Math 314 Fall 2013 Homework 10 Solutions

Due Wednesday Nov. 27 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let

$$
f(x)=\left\{\begin{array}{ll}
1 & x=1 \tag{1}\\
0 & x \neq 1
\end{array} .\right.
$$

Prove by definition that $f(x)$ is Riemann integrable on $[0,2]$.
Solution. For any partition $P=\left\{0=x_{0}<x_{1}<\cdots<x_{n}=2\right\}$, we have

$$
\begin{equation*}
\forall i=0, \ldots, n-1, \quad \inf _{x \in\left[x_{i}, x_{i+1}\right]} f(x)=0 \tag{2}
\end{equation*}
$$

Therefore $L(f, P)=0$ for all P and consequently $L(f)=0$.
On the other hand, for any $n \in \mathbb{N}$, take the particular partition $P_{n}=\left\{0, \frac{n-1}{n}, \frac{n+1}{n}, 1\right\}$. Then we have

Therefore

$$
\begin{equation*}
\sup _{x \in\left[0, \frac{n-1}{n}\right]} f(x)=0, \sup _{x \in\left[\frac{n-1}{n}, \frac{n+1}{n}\right]} f(x)=1, \quad \sup _{x \in\left[\frac{n+1}{n}, 1\right]} f(x)=0 . \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
U\left(f, P_{n}\right)=\frac{2}{n} . \tag{4}
\end{equation*}
$$

By defintion

$$
\begin{equation*}
U(f) \leqslant \frac{2}{n} \tag{5}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Taking limit $n \longrightarrow \infty$, we have

$$
\begin{equation*}
U(f) \leqslant 0 \tag{6}
\end{equation*}
$$

thanks to Comparison Theorem.
Recall that $U(f) \geqslant L(f)$. Thus we reach $L(f)=U(f)=0$ and integrability follows.
Question 2. Let $f(x), g(x)$ be integrable functions on $[a, b]$. Prove by definition that if $f(x) \leqslant g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x$.

Solution. Let P be an arbitrary partition of $[a, b]$. Then we have

$$
\begin{equation*}
U(f, P)=\sum_{j=1}^{n}\left[\sup _{\left[x_{j-1}, x_{j}\right]} f(x)\right]\left|x_{j}-x_{j-1}\right| \leqslant \sum_{j=1}^{n}\left[\sup _{\left[x_{j-1}, x_{j}\right]} g(x)\right]\left|x_{j}-x_{j-1}\right|=U(g, P) . \tag{7}
\end{equation*}
$$

From this we have

$$
\begin{equation*}
U(f) \leqslant U(f, P) \leqslant U(g, P) \tag{8}
\end{equation*}
$$

for any partition P. Thus $U(f)$ is a lower bound for the set

$$
\begin{equation*}
\{U(g, P) \mid P \text { is a partition of }[a, b]\} . \tag{9}
\end{equation*}
$$

By definition $U(f)$ is the infimum of this set and is thus the greatest lower bound for it. Therefore

$$
\begin{equation*}
U(f) \leqslant U(g) . \tag{10}
\end{equation*}
$$

Since f, g are integrable, this gives $\int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x$.
Question 3. It is true that $|f(x)|$ is integrable on $[a, b] \Longrightarrow f(x)$ integrable on $[a, b]$? Justify your answer.

Solution. $|f|$ integrable $\Longrightarrow f$ integrable is false. An example is

$$
f(x)=\left\{\begin{array}{ll}
1 & x \text { rational } \tag{11}\\
-1 & x \text { irrational }
\end{array}, \quad[a, b]=[0,1] .\right.
$$

We have $|f(x)|=1$ constant, so $|f|$ is integrable on $[a, b]$.
On the other hand, over any interval we always have $\sup f=1, \inf f=-1$ therefore

$$
\begin{equation*}
U(f, P)=1, \quad L(f, P)=-1 \tag{12}
\end{equation*}
$$

for any partition P. This gives $U(f)=1 \neq-1=L(f)$ which means f is not integrable.
Question 4. Calculate the following integrals through integration by parts or change of variable.

$$
\begin{equation*}
I_{1}=\int_{0}^{\pi} e^{x} \sin x \mathrm{~d} x ; \quad I_{2}=\int_{1}^{e} x \ln x \mathrm{~d} x ; \quad I_{3}=\int_{1}^{2} \frac{\mathrm{~d} x}{e^{x}+e^{-x}} \tag{13}
\end{equation*}
$$

Solution.

- I_{1}. We have

$$
\begin{align*}
I_{1} & =\int_{0}^{\pi} \sin x\left(e^{x}\right)^{\prime} \mathrm{d} x \\
& =\left[e^{x} \sin x\right]_{0}^{\pi}-\int_{0}^{\pi} e^{x}(\sin x)^{\prime} \mathrm{d} x \\
& =-\int_{0}^{\pi} e^{x} \cos x \mathrm{~d} x \\
& =-\int_{0}^{\pi} \cos x\left(e^{x}\right)^{\prime} \mathrm{d} x \\
& =-\left[e^{x} \cos x\right]_{x=0}^{x=\pi}+\int_{0}^{\pi} e^{x}(\cos x)^{\prime} \mathrm{d} x \\
& =1+e^{\pi}-\int_{0}^{\pi} e^{x} \sin x \mathrm{~d} x=1+e^{\pi}-I_{1} \tag{14}
\end{align*}
$$

Therefore $I_{1}=\frac{1+e^{\pi}}{2}$.

