numbers

$$\mathbb{N} \supset S_1 \supset S_2 \supset \cdots \tag{1}$$

such that $\cap_{n=1}^{\infty} S_n = \emptyset$. You need to rigorously justify your claim.

Question 4. Prove by definition:

- a) $(0,1) \cup (2,3)$ is open;
- b) $[0,1] \cup [7,8]$ is closed.

Question 5. Let $E := \{(-1)^n + e^{-n} : n \in \mathbb{N}\}$. Find max E, sup E, min E, inf E. Justify your answers.

Question 6. Let $A, B \subseteq \mathbb{R}$. Define their sum as the set $A + B := \{x + y | x \in A, y \in B\}$. Prove that $\sup (A + B) = \sup A + \sup B$, $\inf (A + B) = \inf A + \inf B$.