Contents

A. Propositional Logic: True or False 2

1. Concepts and theorems 2
2. Solutions to exercises 2
3. Problems 2
B. Sets 3
4. Concepts and theorems 3
5. Solutions to exercises 3
6. Problems 3
C. Functions 4
7. Concepts and Theorems 4
8. Solutions to exercises 4
9. Problems. 4
D. Predicative Logic: Quantifiers 5
10. Concepts and theorems 5
11. Solutions to exercises 5
12. Problems 5
E. Sets of Real Numbers 6
13. Concepts and Theorems. 6
14. Solutions to Exercises. 6
15. Problems. 6
F. Limits of Sequences 7
16. Concepts and Theorems 7
17. Solutions to Exercises. 7
G. Subsequence 8
18. Concepts and Theorems 8
19. Solutions to Exercises. 8
20. Problems. 8
H. Infinite Series 9
21. Concepts and Theorems. 9
22. Solutions to exercises. 9
23. Problems 9
I. Limit of Functions 10
24. Concepts and Theorems 10
25. Solutions to exercises 10
26. Problems 10
J. Continuity/Continuous Functions 11
27. Continuity 11
28. Continuous functions 11
K. Solutions 12

- This review may not cover all possibletopics for the midterm exam. Pleasealso review lecture notes and homeworkproblems.
- To get the most out of these problems, clearly write down (instead of mumble or think) your complete answers (instead of a few lines of the main idea), in full sentences (instead of formulas connected by arrows). And then compare with the solutions when they are posted.
- If don't know where to start, write down all definitions involved.
- If have no idea what to do, try proof by contradiction. Start by writing down the assumption in logical statements.
- "Justify" means: if true, provide a proof; if false, give a counterexample.

A. Propositional Logic: True or False

- To prove: Construct truth table.

1. Concepts and theorems

- Mathematical statements: Either true or false.
- New statements can be created from old ones using
- not: \neg (Negation);

$$
\begin{array}{cc}
A & \neg A \\
T & F \\
F & T
\end{array}
$$

- and: \wedge (Conjunction);

$$
\begin{array}{ccc}
A & B & A \wedge B \\
T & T & T \\
T & F & F \\
F & T & F \\
F & F & F
\end{array}
$$

- or: \vee (Disjunction);

A	B	$A \vee B$
T	T	T
T	F	T
F	T	T
F	F	F

- implies: \Longrightarrow (Conditional);

$$
\begin{array}{ccc}
A & B & A \Longrightarrow B \\
T & T & T \\
T & F & F \\
F & T & T \\
F & F & T
\end{array}
$$

- equivalent: \Longleftrightarrow (Bi-conditional).

A	B	$A \Longleftrightarrow B$
T	T	T
T	F	F
F	T	F
F	F	T

Exercise 1. Prove that $A \Longrightarrow B$ is the same as $(\neg A) \vee B$.

Note. How to remember "If" and "Only if", "Sufficient" and "Necessary"...
"Only if" is opposite to "If". A if B means "If B then A " that is $B \Longrightarrow A$, so " A only if B " should be $A \Longrightarrow B$.
"Necessary" is opposite to "Sufficient". " A is sufficient for B " is " $A \Longrightarrow B$ ", therefore " A is necessary for B " is " $B \Longrightarrow A$ ".

Note. "If and only if". " A if and only if B " means " A if B " and " A only if B ", that is $B \Longrightarrow A$ and $A \Longrightarrow B$ and consequently $A \Longleftrightarrow B$.

2. Solutions to exercises

Exercise 1: Truth table:

A	B	$A \Longrightarrow B$	$\neg A$	$(\neg A) \vee B$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

We see that $A \Longrightarrow B$ and $(\neg A) \vee B$ take the same truth values in all situations. In other words $(A \Longrightarrow B) \Longleftrightarrow$ $((\neg A) \vee B)$ is always true.

3. Problems

Problem 1. Let A, B, C be logical statements. Prove that $[(A \Longrightarrow B)$ and $(B \Longrightarrow C)] \Longrightarrow(A \Longrightarrow C)$. Explain in English what this means.

Problem 2. Critique the following claim. Justify your answer.

$$
\begin{aligned}
& \text { If }(P \wedge Q) \Longrightarrow(R \vee S) \text { and } Q \Longrightarrow R, \\
& \text { then } P \Longrightarrow S
\end{aligned}
$$

B. Sets

1. Concepts and theorems

- Set: A collection of objects.
- Important sets:
- Empty set $\varnothing: \forall x, x \notin \varnothing$;
- Natural numbers: $\mathbb{N}:=\{1,2,3, \ldots\}$;
- Integers: \mathbb{Z};
- Rational numbers: \mathbb{Q};
- Real numbers \mathbb{R}.
- Relations between an object and a set.
- Object x is a member of set $A: x \in A$;
- Object x is not a member of set A : $x \notin A$.
- Relations between sets.
- Subset: $A \subseteq B(B \supseteq A)$

$$
\begin{equation*}
(x \in A) \Longrightarrow(x \in B) \tag{1}
\end{equation*}
$$

