Math 314 Fall 2013 Midterm Solutions

OCT. 24, 2013 2PM - 3:20PM. TOTAL 25 PTS

 $\frac{1}{\sqrt{2}}$, $\frac{1}{\sqrt{2}}$

 $\text{NAME:} \quad \text{ID} \# \text{:}$

- Please write clearly and show enough work.
- No electronic devices are allowed.

Question 1. (4 pts) *A sequence of functions* $\{f_n(x)\}\$ *is said to converge uniformly on* $E \subseteq \mathbb{R}$ *to another function* $f(x)$ *if and only if:*

For every $\varepsilon > 0$ *, there is* $N \in \mathbb{N}$ *such that for all* $n > N$ *and all* $x \in E$ *,* $|f_n(x) - f(x)| < \varepsilon$ *.*

- *a*) **(1 pt)** *Write down the logical statement for the above (all symbols, no words);*
- *b*) **(3 pts)** *Write down its working negation.*

Solution.

a) **(1 pt)** Answer is correct.

$$
\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall n > N, \ \forall x \in E, \qquad |f_n(x) - f(x)| < \varepsilon. \tag{1}
$$

b)

- **(1 pt)** : ∃↔∀;
- (1 pt) : Keep $\varepsilon > 0$ etc.;
- **(1 pt)** : Final answer is correct.

$$
\exists \varepsilon > 0, \ \forall N \in \mathbb{N}, \ \exists n > N, \ \exists x \in E, \qquad |f_n(x) - f(x)| \geq \varepsilon. \tag{2}
$$

Question 2. (6 pts) *The sum of two sets of real numbers is defined as* A + $B := \{a + b | a \in A, b \in B\}$. A function is additive *if and only if* $\forall a, b \in \mathbb{R}$, $f(a) + f(b) = f(a + b)$ *. Prove that*

$$
f \text{ is additive} \iff \forall A, B \subseteq \mathbb{R}, f(A+B) = f(A) + f(B). \tag{3}
$$

Solution.

• **(1 pt)** Overall rigor of argument.

- (1 pt) Know need to prove \implies and \Longleftarrow ;
- (1 pt) Know need to prove \subseteq and \supseteq ;
- \implies . Assume f is additive. Take any $A, B \subseteq \mathbb{R}$.
	- 1. **(1 pt)** $f(A + B) \subseteq f(A) + f(B)$. Take any $y \in f(A + B)$, by definition there is $c \in A + B$ such that $y = f(c)$. Next by definition of $A + B$ there are $a \in A$, $b \in B$ such that $c = a + b$. As f is additive, $f(c) = f(a+b) = f(a) + f(b)$. By definition $f(a) \in f(A)$, $f(b) \in f(B)$. Again by definition $f(a) + f(b) \in f(A) + f(B)$. Therefore $y \in f(A) + f(B)$.
	- 2. **(1 pt)** $f(A) + f(B) \subseteq f(A + B)$. Take any $y \in f(A) + f(B)$. By definition $y = u + v$ where $u \in f(A), v \in f(B)$. By definition of image there are $a \in A$, $b \in B$ such that $u = f(a)$, $v = f(b)$. Since f is additive, $f(a) + f(b) = f(a + b)$. By definition $a + b \in A + B$ therefore $y = f(a) + f(b) = f(a+b) \in f(A+B)$.
- \Leftarrow . (1 pt) For any $a, b \in \mathbb{R}$, take $A = \{a\}$, $B = \{b\}$. Then $A + B =$ ${a + b}$. We have

$$
\{f(a+b)\} = f(A+B) = f(A) + f(B) = \{f(a)\} + \{f(b)\} = \{f(a) + f(b)\}\
$$
\n
$$
(4)
$$

which means $f(a + b) = f(a) + f(b)$. So f is additive.

Question 3. (4 pts) $Prove \lim_{n \to \infty} \left[\sqrt{n^4 + n} - n^2 \right] = 0$ by definition.

Solution.

- **(2 pts)** Overall rigor and formalism;
- **(2 pts)** Correct argument;

We have

$$
\sqrt{n^4 + n} - n^2 = \frac{(n^4 + n) - n^4}{\sqrt{n^4 + n} + n^2} = \frac{n}{\sqrt{n^4 + n} + n^2} < \frac{n}{n^2} = n^{-1}.\tag{5}
$$

Now for any $\varepsilon > 0$, take $N > \varepsilon^{-1}$, then for any $n > N$,

$$
\left|\sqrt{n^4 + n} - n^2 - 0\right| = \frac{n}{\sqrt{n^4 + n} + n^2} < n^{-1} < N^{-1} < \varepsilon. \tag{6}
$$

Question 4. (4 pts)

a) **(2 pts)** *Prove that*

$$
\sum_{n=1}^{\infty} \frac{26}{(n!)^2} \tag{7}
$$

converges.

b) **(2 pts)** *Prove that*

$$
\sum_{n=1}^{\infty} \frac{\sqrt{37}}{(n+2)(n+1)n}
$$
 (8)

converges.

