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• This review may not cover all possible
topics for the midterm exam. Please
also review lecture notes and homework
problems.

• To get the most out of these problems,
clearly write down (instead of mumble or
think) your complete answers (instead of a
few lines of the main idea), in full sentences
(instead of formulas connected by arrows).
And then compare with the solutions when
they are posted.

• If don’t know where to start, write down all
definitions involved.

• If have no idea what to do, try proof by
contradiction. Start by writing down the
assumption in logical statements.

• “Justify” means: if true, provide a proof; if
false, give a counterexample.
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A. Propositional Logic: True or False

1. Concepts and theorems

• Mathematical statements: Either true or
false.

• New statements can be created from old
ones using

− not: ¬ (Negation);

A ¬A

T F

F T

− and: ∧ (Conjunction);

A B A∧B

T T T

T F F

F T F

F F F

− or: ∨ (Disjunction);

A B A∨B

T T T

T F T

F T T

F F F

− implies:� (Conditional);

A B A� B

T T T

T F F

F T T

F F T

− equivalent:� (Bi-conditional).

A B A� B

T T T

T F F

F T F

F F T

• To prove: Construct truth table.

Exercise 1. Prove that A� B is the same as

(¬A)∨B.

Note. How to remember “If” and “Only if”,
“Sufficient” and “Necessary”...

“Only if” is opposite to “If”. A if B means “If B

then A” that is B� A, so “A only if B” should be
A� B.

“Necessary” is opposite to “Sufficient”. “A is
sufficient for B” is “A� B”, therefore “A is necessary
for B” is “B� A”.

Note. “If and only if”. “A if and only if B” means “A
if B” and “A only if B”, that is B� A and A� B

and consequently A� B.

2. Solutions to exercises

Exercise 1: Truth table:

A B A� B ¬A (¬A)∨B

T T T F T

T F F F F

F T T T T

F F T T T

We see that A� B and (¬A)∨B take the same truth
values in all situations. In other words (A� B)�
((¬A)∨B) is always true.

3. Problems

Problem 1. Let A,B,C be logical statements. Prove

that [(A� B) and (B� C)]� (A� C). Explain

in English what this means.

Problem 2. Critique the following claim. Justify

your answer.

If (P ∧ Q)� (R∨S) and Q� R,
then P� S.
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B. Sets

1. Concepts and theorems

• Set: A collection of objects.

• Important sets:

− Empty set ∅: ∀x, x � ∅;

− Natural numbers: N8 {1, 2, 3,
 };

− Integers: Z;

− Rational numbers: Q;

− Real numbers R.

• Relations between an object and a set.

− Object x is a member of set A: x∈A;

− Object x is not a member of set A:
x � A.

• Relations between sets.

− Subset: A⊆B (B ⊇A)

(x∈A)� (x∈B). (1)

∗ Prove A ⊆ B: Take any x ∈ A,
argueargueargue, x∈B.

∗ Prove A⊆B: Find x∈A but x � B.

− Equal: A =B.

(x∈A)� (x∈B). (2)

∗ Prove A = B: Two steps.

· Step 1. A⊆B;

· Step 2. B ⊆A.

∗ Prove A� B: Find x∈A but x� B,
or find x∈B but x � A.

− Proper subset: A⊂B (B ⊃A).

(A⊆B)∧ (A� B). (3)

∗ Prove A⊂B: Two steps.

· Step 1. A⊆B;

· Step 2. Find x∈B but x � A.

• New sets from old.

− Union:

A∪B: ={xP (x∈A)∨ (x∈B)}. (4)

− Intersection:

A∩B: ={xP (x∈A)∧ (x∈B)}. (5)

− Subtraction:

A−B8 {xP (x∈A)∧ (x � B)}. (6)

− Complement: Universal set X – all sets
under discussion are its subsets:

Ac8 {xP x � A}. (7)

This is a shorthand for a special case of
subtraction.

Exercise 2. Prove

A ⊆B� A∩C ⊆B ∩C. (8)

If A⊂B, can we conclude A∩C ⊂B ∩C? Justify.

• Intersection and union of arbitrary number
os sets. Let W be a collection of sets. Then

∩A∈WA8 {xP ∀A∈W x∈A} (9)

∪A∈WA8 {xP ∃A∈W x∈A}. (10)

Note. In particular, be aware of the difference
between ∈ and ⊆/⊂. The former is about the
relation between an element and a set (a collection
of elements), while the latter is about the relation
between two sets.