* Prove $A \subseteq B$: Take any $x \in A$, argueargueargue, $x \in B$.
* Prove $A \nsubseteq B$: Find $x \in A$ but $x \notin B$.
- Equal: $A=B$.

$$
\begin{equation*}
(x \in A) \Longleftrightarrow(x \in B) \tag{2}
\end{equation*}
$$

* Prove $A=B$: Two steps.
- Step 1. $A \subseteq B$;
- Step 2. $B \subseteq A$.
* Prove $A \neq B$: Find $x \in A$ but $x \notin B$, or find $x \in B$ but $x \notin A$.
- Proper subset: $A \subset B(B \supset A)$.

$$
\begin{equation*}
(A \subseteq B) \wedge(A \neq B) . \tag{3}
\end{equation*}
$$

* Prove $A \subset B$: Two steps.
- Step 1. $A \subseteq B$;
- Step 2. Find $x \in B$ but $x \notin A$.
- New sets from old.
- Union:

$$
\begin{equation*}
A \cup B:=\{x \mid(x \in A) \vee(x \in B)\} . \tag{4}
\end{equation*}
$$

- Intersection:

$$
\begin{equation*}
A \cap B:=\{x \mid(x \in A) \wedge(x \in B)\} . \tag{5}
\end{equation*}
$$

- Subtraction:

$$
\begin{equation*}
A-B:=\{x \mid(x \in A) \wedge(x \notin B)\} . \tag{6}
\end{equation*}
$$

- Complement: Universal set X - all sets under discussion are its subsets:

$$
\begin{equation*}
A^{c}:=\{x \mid x \notin A\} . \tag{7}
\end{equation*}
$$

This is a shorthand for a special case of subtraction.
Exercise 2. Prove

$$
\begin{equation*}
A \subseteq B \Longrightarrow A \cap C \subseteq B \cap C \tag{8}
\end{equation*}
$$

If $A \subset B$, can we conclude $A \cap C \subset B \cap C$? Justify.

- Intersection and union of arbitrary number os sets. Let W be a collection of sets. Then

$$
\left.\begin{array}{rl}
\cap_{A \in W} A & :=\{x \mid \forall A \in W \\
\cup_{A \in W} A & :=\{x \mid \exists A \in W \tag{10}
\end{array} \quad x \in A\right\} .
$$

Note. In particular, be aware of the difference between \in and \subseteq / \subset. The former is about the relation between an element and a set (a collection of elements), while the latter is about the relation between two sets.

2. Solutions to exercises

Exercise 2. Take any $x \in A \cap C$. By definition of intersection $x \in A$ and $x \in C$. By definition of $A \subseteq B$ we have $x \in B$. Thus $x \in B$ and $x \in C$ and by definition of intersection $x \in B \cap C$.

If $A \subset B$ we cannot conclude $A \cap C \subset B \cap C$. For example $A=\{1\}, B=\{1,2\}, C=\{1\}$.

3. Problems

Problem 3. Let $E_{n}:=\{x \in \mathbb{R} \mid x>1 / n\}$. Calculate $\cup_{n \in \mathbb{N}} E_{n}$.
Problem 4. Let $A=\left\{x \in \mathbb{R}| | \sin x \left\lvert\, \leqslant \frac{1}{2}\right.\right\} ; B=\{x \in \mathbb{R} \mid$ $\left.x^{3}-x^{2}+x-1<0\right\}$.

- Represent $A, B, A \cup B, A \cap B$ using intervals.
- Which of these four sets is/are open? Which is/are closed? Justify your answers.

C. Functions

1. Concepts and Theorems

- Function: A triplet consisting of two sets A, B and a rule assigning to each element in A one and only one element in B. Notation: $f: A \mapsto B$.
- Image and pre-image: $f: A \mapsto B$ a function.
$-S \subseteq A$ has an image:

$$
\begin{equation*}
f(S):=\{f(x) \mid x \in S\} \tag{11}
\end{equation*}
$$

$-T \subseteq B$ has a pre-image:

$$
\begin{equation*}
f^{-1}(T):=\{x \mid f(x) \in T\} \tag{12}
\end{equation*}
$$

Exercise 3. Let $f: X \mapsto Y$ be function. Let $A, B \subseteq X$. Prove

$$
\begin{equation*}
f(A-B) \supseteq f(A)-f(B) \tag{13}
\end{equation*}
$$

Give an example where $f(A-B) \supset f(A)-f(B)$.

- Composite function. $f: X \mapsto Y, g: Z \mapsto$ W functions. If $Y \subseteq Z$, can define a new function from X to W, denoted $g \circ f$:

$$
\begin{equation*}
(g \circ f)(x):=g(f(x)) \tag{14}
\end{equation*}
$$

- One-to-one, onto, bijection.
- One-to-one: $\forall a_{1}, a_{2} \in A, \quad f\left(a_{1}\right)=$ $f\left(a_{2}\right) \Longrightarrow a_{1}=a_{2}$.
* Prove one-to-one: Take any $a_{1}, a_{2} \in$ A. Assume $f\left(a_{1}\right)=f\left(a_{2}\right) . . . a_{1}=a_{2}$.
- Onto: $f(A)=B$.
* Prove onto: Let $b \in B$ be arbitrary.

