Math 314 Fall 2013 Homework 10

Due Wednesday Nov. 27 5pm in Assignment Box (CAB 3rd Floor)

- There are 6 problems, each 5 points. Total 30 points.
- Please justify all your answers through proof or counterexample.

Question 1. Let

$$
f(x)=\left\{\begin{array}{ll}
1 & x=1 \tag{1}\\
0 & x \neq 1
\end{array} .\right.
$$

Prove by definition that $f(x)$ is Riemann integrable on $[0,2]$.
Question 2. Let $f(x), g(x)$ be integrable functions on $[a, b]$. Prove by definition that if $f(x) \leqslant g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x$.

Question 3. Is it true that $|f(x)|$ is integrable on $[a, b] \Longrightarrow f(x)$ is integrable on $[a, b]$? Justify your answer.

Question 4. Calculate the following integrals through integration by parts or change of variable.

$$
\begin{equation*}
I_{1}=\int_{0}^{\pi} e^{x} \sin x \mathrm{~d} x ; \quad I_{2}=\int_{1}^{e} x \ln x \mathrm{~d} x ; \quad I_{3}=\int_{1}^{2} \frac{\mathrm{~d} x}{e^{x}+e^{-x}} \tag{2}
\end{equation*}
$$

Question 5. Let f be continuous on $[a, b]$. Let $G(x)=\int_{-x}^{\sin x} f(t) \mathrm{d} t$. Calculate $G^{\prime}(x)$. Justify your answer. (Hint: define $F(x)=\int_{0}^{x} f(t) \mathrm{d} t$ and use F to represent $G(x)$.)

Question 6. Prove that the improper integral

$$
\begin{equation*}
\int_{0}^{\infty} e^{-2 x} \cos (3 x) \mathrm{d} x \tag{3}
\end{equation*}
$$

exists and calculate its value.