2. Solutions to exercises

Exercise 2. Take any x ∈ A ∩ C. By definition
of intersection x ∈ A and x ∈ C. By definition of
A⊆B we have x∈B. Thus x∈B and x∈C and by
definition of intersection x∈B ∩C.

If A⊂B we cannot conclude A∩C ⊂B ∩C. For
example A= {1}, B = {1, 2}, C = {1}.

3. Problems

Problem 3. Let En: ={x ∈R P x > 1/n}. Calculate
∪n∈NEn.

Problem 4. Let A=
{

x∈R P |sinx|6
1

2

}

;B ={x∈R P
x3− x2 + x− 1< 0}.

• Represent A, B, A∪B, A∩B using intervals.

• Which of these four sets is/are open? Which
is/are closed? Justify your answers.
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C. Functions

1. Concepts and Theorems

• Function: A triplet consisting of two sets A,

B and a rule assigning to each element in A

one and only one element in B. Notation:
f : A� B.

• Image and pre-image: f :A� B a function.

− S ⊆A has an image:

f(S)8 {f(x)P x∈S}. (11)

− T ⊆B has a pre-image:

f−1(T )8 {xP f(x)∈T } (12)

Exercise 3. Let f :X� Y be function. Let A,B ⊆X.
Prove

f(A−B)⊇ f(A)− f(B). (13)

Give an example where f(A−B)⊃ f(A)− f(B).

• Composite function. f : X � Y , g: Z �
W functions. If Y ⊆ Z, can define a new
function from X to W , denoted g ◦ f :

(g ◦ f)(x)8 g(f(x)). (14)

• One-to-one, onto, bijection.

− One-to-one: ∀a1, a2 ∈ A, f(a1) =
f(a2)� a1 = a2.

∗ Prove one-to-one: Take any a1, a2∈
A. Assume f(a1)= f(a2). ... a1=a2.

− Onto: f(A) =B.

∗ Prove onto: Let b ∈ B be arbitrary.
We take a =
 ., ..., f(a) = b.

− Bijection: one-to-one and onto.

• Inverse funtion. f :X� Y is a function.

− Definition. g is the inverse function of
f is and only if

i. g: Y � X is a function;

ii. ∀x∈X , g(f(x)) =x;

iii. ∀y ∈ Y , f(g(y)) = y.

− f : X � Y has inverse function if and
only if it is a bijection.

Exercise 4. Suppose f : A � B and g: B � C are
functions. Show that if both f and g are bijections,
then so is g ◦ f .

• Increasing, decreasing, monotone.

− Increasing: x1 >x2� f(x1) > f(x2).

− Strictly increasing: x1 >x2� f(x1) >

f(x2).

− Decreasing: x1 >x2� f(x1)6 f(x2).

− Strictly decreasing: x1 >x2� f(x1)<

f(x2).

− Monotone: Either increasing or
decreasing.

2. Solutions to exercises

Exercise 3.

• Proof. Take any y∈ f(A)− f(B). By definition
of set difference y ∈ f(A) but y � f(B). Now
by definition of image there is a ∈ A such that
y = f(a). If a∈B then y ∈ f(B) contradiction.
Therefore a � B. So we have

a∈A, a � B� a∈A−B. (15)

• Example. Let f : R� R be constant: ∀x ∈ R,

f(x)= 0. Let A= {1, 2}, B = {1}. Then

f(A−B)= f({2}) = {0}, but (16)

f(A)− f(B) = {0}− {0}= ∅. (17)

Exercise 4.

• g ◦ f is one-to-one. For any x1 � x2, since f is
one-to-one, f(x1) � f(x2). Now because g is
one-to-one, g(f(x1))� g(f(x2)).

• g ◦ f is onto. Take any z ∈ C. Since g is onto,
there is y∈B such that z= g(y). Now because f

is onto, there is x∈A such that y = f(x). Thus
z = g(f(x)).

3. Problems.

Problem 5. Let f :X� Y be a function. Prove that
f is one-to-one if and only if f(A−B)= f(A)− f(B)
for all subsets A, B of X .
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D. Predicative Logic: Quantifiers

1. Concepts and theorems

• Universal quatifier: ∀.

− Reads: ∀x ∈ A P (x): “For any/every
x in A, the statement P (x), when the
variable takes this value x, is true.”

− Meaning: Can be understood as
a “short hand”.