- $\quad I_{2}$. We have

$$
\begin{equation*}
I_{2}=\int_{1}^{e}(\ln x)\left(\frac{x^{2}}{2}\right)^{\prime} \mathrm{d} x=\left[\frac{x^{2}}{2} \ln x\right]_{x=1}^{x=e}-\int_{1}^{e} \frac{x^{2}}{2}(\ln x)^{\prime} \mathrm{d} x=\frac{e^{2}}{2}-\int_{1}^{e} \frac{x}{2} \mathrm{~d} x=\frac{\left(e^{2}+1\right)}{4} . \tag{15}
\end{equation*}
$$

- $\quad I_{3}$. Set $t=u(x)=e^{x}$. We have

$$
\begin{equation*}
I_{2}=\int_{1}^{2} \frac{e^{x} \mathrm{~d} x}{1+\left(e^{x}\right)^{2}}=\int_{e}^{e^{2}} \frac{\mathrm{~d} t}{1+t^{2}}=\arctan \left(e^{2}\right)-\arctan (e) . \tag{16}
\end{equation*}
$$

Question 5. Let f be continuous on $[a, b]$. Let $G(x)=\int_{-x}^{\sin x} f(t) \mathrm{d} t$. Calculate $G^{\prime}(x)$. Justify your answer. (Hint: define $F(x)=\int_{0}^{x} f(t) \mathrm{d} t$ and use F to represent $G(x)$.)

Solution. We have

$$
\begin{equation*}
G(x)=\int_{0}^{\sin x} f(t) \mathrm{d} t+\int_{-x}^{0} f(t) \mathrm{d} t=\int_{0}^{\sin x} f(t) \mathrm{d} t-\int_{0}^{-x} f(t) \mathrm{d} t=F(\sin x)-F(-x) \tag{17}
\end{equation*}
$$

Now by chain rule:

$$
\begin{equation*}
G^{\prime}(x)=F^{\prime}(\sin x) \cos x-F^{\prime}(-x)(-1) . \tag{18}
\end{equation*}
$$

Since $f(x)$ is continuous, by FTC we have

$$
\begin{equation*}
F^{\prime}(x)=f(x) . \tag{19}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
G^{\prime}(x)=f(\sin x) \cos x+f(-x) \tag{20}
\end{equation*}
$$

Question 6. Prove that the improper integral
exists and calculate its value.

$$
\begin{equation*}
\int_{0}^{\infty} e^{-2 x} \cos (3 x) \mathrm{d} x \tag{21}
\end{equation*}
$$

Solution. Notice that $e^{-2 x} \cos (3 x)$ is continuous on $[0, c]$ for every $c>0$ and is therefore integrable there, we calculate

$$
\begin{align*}
\int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x= & \int_{0}^{c} e^{-2 x}\left(\frac{1}{3} \sin (3 x)\right)^{\prime} \mathrm{d} x \\
= & e^{-2 c} \frac{1}{3} \sin (3 c)-e^{-2 \cdot 0} \frac{1}{3} \sin (3 \cdot 0) \\
& -\int_{0}^{c} \frac{1}{3} \sin (3 x)\left(e^{-2 x}\right)^{\prime} \mathrm{d} x \\
= & \frac{1}{3} e^{-2 c} \sin (3 c)+\frac{2}{3} \int_{0}^{c} e^{-2 x} \sin (3 x) \mathrm{d} x \\
= & \frac{1}{3} e^{-2 c} \sin (3 c)-\frac{2}{9} \int_{0}^{c} e^{-2 x}(\cos (3 x))^{\prime} \mathrm{d} x \\
= & \left.\frac{1}{3} e^{-2 c} \sin (3 \quad c)-\frac{2}{9}\left[\begin{array}{lll}
e^{-2 c} & \cos (3 & c)-e^{-2 \cdot 0} \cos (3
\end{array}\right) \quad 0\right)+ \\
& \left.2 \int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x\right] \\
= & \frac{1}{3} e^{-2 c} \sin (3 c)-\frac{2}{9} e^{-2 c} \cos (3 c)+\frac{2}{9}-\frac{4}{9} \int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x . \tag{22}
\end{align*}
$$

Thus

$$
\begin{equation*}
\int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x=\frac{9}{13}\left[\frac{1}{3} e^{-2 c} \sin (3 c)-\frac{2}{9} e^{-2 c} \cos (3 c)+\frac{2}{9}\right] . \tag{23}
\end{equation*}
$$

Taking limit $c \longrightarrow \infty$ we have

$$
\begin{equation*}
\lim _{c \longrightarrow \infty} \int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x=\frac{2}{13} \tag{24}
\end{equation*}
$$

exists and is finite. By Theorem 44, the improper integral exists, and equals

$$
\begin{equation*}
\int_{0}^{\infty} e^{-2 x} \cos (3 x) \mathrm{d} x=\frac{2}{13} \tag{25}
\end{equation*}
$$

