Math 314 Fall 2013 Homework 1 Solutions

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. The Fibonacci numbers are defined through

$$
\begin{equation*}
f_{1}=1, f_{2}=1, f_{3}=2, \ldots \tag{1}
\end{equation*}
$$

and then through the general formula

$$
\begin{equation*}
f_{n}=f_{n-1}+f_{n-2} \tag{2}
\end{equation*}
$$

for all $n>2$. Prove using mathematical induction that for all $n>1$,

$$
\begin{equation*}
f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n} \tag{3}
\end{equation*}
$$

Proof. Let the statements $P(n)$ be defined as

$$
\begin{equation*}
P(n)=\left\{f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n}\right\} \tag{4}
\end{equation*}
$$

- Prove $P(2)$: When $n=2$ we have

$$
\begin{equation*}
f_{1}+f_{3}=3=f_{4} \tag{5}
\end{equation*}
$$

- Prove $P(n) \Longrightarrow P(n+1)$. Assume

$$
\begin{equation*}
f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n} \tag{6}
\end{equation*}
$$

Adding $f_{2 n+1}$ to both sides we have

$$
\begin{equation*}
f_{1}+f_{3}+\cdots+f_{2 n-1}+f_{2 n+1}=f_{2 n}+f_{2 n+1}=f_{2 n+2}=f_{2(n+1)} \tag{7}
\end{equation*}
$$

which is exactly $P(n+1)$.
Remark. Note that the claim

$$
\begin{equation*}
f_{1}+f_{3}+\cdots+f_{2 n-1}=f_{2 n} \tag{8}
\end{equation*}
$$

in fact holds for all $n \geqslant 1$ since $f_{1}=f_{2}$.
Question 2. Let A, B be mathematical statements. Prove the following
a) $A \Longrightarrow B$ and $B \Longrightarrow A$ are not equivalent;
b) $A \Longrightarrow B$ and $\neg B \Longrightarrow \neg A$ are equivalent.

Proof. We prove through truth table.

We see that $A \Longrightarrow B$ and $\neg B \Longrightarrow \neg A$ take the same value in all cases while $B \Longrightarrow A$ is different. Therefore $A \Longrightarrow B$ and $\neg B \Longrightarrow \neg A$ are equivalent and $A \Longrightarrow B$ and $B \Longrightarrow A$ are not equivalent.

Question 3. Let P be a mathematical statement. If we know that $(\neg P) \Longrightarrow P$ is true, what can we say about P itself?

Solution. Since there are only two possibilities: P true or P false, we list both:

- $\quad P$ false. Then $\neg P$ is true and $(\neg P) \Longrightarrow P$ is false.
- $\quad P$ true. Then $\neg P$ is false and $(\neg P) \Longrightarrow P$ is true.

Since we know $(\neg P) \Longrightarrow P$ is true, P has to be true.
Question 4. Let $P(x), Q(x)$ be statements involving a variable x. Critique the following statement:

$$
\begin{equation*}
(\exists x P(x)) \wedge(\exists x \quad Q(x)) \Longrightarrow[\exists x(P(x) \wedge Q(x))] \tag{10}
\end{equation*}
$$

If it is true, prove it; If it is false, give a counterexample.
Solution. The statement means:
If there is x such that the statement $P(x)$ holds, and if there is x such that the statement $Q(x)$ holds, then there is x such that both statements hold simultaneously.
This is false. For example take $P(x)$ to be " $x>1$ " and $Q(x)$ to be " $x<1$ ". Then both

$$
\begin{equation*}
\exists x \quad x>1 \quad \text { and } \quad \exists x \quad x<1 \tag{11}
\end{equation*}
$$

are true. But the statement

$$
\begin{equation*}
\exists x \quad(x>1) \wedge(x<1) \tag{12}
\end{equation*}
$$

is clearly false.
Question 5. Uniform continuity is defined as follows.
A real function $f(x)$ is said to be uniformly continuous if

$$
\begin{equation*}
\forall \varepsilon>0 \exists \delta>0 \forall x, y \text { satisfying }|x-y|<\delta, \quad|f(x)-f(y)|<\varepsilon \tag{13}
\end{equation*}
$$

Obtain its working negation " f is not uniformly continuous".
Solution. It is

$$
\begin{equation*}
\exists \varepsilon>0 \forall \delta>0 \exists x, y \text { satisfying }|x-y|<\delta, \quad|f(x)-f(y)| \geqslant \varepsilon \tag{14}
\end{equation*}
$$

Question 6. The following are facts:
A rainy Tuesday is necessary for a rainy Sunday; If Tuesday rains then Wednesday rains. Wednesday rains only if Friday rains. If Monday is sunny then Friday is sunny; A rainy Monday is sufficient for a rainy Saturday.
a) Write the above facts using formal logic statements (Use $A-G$ to denote the statements "Monday rains",...,"Sunday rains".)
b) If we know furthermore that it rains on Sunday. Can we say anything about Saturday? Explain.

Solution.

a) Let the statements A, B, \ldots, G be "Monday rains", "Tuesday rains", ... "Sunday rains". Then $\neg A$, $\neg B, \ldots, \neg G$ stand for "Monday sunny", "Tuesday sunny", ... "Sunday sunny".

- A rainy Tuesday is necessary for a rainy Sunday: $G \Longrightarrow B$;
- If Tuesday rains then Wednesday rains. $B \Longrightarrow C$;
- Wednesday rains only if Friday rains. $C \Longrightarrow E$;
- If Monday is sunny then Friday is sunny; $\neg A \Longrightarrow \neg E$. Equivalent to $E \Longrightarrow A$;
- A rainy Monday is sufficient for a rainy Saturday. $A \Longrightarrow F$.
b) Now we know G. We have

$$
\begin{align*}
& {[G \wedge(G \Longrightarrow B)] \Longrightarrow B} \tag{15}\\
& {[B \wedge(B \Longrightarrow C)] \Longrightarrow C} \tag{16}\\
& {[C \wedge(C \Longrightarrow E)] \Longrightarrow E} \tag{17}\\
& {[E \wedge(E \Longrightarrow A)] \Longrightarrow A} \tag{18}\\
& {[A \wedge(A \Longrightarrow F)] \Longrightarrow F} \tag{19}
\end{align*}
$$

Therefore Saturday rains.
Remark. Note that "If" and "Only if" are opposite; "sufficient" and "necessary" are opposite. Therefore, since " B if A ", " A is sufficient for B " means $A \Longrightarrow B$, " B only if A ", " A is necessary for B " means $B \Longrightarrow A$.