Example. A8 {1, 2, 3}. P (x) is “x >

3”. Then ∀x∈A P (x) means

(1 > 3)∧ (2 > 3)∧ (3 > 3). (18)

• Existential quantifier: ∃.

− Reads: ∃x ∈ A P (x): “There is x in A

such that the statement P (x), when the
variable takes this value x, is true.”

− Meaning: Can be understood as
a “short hand”.

Example. A8 {1, 2, 3}. P (x) is “x >

3”. Then ∃x∈A P (x) means

(1 > 3)∨ (2 > 3)∨ (3 > 3). (19)

• Working negation.

− Try to “push” the “Not” through all
quantifiers.

− We can do this layer by layer.

Example. To write the working negation
of ∀x∈A ∃y, z ∈B P (x, y, z), we write

¬[∀x∈A ∃y, z ∈B P (x, y, z)]

= ∃x∈A ¬[∃y, z ∈B P (x, y, z)]

= ∃x∈A∀y, z ∈B ¬P (x, y, z).

Exercise 5. Explain why the working negation
of

∀x > 0 f(x) > 0 (20)

is

∃x > 0 f(x) 6 0 (21)

instead of

∃x 6 0 f(x) 6 0. (22)

• To prove:

− ∀x∈A P (x).

Let x ∈ A be
arbitrary. [...some
arguments here...], P (x)
is true.

− ∃x∈A P (x). Two methods.

1. Find such x and show that P (x) is
true;

2. Proof by contradiction. Assume

∀x∈A ¬P (x) (23)

and reach contradiction.

Note. To obtain working negation correctly, the
following steps should be followed:

1. Write all the quantifiers first.

2. When applying “not”, ∀ becomes ∃, and ∃
becomes ∀.

2. Solutions to exercises

Exercise 5. ∀x > 0 x2 > 0 means

∧x>0(x
2 > 0) (24)

that is

(x1
2 > 0)∧ (x2

2 > 0)∧ (x3
2 > 0)� (25)

where x1, x2, x3, 
 lists all positive numbers (Note
that more logic theory is needed to justify this).

Taking ¬:

¬[(x1
2 > 0)∧ (x2

2 > 0)∧ (x3
2 > 0)� ]

= ¬(x1
2 > 0)∨¬(x2

2 > 0)∨¬(x3
2 > 0)�

= (x1
2
6 0)∨ (x2

2
6 0)∨ (x3

2
6 0)�

which is (note that still the same x1, x2, x3,
 )

∃x > 0 x2 6 0 (26)

3. Problems

Problem 6. A function f : [0,∞)� R is “Lipschitz”
if and only if

∃M > 0 ∀x, y > 0 |f(x) − f(y)| 6 M |x −

y |. (27)

Write down the working negation of the above.

Problem 7. A function f(x): R � R is increasing
if f(x1) > f(x2) whenever x1 > x2 Write down the
logical statement for “f(x) is not increasing”.
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E. Sets of Real Numbers

1. Concepts and Theorems.

• Intervals: [a, b], (a, b), [a, b), (a, b].

• Open sets:

∀x∈A ∃(a, b)∋x (a, b)⊆A (28)

− Prove A is open: Take any x∈A. Find
a, b depending on x and A such that
x∈ (a, b)⊆A.

− Prove A is not open: Find x ∈ A,
whenever a < x < b, there is y ∈ (a,

b), y � A.

Exercise 6. Find a set A that is not open but
also not closed. Justify.

• Closed sets: A is closed� Ac is open.

− To prove A is closed: Prove Ac is open.

− To prove A is not closed: Prove Ac is
not open.

Theorem 1. Unions and intersections of
open/closed sets.

• sup and inf .

− Intuition:

∗ Sup: Best upper bound;

∗ Inf: Best lower bound.

− To prove b= supA. Two steps:

∗ Step 1. Prove b is an upper bound:

∀a∈A, a 6 b (29)

∗ Step 2. Prove b is the best, that is
smallest, upper bound:

∀b′< b ∃a∈A a >b′. (30)

− To prove b= inf A. Two steps:

∗ Step 1. Prove b is a lower bound:

∀a∈A, a > b (31)

∗ Step 2. Prove b is the best, that is
greatest, lower bound:

∀b′>b ∃a∈A a <b′. (32)

− If supA∈A, it is also denoted maxA;

− If inf A∈A, it is also denoted minA.

Exercise 7. Let A =
{

n − 2

n
P n ∈ N

}

. Find
supA. Justify your answer.

