MATH 314 FALL 2013 HOMEWORK 1 SOLUTIONS

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. The Fibonacci numbers are defined through

$$f_1 = 1, f_2 = 1, f_3 = 2, \dots \tag{1}$$

and then through the general formula

$$f_n = f_{n-1} + f_{n-2} \tag{2}$$

for all n > 2. Prove using mathematical induction that for all n > 1,

$$f_1 + f_3 + \dots + f_{2n-1} = f_{2n}.$$
(3)

Proof. Let the statements P(n) be defined as

$$P(n) = \{f_1 + f_3 + \dots + f_{2n-1} = f_{2n}\}$$
(4)

• Prove P(2): When n = 2 we have

$$f_1 + f_3 = 3 = f_4. \tag{5}$$

• Prove $P(n) \Longrightarrow P(n+1)$. Assume

$$f_1 + f_3 + \dots + f_{2n-1} = f_{2n}.$$
(6)

Adding f_{2n+1} to both sides we have

$$f_1 + f_3 + \dots + f_{2n-1} + f_{2n+1} = f_{2n} + f_{2n+1} = f_{2n+2} = f_{2(n+1)}$$

$$\tag{7}$$

which is exactly P(n+1).

Remark. Note that the claim

$$f_1 + f_3 + \dots + f_{2n-1} = f_{2n}.$$
(8)

in fact holds for all $n \ge 1$ since $f_1 = f_2$.

Question 2. Let A, B be mathematical statements. Prove the following

- a) $A \Longrightarrow B$ and $B \Longrightarrow A$ are not equivalent;
- b) $A \Longrightarrow B$ and $\neg B \Longrightarrow \neg A$ are equivalent.

Proof. We prove through truth table.

We see that $A \Longrightarrow B$ and $\neg B \Longrightarrow \neg A$ take the same value in all cases while $B \Longrightarrow A$ is different. Therefore $A \Longrightarrow B$ and $\neg B \Longrightarrow \neg A$ are equivalent and $A \Longrightarrow B$ and $B \Longrightarrow A$ are not equivalent.

Question 3. Let P be a mathematical statement. If we know that $(\neg P) \Longrightarrow P$ is true, what can we say about P itself?

Solution. Since there are only two possibilities: P true or P false, we list both:

• P false. Then $\neg P$ is true and $(\neg P) \Longrightarrow P$ is false.

• P true. Then $\neg P$ is false and $(\neg P) \Longrightarrow P$ is true.

Since we know $(\neg P) \Longrightarrow P$ is true, P has to be true.

Question 4. Let P(x), Q(x) be statements involving a variable x. Critique the following statement:

$$(\exists x \ P(x)) \land (\exists x \ Q(x)) \Longrightarrow [\exists x \ (P(x) \land Q(x))]. \tag{10}$$

If it is true, prove it; If it is false, give a counterexample.

Solution. The statement means:

If there is x such that the statement P(x) holds, and if there is x such that the statement Q(x) holds, then there is x such that both statements hold simultaneously.

This is false. For example take P(x) to be "x > 1" and Q(x) to be "x < 1". Then both

$$\exists x \quad x > 1 \qquad \text{and} \qquad \exists x \quad x < 1 \tag{11}$$

are true. But the statement

$$\exists x \quad (x > 1) \land (x < 1) \tag{12}$$

is clearly false.

Question 5. Uniform continuity is defined as follows.

A real function f(x) is said to be uniformly continuous if

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, y \ satisfying \ |x - y| < \delta, \qquad |f(x) - f(y)| < \varepsilon.$$
(13)

Obtain its working negation "f is not uniformly continuous".

Solution. It is

$$\exists \varepsilon > 0 \ \forall \delta > 0 \ \exists x, y \text{ satisfying } |x - y| < \delta, \qquad |f(x) - f(y)| \ge \varepsilon.$$
(14)

Question 6. The following are facts:

A rainy Tuesday is necessary for a rainy Sunday; If Tuesday rains then Wednesday rains. Wednesday rains only if Friday rains. If Monday is sunny then Friday is sunny; A rainy Monday is sufficient for a rainy Saturday.

- a) Write the above facts using formal logic statements (Use A G to denote the statements "Monday rains",..., "Sunday rains".)
- b) If we know furthermore that it rains on Sunday. Can we say anything about Saturday? Explain.

Solution.

- a) Let the statements A, B, ..., G be "Monday rains", "Tuesday rains", ... "Sunday rains". Then $\neg A$, $\neg B, ..., \neg G$ stand for "Monday sunny", "Tuesday sunny", ... "Sunday sunny".
 - A rainy Tuesday is necessary for a rainy Sunday: $G \Longrightarrow B$;
 - If Tuesday rains then Wednesday rains. $B \Longrightarrow C$;
 - Wednesday rains only if Friday rains. $C \Longrightarrow E$;
 - If Monday is sunny then Friday is sunny; $\neg A \Longrightarrow \neg E$. Equivalent to $E \Longrightarrow A$;
 - A rainy Monday is sufficient for a rainy Saturday. $A \Longrightarrow F$.

b) Now we know G. We have

$$[G \land (G \Longrightarrow B)] \Longrightarrow B; \tag{15}$$

 $[B \land (B \Longrightarrow C)] \Longrightarrow C; \tag{16}$

$$[C \land (C \Longrightarrow E)] \Longrightarrow E; \tag{17}$$

$$[E \land (E \Longrightarrow A)] \Longrightarrow A; \tag{18}$$

$$[A \land (A \Longrightarrow F)] \Longrightarrow F. \tag{19}$$

Therefore Saturday rains.

Remark. Note that "If" and "Only if" are opposite; "sufficient" and "necessary" are opposite. Therefore, since "B if A", "A is sufficient for B" means $A \Longrightarrow B$, "B only if A", "A is necessary for B" means $B \Longrightarrow A$.