Solution.

a) We apply the ratio test to $a_n = \frac{26}{(n!)^2}$ $\frac{20}{(n!)^2}$. We have

$$
\left| \frac{a_{n+1}}{a_n} \right| = \frac{\frac{26}{[(n+1)!]^2}}{\frac{26}{(n!)^2}} = \frac{(n!)^2}{[(n+1)!]^2} = \frac{1}{(n+1)^2}.
$$
\n(9)

Since

$$
0 < \frac{1}{(n+1)^2} < n^{-2} \tag{10}
$$

we have

$$
\limsup_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \limsup_{n \to \infty} \frac{1}{(n+1)^2} = \lim_{n \to \infty} \frac{1}{(n+1)^2} = 0.
$$
 (11)

thanks to Squeeze theorem. By ratio test the series converges.

b) We have

$$
\left| \frac{\sqrt{37}}{(n+2)(n+1)\,n} \right| < \frac{\sqrt{37}}{n^3} = \sqrt{37} \, n^{-3}.\tag{12}
$$

Since $\sum_{n=1}^{\infty} \sqrt{37} n^{-3}$ converges, by the comparison theorem for series we conclude that $\sum_{n=1}^{\infty}$ ∞ $\sqrt{37}$ $\frac{\sqrt{3}i}{(n+2)(n+1)n}$ converges.

Question 5. (5 pts) *Let* $x_n = (-1)^n + \frac{1}{n}$ $\frac{1}{n}$ *. Find* sup_{n∈N} { x_n }, inf_{n∈N} { x_n }, limsup_{n→∞}x_n and liminf_{n→∞}x_n

Solution.

• **(1 pt)** Overall rigor; **(2 pts)** Correct proofs for sup/inf; **(2 pts)** Correct proofs for limsup /liminf .

- $\sup_{n\in\mathbb{N}}\{x_n\}$. $\sup_{n\in\mathbb{N}}\{x_n\}=\frac{3}{2}$ $\frac{3}{2}$.
	- 3/2 is an upper bound. Take any $x_n \in \{x_n\}$. Two cases:

1. *n* ≥ 2. We have $(-1)^n \leq 1, \frac{1}{n}$ $\frac{1}{n} \leqslant \frac{1}{2} \Longrightarrow (-1)^n + \frac{1}{n}$ $\frac{1}{n} \leqslant \frac{3}{2}$ $\frac{1}{2}$; 2. $n = 1$. We have $(-1)^{1} + \frac{1}{1}$ $\frac{1}{1} = 0 \leqslant \frac{3}{2}$ $\frac{3}{2}$.

○ 3/2 is the least upper bound. Take any $b < \frac{3}{2}$. Then $x_2 = (-1)^2 +$ 1 $\frac{1}{2} = \frac{3}{2}$ $\frac{3}{2} > b$. Contradiction.

•
$$
\inf_{n \in \mathbb{N}} \{x_n\}
$$
. $\inf_{n \in \mathbb{N}} \{x_n\} = -1$.

◦ −1 is a lower bound. Take any $x_n \in \{x_n\}$. Then

$$
x_n = (-1)^n + \frac{1}{n} \ge (-1)^n \ge -1.
$$
 (13)

∘ −1 is the greatest lower bound. Take any $b > -1$. There is $n \in \mathbb{N}$ such that $\frac{1}{n} < b + 1$. Now

$$
x_{2n+1} = (-1)^{2n+1} + \frac{1}{2n+1} = -1 + \frac{1}{2n+1} < -1 + \frac{1}{n} < b. \tag{14}
$$

 $limsup_{n\to\infty}x_n$. $limsup_{n\to\infty}x_n=1$. Take any $n \in \mathbb{N}$. Then we have $x_{2n} = (-1)^{2n} + \frac{1}{2n}$ $\frac{1}{2n}$ > 1 therefore

$$
\sup\{x_n, x_{n+1}, ...\} > 1.
$$
\n(15)

On the other hand for every $k \geq n$, we have

$$
x_k \leqslant 1 + \frac{1}{n}.\tag{16}
$$

Therefore

$$
\sup\{x_n, x_{n+1}, ...\} \leq 1 + \frac{1}{n}.\tag{17}
$$

Applying Squeeze Theorem we have

$$
\limsup_{n \to \infty} x_n = 1. \tag{18}
$$

• $\liminf_{n\to\infty}x_n$. $\liminf_{n\to\infty}x_n=-1$.

Take any $n \in \mathbb{N}$. Then we have $x_{2n+1} = (-1)^{2n+1} + \frac{1}{2n+1} = -1 + \frac{1}{2n+1}$, therefore

$$
\inf\{x_n, x_{n+1}, \ldots\} \leqslant -1 + \frac{1}{2n+1}.\tag{19}
$$

On the other hand, for all $k \geq n$,

$$
x_k = (-1)^k + \frac{1}{k} > (-1)^k \ge -1. \tag{20}
$$

So

$$
\inf\{x_n, x_{n+1}, ...\} \ge -1. \tag{21}
$$

Applying Squeeze Theorem we have

$$
\liminf_{n \to \infty} x_n = -1. \tag{22}
$$

Question 6. (2 pts) *Let* $f: \mathbb{R} \to \mathbb{R}$ *be a continuous function. Let* $A := \{x \in \mathbb{R} \mid$ $f(x) \geq 0$ *. Prove that A is closed.*

Solution. (1 pt) : Understand open/closed; **(1 pt)** Correct use of continuity;

We prove $A^c := \{x \in \mathbb{R} | f(x) < 0\}$ is open. Take any $x_0 \in A^c$. Then $f(x_0) < 0$. Denote $\varepsilon_0 = -f(x_0)$. Then by continuity of f at x_0 there is $\delta > 0$ such that for all $|x - x_0| < \delta, |f(x) - f(x_0)| < \varepsilon_0.$

Now as $f(x) - f(x_0) \leq |f(x) - f(x_0)|$ we have

$$
f(x) \le |f(x) - f(x_0)| + f(x_0) < \varepsilon_0 + f(x_0) = 0.
$$
 (23)

Therefore $\forall x \in (x_0 - \delta, x_0 + \delta), f(x) < 0 \Longrightarrow x \in A^c$. So A^c is open and consequently A is closed.