2. Solutions to Exercises.

Exercise 6. Take A= [0, 1)8 {x∈RP 06 x < 1}.

• A is not open. We take 0∈A. For any a<0<b,
we have a <

a

2
< 0< b. This gives

a

2
∈ (a, b) but

a

2
� A. (33)

• A is not closed. We prove Ac=(−∞,0)∪ [1,∞)
is not open. Take 1∈Ac. For any a < 1< b, we

have b > 1 >
1+ a

2
> a so

1 + a

2
∈ (a, b) but

1+ a

2
� Ac. (34)

Exercise 7. Guess supA= 1. Justify:

1. 1 is an upper bound of A. Take any x∈A. Then

there is n∈N such that x =
n − 2

n
=1−

2

n
6 1.

2. 1 is the best upper bound of A. Take any b<1.
There is n∈N such that

2

n
< 1− b. Then

n− 2

n
=1−

2

n
> 1− (1− b)= b. (35)

So b is not an upper bound of A.

3. Problems.

Problem 8. Let A be a nonempty subset of R. Let
B = 3 A8 {3 x: x∈A}. Derive the relations between
sup B, inf B and sup A, inf A. Justify your answers.

Note that you may need to discuss different cases for
c and for supA.
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F. Limits of Sequences

1. Concepts and Theorems

• Definition

limn�∞xn =L is defined as

− L ∈ R. ∀ε > 0, ∃N ∈ N such that
∀n >N , |xn −L|< ε.

− L = ∞. ∀M ∈ R, ∃N ∈ N such that
∀n >N , xn >M .

− L = −∞. ∀M ∈ R, ∃N ∈ N such that
∀n >N , xn <M .

Observe the pattern.

• Calculating limits.

− Tools:

limn�∞xn = a, limn�∞yn = b

then

a) limn�∞ (xn ± yn) = a± b;

b) limn�∞ (xn yn) = a b;

c) If b� 0, limn�∞ (xn/yn)= a/b.

• Proving existence of limits.

− Definition.

1. Guess the limit L.

2. Proof: For any ε > 0, we take N =
[formula involving ε], then for all
n >N , we have

|xn −L|6
 .6 ε. (36)

− Cauchy. If ∀ε > 0 ∃N ∈N ∀m, n > N ,

|xn −xm|<ε, then limn→∞xn exists.

Exercise 8. Find a diverging sequence xn

such that limn�∞ (xn+2− xn) = 0.

− Monotone.

∗ Increasing. If

1. ∀n xn+1 > xn (increasing);

2. ∃b ∀n xn 6 b (upper bound);

then limn→∞xn exists.

∗ Decreasing. If

1. ∀n xn+1 6 xn (decreasing);

2. ∃b ∀n xn > b (lower bound);

then limn→∞xn exists.

− Squeeze.

1. ∃N0∈N∀n > N0 wn 6 xn 6 yn;

2. limn�∞wn = limn�∞yn.

Then

1. limn�∞xn exists;

2. limn→∞xn = limn→∞wn =
limn→∞yn.

• Comparing limits. If

1. limn→∞xn, limn→∞yn exist;

2. ∃N0∈N ∀n > N0 xn 6 yn,

then limn→∞xn 6 limn→∞yn.

2. Solutions to Exercises.

Exercise 8. Take xn = n1/2.
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G. Subsequence

1. Concepts and Theorems

• Subsequence.

{xnk
}= {xn1

, xn2
,
 } (37)

is a subsequence of {xn}={x1,x2,
 } if and
only if

1. ∀k ∈N, nk ∈N;

2. n1 < n2 < n3 <
 .

Exercise 9. Let {xn} be a sequence. Prove:
{xn} is bounded � Every subsequence of
{xn} is bounded.

• limsup and liminf .

− limsupn→∞xn is

∗ limn�∞yn where

yn: =sup {xn, xn+1,
 }; (38)

∗ maxA where A is the set
{

a∈RP ∃{xnk
} lim

k→∞

xnk=a

}

(39)

− liminfn�∞xn is

∗ limn�∞yn where

yn: =inf {xn, xn+1,
 }; (40)

∗ minA where A is the set
{

a∈RP ∃{xnk
} lim

k→∞

xnk=a

}

(41)

− How to calculate: Evaluating exactly
supk>nxk could be hard. There are two
ways to overcome:

∗ Use Squeeze theorem: Find N0 ∈N

such that for all n >N0,

wn 6 sup {xn,
 }6 zn (42)

lim wn = lim zn = L �
limsupn→∞xn = L.

Exercise 10. xn =(−1)n + e−n
2

.

∗ Use limsup is the largest limit
of convergent subsequences. First
guess the limit L. Then show

1. ∃{xnk
} converging to L.

2. For every convergent
subsequence xnk

� a, a6 L.

Exercise 11. xn = (−1)n + e−n
2

.

• Some relations.

− {xn} convergent � {xn} bounded;
{xn} bounded � {xn} has a
convergent subsequence;

− {xn} convergent � All of its
subsequences are convergent;

− {xn} convergent� limsupn→∞xn =
liminfn→∞xn.

2. Solutions to Exercises.

Exercise 9.

• � . Since {xn} is bounded there is M >0 such
that ∀n ∈ N |xn| < M . Since nk ∈ N, we have
∀k ∈N |xnk

|<M .

• � . Assume {xn} is not bounded. Then for
every N ∈N there is nk∈N such that |xnk

|>M .
The subsequence {xnk

} is then not bounded.

Exercise 10. We have

1 6 sup
k>n

[

(−1)k + e−k2]

6 1+ e−n2

. (43)

Taking limit n� ∞ we conclude

limsup xn = 1. (44)

Exercise 11.

1. Take nk = 2 k then xnk
=1 + e−4k2� 1.

2. Comparison theorem:

xnk
= (−1)nk + e−nk

2

6 1 + e−k2 � a =

lim
k�∞

xnk
6 lim

k�∞

(

1+ e−k2)

= 1. (45)

3. Problems.
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H. Infinite Series

1. Concepts and Theorems.

• Definitions.

− Infinite series: Formal summation

∑

n=1

∞

an = a1 + a2 +� (46)

− Convergence: Define partial sum

sn: =
∑

k=1

n

an8 a1 +� + an. (47)

∑

n=1
∞

an convergens if and only if
the sequence {sn} convergens. Call
limn→∞sn the “sum” of the infinite
series.

• Convergence.

− Definition:
∑

n=1
∞

an = L if and only
if ∀ε > 0 ∃N ∈N ∀n > N , |

∑

k=1
n

ak −
L|< ε.

− Convergence theorems: Adaptation of
convergence theorems for sequences.

∗ Cauchy criterion: ∀ε > 0 ∃N ∈
N ∀n >m >N

∣

∣

∑

m+1
n

ak

∣

∣ < ε.

∗ Non-negative series: If an > 0 for all
n∈N, then

∑

n=1
∞

an∈R if and only
if {sn} is bounded from above.

∗ Comparison: If |an| 6 bn and
∑

n=1
∞

bn converges, then so does
∑

n=1
∞

an.

−
∑

n=1
∞

an converges� limn→∞an =0.
But� is not true!

• Typical series.

− Geometric.
∑

n=1
∞

rn−1.

∗ |r |< 1�∑

n=1
∞

rn−1 =
1

1− r
;

∗ r > 1�∑

n=1
∞

rn−1 =∞;

∗ r 6 −1 � ∑

n=1
∞

rn−1 does not
converge.

− Harmonic.
∑

n=1
∞

n−a.

∗ a > 1�∑

n=1
∞

n−a converges;

∗ a6 1�∑

n=1
∞

n−a =∞.

• Convergence tests.

− Ratio Test.

∗ limsupn→∞

∣

∣

∣

an+1

an

∣

∣

∣
< 1� converge;

∗ liminfn→∞

∣

∣

∣

an+1

an

∣

∣

∣ > 1� diverge;

∗ Other situations� further study
needed;

− Root Test.

∗ limsupn→∞ |an|
1/n<1� converge;

∗ liminfn→∞ |an|
1/n > 1� diverge;

∗ Other situations� further study
needed;

Exercise 12. Prove that
∑

n=1

∞
n xn converges

when |x|< 1 and diverges when |x|> 1.

Remark. Keep in mind that if
limn�∞xn exists, then liminfn�∞xn =
limsupn�∞xn = limn�∞xn.

Remark. Note that ratio/root tests are
usually useless if the formulas for an are not
given.

2. Solutions to exercises.

Exercise 12. We apply the ratio test: Since an=n xn

we have
∣

∣

∣

an+1

an

∣

∣

∣ =
n +1

n
|x|. We have

lim
n�∞

n + 1

n
|x|= |x| lim

n�∞

n + 1

n
= |x|. (48)

Thus the ratio test gives:
∑

n=1
∞

n xn converges when |x| < 1 and diverges

when |x|> 1.
The case |x| = 1 has to be analyzed ad hoc. In

this case we have |an|= n. Clearly limn�∞ |an|= 0
doesn’t hold. Therefore the series does not converge
in this case.

3. Problems

Problem 9. Analyze the convegence/divergence of
∑

n=1

∞
(xn/n2) for x∈R.

9



I. Limit of Functions

1. Concepts and Theorems

• limx� af(x) =L is defined as

− a ∈R, L ∈R. ∀ε > 0, ∃δ > 0 such that
∀0 < |x− a|< δ, |f(x)−L|<ε.

− a∈R,L=∞. ∀M ∈R,∃δ >0 such that
∀0 < |x− a|< δ, f(x) > M .

− a ∈R, L = −∞. ∀M ∈ R, ∃δ > 0 such
that ∀0 < |x− a|<δ, f(x) >M .

− a=∞, L∈R. ∀ε>0, ∃M ∈R such that
∀x > M , |f(x)−L|< ε.

− a=−∞,L=∞. ∀M ∈R, ∃M ′∈R such
that ∀x <M ′, f(x)>M . Note that M

and M ′ are not the same number.

Observe the pattern.

Exercise 13. Write definition for the following
cases.

1. a =∞, L =∞.

2. a =−∞, L∈R.

• Left and right limits: For example a,L∈R:

− Right limit: limx� a+f(x) = L is
defined as ∀ε > 0, ∃δ > 0 such that
∀0 <x− a < δ, |f(x)−L|<ε.

− Left limit: limx� a−f(x)=L is defined
as ∀ε > 0, ∃δ > 0 such that ∀−δ <

x− a < 0, |f(x)−L|< ε.

Exercise 14. Write definition for
limx→0+f(x) =−∞.

• Relation between function limit and
sequence limit:

limx→af(x) = L if and
only if for every sequence
{xn} with xn � a for all n ∈
N, and limn→∞xn = a, there
holds limn→∞f(xn) =L.

Exercise 15. Prove that limx� 0sin
(

1

x

)

does
not exist.

• Arithmetics: limx→af(x)=L, limx→ag(x)=
M , then,

lim
x→a

(f ± g)(x)= L±M (49)

lim
x→a

(f g)(x) =L M, (50)

If M � 0, lim
x→x0

(

f

g

)

(x) =
L

M
. (51)

• Comparison: h(x) 6 f(x) 6 g(x),
limx→x0

h(x) = L1, limx→x0
f(x) = L2,

limx→x0
g(x) = L3, then L1 6 L2 6L3.

• Squeeze: h(x)6 f(x)6 g(x), limx→x0
h(x)=

limx→x0
g(x) = L, then limx→x0

f(x) = L.

2. Solutions to exercises

Exercise 13.

1. ∀M ∈R,∃M ′∈R such that ∀x>M ′, f(x)>M .

2. ∀ε>0, ∃M ∈R such that ∀x<M , |f(x)−L|<
ε.

Exercise 14.

∀M ∈ R, ∃δ > 0 such that for all 0 < x < δ,
f(x)< M .

Exercise 15. Take xn =
1

n π
and yn =

1

(2 n + 1/2) π
.

Then we have

∀n, xn� 0, yn� 0; (52)

lim
n�∞

xn = lim
n�∞

yn = 0. (53)

But

lim
n�∞

sin

(

1

xn

)

= lim
n�∞

0 =0 (54)

is different from

lim
n�∞

sin

(

1

yn

)

= lim
n�∞

1 =1. (55)

3. Problems

Problem 10. Prove by definition that limx→af(x)
exists and equals L ∈R if and only if limx→a+f(x),
limx→a−f(x) both exist and both equal L.

10



J. Continuity/Continuous Functions

1. Continuity

• Definition: ∀ε > 0∃δ > 0∀|x − x0| < δ,

|f(x)− f(x0)|< ε.

• Understanding.

− Continuous at x0:

1. limx� x0
f(x) exists; and

2. The limit equals f(x0).

− Not continuous at x0:

1. limx� x0
f(x) does not exist, or

2. it exists but is different from f(x0).

• Properties: f , g continuous at x0 then

− f ± g, f g continuous at x0;

− If furthermore g(x0) � 0, f/g

continuous at x0.

• Composite functions.

f continuous at x0, g continuous at y0=
f(x0), then g ◦ f is continuous at x0.

• Everyday functions:

− Continuous at all x0∈R:

∗ polynomials;

∗ exp [x];

∗ sin (x), cos (x).

− Rational functions: After cancelling
common factors, continuous where g �
0, discontinuous where g = 0.

2. Continuous functions

• Intermediate Value Theorem:

Let f(x) be continuous on the closed
interval [a, b]. Then for every s ∈ [f(a),
f(b)] (or [f(b), f(a)] if f(b) 6 f(a)), there
is ξ ∈ [a, b] such that f(ξ) = s.

Remark. Note that f(x) needs to be
continuous on [a, b], that is: For every x0∈
[a, b], we have ∀ε > 0, ∃δ > 0, ∀x ∈ [a,

b] |x − x0| < δ, |f(x) − f(x0)| < ε. Or
in other words:

1. ∀x0∈ (a, b), limx→x0
f(x) = f(x0);

2. limx→a+f(x) = f(a); limx→b−f(x) =
f(b).

Note. If f(x) is continuous on (c, d)⊃ [a,

b], then f(x) is continuous on [a, b].

• Other consequences of f continuous on [a,

b]:

− f is bounded. There is M >0 such that
∀x∈ [a, b], |f(x)|6M .

− f reaches maximum and minimum.
There are xmax, xmin ∈ [a, b] such that
∀x∈ [a, b],

f(xmin) 6 f(x) 6 f(xmax). (56)

• Inverse function. f :A� B satisfies

1. continuous,

2. onto,

3. strictly increasing (or strictly
decreasing)

then the inverse g: B � A exists and is
continuous, onto, and strictly increasing (or
strictly decreasing).
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K. Solutions

• Problem 1. We construct the truth table.
Let AB denote A� B, BC denote B�
C, AB BC denote (A� B) ∧ (B� C),
AC denote A� C, A
C denote [(A�
B) and (B� C)]� (A� C).

A B C AB BC ABBC AC A
C

T T T T T T T T

T T F T F F F T

T F T F T F T T

T F F F T F F T

F T T T T T T T

F T F T F F T T

F F T T T T T T

F F F T T T T T

Therefore the statement is always true. It
means if A implies B and B implies C , then
A implies C.

• Problem 2. We can try to construct a
truth table but we have four statements
which means the table would have 16 rows.
So instead we look at the claim

If (P ∧Q)� (R∨S) and
Q� R, then P� S.

and decide that it looks wrong. Thus we
need to assign truth values to P , Q, R, S

such that (P ∧ Q)� (R∨S) and Q� R

are true but P� S is false.

As P� S is false, we have to assigne
P = T , S = F . Now to make P ∧ Q = F

we assign Q = F . Note that this impiles
(P ∧ Q)� (R ∨ S) and also Q� R are
true.

• Problem 3. We prove ∪n∈NEn = {x ∈ RP
x > 0}. Denote this set by A. We prove

1. A⊆∪n∈NEn. Take any x∈A. As x>0,
there is n ∈ N such that x >

1

n
which

means x∈En ⊆∪n∈NEn.

2. ∪n∈NEn ⊆ A. Take any x ∈ ∪n∈NEn.
By definition of union there is n ∈ N

such that x ∈En. This gives x >
1

n
> 0

therefore x∈A.

Summarizing, we have ∪n∈NEn =A.

• Problem 4.

a) A = ∪n∈Z

[

n π −
π

6
, n π +

π

6

]

; B =

{x∈R: (x−1) (x2+1)<0}=(−∞,1).

A ∪ B = (−∞, 1) ∪
(

∪n∈N

[

n π −
π

6
,

n π +
π

6

])

; A ∩ B = ∪n=0
∞

[

−n π −
π

6
,

−nπ +
π

6

]

.

b)

− A is closed. Since Ac =

∪n∈Z

(

n π +
π

6
, n π +

5 π

6

)

is

open (because it is a union of open
intervals).

− B is open since it is an open
interval.

− C = A ∪ B is neither open nor
closed.

∗ C is not open. Take x0 =
5 π

6
∈

C. Then for any (a, b) such
that x0 ∈ (a, b), there is c >

0 such that max{1, a}<c<x0.
For this c we have c � A ∪ B.

Consequently (a, b)⊆A∪B.

∗ C is not closed. We have

(A ∪ B)c =

[

1,
5 π

6

)

∪
(

∪n=1
∞

(

n π +
π

6
, n π +

5 π

6

))

. (57)

Now take 1∈ (A∪B)c. For any

(a, b)∋ 1, we have a <
1 +a

2
< 1

and therefore
1+ a

2
∈ (a, b) but

1+ a

2
� (A∪B)c. Consequently

(a, b)⊆(A∪B)c.

− D = A ∩ B is closed. Since Dc =
(

∪n=0
∞

(

−n π −
5 π

6
,−n π −

π

6

))

∪
(

π

6
, ∞

)

is union of open intervals

and is therefore open.
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• Problem 5.

− “If”. Assume ∀A, B ⊆ X, f(A\B) =
f(A)\f(B). For any x1� x2, take A =
{x1, x2}, B = {x2}. Then f(A\B) =
{f(x1)}, f(A) = {f(x1), f(x2)},
f(B) = {f(x2)}. As f(A)\f(B) =
{f(x1)}, f(x1)� f(x2).

− “Only if”. Assume f is one-to-one.
We prove f(A\B) ⊆ f(A)\f(B) and
f(A)\f(B)⊆ f(A\B).

∗ f(A\B) ⊆ f(A)\f(B). Take any
y ∈ f(A\B). By definition there is
x ∈ A\B such that y = f(x). x ∈
A\B means x∈A,x � B.

Because x∈A, y = f(x)∈ f(A);
On the other hand, since f is one-
to-one and x � B, y = f(x) � f(x′)
for any x′ ∈ B which means y �
f(B). Therefore y ∈ f(A)\f(B).

∗ f(A)\f(B) ⊆ f(A\B). Take any
y ∈ f(A)\f(B). Then y ∈ f(A),
y � f(B). As y ∈ f(A) there is x ∈
A such that y = f(x). Since y �
f(B), x� B. Therefore x∈A\B and
consequently y = f(x)∈ f(A\B).

• Problem 6. The working negation is

∀M > 0 ∃x, y > 0 |f(x)− f(y)|> M |x −

y |. (58)

• Problem 7. f(x) is increasing if

∀x1, x2 x1 >x2 f(x1) > f(x2). (59)

f(x) is not increasing if

∃x1, x2, x1 >x2, f(x1) < f(x2). (60)

Or simply write as

∃x1 > x2 f(x1)< f(x2). (61)

• Problem 8. We prove supB =3 supA. We
only need to show:

1. 3 sup A is an upper bound of B. For
any b ∈ B, by definition there is a ∈ A

such that b = 3 a. By definition of sup
we have supA>a� 3 supB >3 a= b.

2. 3 sup A is the best upper bound of B.
Let c < 3 sup A. Then

c

3
< sup A. As

supA is the best upper bound for A,
c

3
is not an upper bound for A. Therefore
there is a ∈ A such that

c

3
< a. This

gives c < 3 a ∈ B, that is c is not an
upper bound for B.

inf B = 3 inf A can be proved similarly.

• Problem 9. We have an=
xn

n2
and therefore

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
n2

(n+ 1)2
|x|. (62)

Since

lim
n�∞

n2

(n+1)2
|x|= |x|, (63)

the ratio test gives convergence for |x| < 1
and divergence for |x|> 1.

For |x|= 1 we have

|an|=
1

n2
. (64)

Since
∑

n=1
∞ 1

n2
converges,

∑

n=1
∞

an

converges.

• Problem 10.

− If. Assume

lim
x� a+

f(x)= lim
x→a−

f(x) =L. (65)

Then for any ε> 0, there are δL, δR > 0
such that when 0 < x − a < δR or
−δL < x− a < 0,

|f(x)−L|< ε. (66)

Now take δ =min {δL, δR}, we have

0 < |x− a|< δ � 0<x−a<δR or

−δL <x− a < 0

Therefore for all 0 < |x− a|<δ,

|f(x)−L|<ε (67)

which means

lim
x→a

f(x) = L. (68)
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− Only if.

We prove first

lim
x→a

f(x)=L� lim
x→a+

f(x) =L. (69)

For any ε > 0, there is δ > 0 such that

0 < |x− a|< δ� (70)

|f(x)−L|<ε. (71)

In particular

0 <x− a < δ� (72)

|f(x)−L|<ε. (73)

Next we prove

lim
x→a

f(x)=L� lim
x→a−

f(x)=L. (74)

For any ε > 0, there is δ > 0 such that

0 < |x− a|< δ� (75)

|f(x)−L|< ε. (76)

In particular

−δ < x− a < 0� (77)

|f(x)−L|< ε. (78)

Thus the proof ends.
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