We take $a=\ldots, \ldots, f(a)=b$.

- Bijection: one-to-one and onto.
- Inverse funtion. $f: X \mapsto Y$ is a function.
- Definition. g is the inverse function of f is and only if
i. $g: Y \mapsto X$ is a function;
ii. $\forall x \in X, g(f(x))=x$;
iii. $\forall y \in Y, f(g(y))=y$.
$-f: X \mapsto Y$ has inverse function if and only if it is a bijection.

Exercise 4. Suppose $f: A \mapsto B$ and $g: B \mapsto C$ are functions. Show that if both f and g are bijections, then so is $g \circ f$.

- Increasing, decreasing, monotone.
- Increasing: $x_{1} \geqslant x_{2} \Longrightarrow f\left(x_{1}\right) \geqslant f\left(x_{2}\right)$.
- Strictly increasing: $x_{1}>x_{2} \Longrightarrow f\left(x_{1}\right)>$ $f\left(x_{2}\right)$.
- Decreasing: $x_{1} \geqslant x_{2} \Longrightarrow f\left(x_{1}\right) \leqslant f\left(x_{2}\right)$.
- Strictly decreasing: $x_{1}>x_{2} \Longrightarrow f\left(x_{1}\right)<$ $f\left(x_{2}\right)$.
- Monotone: Either increasing or decreasing.

2. Solutions to exercises

Exercise 3.

- Proof. Take any $y \in f(A)-f(B)$. By definition of set difference $y \in f(A)$ but $y \notin f(B)$. Now by definition of image there is $a \in A$ such that $y=f(a)$. If $a \in B$ then $y \in f(B)$ contradiction. Therefore $a \notin B$. So we have

$$
\begin{equation*}
a \in A, a \notin B \Longrightarrow a \in A-B \tag{15}
\end{equation*}
$$

- Example. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be constant: $\forall x \in \mathbb{R}$, $f(x)=0$. Let $A=\{1,2\}, B=\{1\}$. Then

$$
\begin{align*}
& f(A-B)=f(\{2\})=\{0\}, \text { but } \tag{16}\\
& f(A)-f(B)=\{0\}-\{0\}=\varnothing \tag{17}
\end{align*}
$$

Exercise 4.

- $g \circ f$ is one-to-one. For any $x_{1} \neq x_{2}$, since f is one-to-one, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Now because g is one-to-one, $g\left(f\left(x_{1}\right)\right) \neq g\left(f\left(x_{2}\right)\right)$.
- $g \circ f$ is onto. Take any $z \in C$. Since g is onto, there is $y \in B$ such that $z=g(y)$. Now because f is onto, there is $x \in A$ such that $y=f(x)$. Thus $z=g(f(x))$.

3. Problems.

Problem 5. Let $f: X \mapsto Y$ be a function. Prove that f is one-to-one if and only if $f(A-B)=f(A)-f(B)$ for all subsets A, B of X.

D. Predicative Logic: Quantifiers

1. Concepts and theorems

- Universal quatifier: \forall.
- Reads: $\forall x \in A P(x)$: "For any/every x in A, the statement $P(x)$, when the variable takes this value x, is true."
- Meaning: Can be understood as a "short hand".

Example. $A:=\{1,2,3\} . P(x)$ is " $x>$ 3". Then $\forall x \in A P(x)$ means

$$
\begin{equation*}
(1>3) \wedge(2>3) \wedge(3>3) . \tag{18}
\end{equation*}
$$

- Existential quantifier: \exists.
- Reads: $\exists x \in A P(x)$: "There is x in A such that the statement $P(x)$, when the variable takes this value x, is true."
- Meaning: Can be understood as a "short hand".

Example. $A:=\{1,2,3\} . P(x)$ is " $x>$ 3". Then $\exists x \in A P(x)$ means

$$
\begin{equation*}
(1>3) \vee(2>3) \vee(3>3) \tag{19}
\end{equation*}
$$

- Working negation.
- Try to "push" the "Not" through all quantifiers.
- We can do this layer by layer.

Example. To write the working negation of $\forall x \in A \exists y, z \in B P(x, y, z)$, we write

$$
\begin{aligned}
& \neg[\forall x \in A \exists y, z \in B \quad P(x, y, z)] \\
= & \exists x \in A \neg[\exists y, z \in B \quad P(x, y, z)] \\
= & \exists x \in A \forall y, z \in B \quad \neg P(x, y, z) .
\end{aligned}
$$

Exercise 5. Explain why the working negation of

$$
\begin{equation*}
\forall x>0 \quad f(x)>0 \tag{20}
\end{equation*}
$$

is

$$
\begin{equation*}
\exists x>0 \quad f(x) \leqslant 0 \tag{21}
\end{equation*}
$$

instead of

$$
\begin{equation*}
\exists x \leqslant 0 \quad f(x) \leqslant 0 \tag{22}
\end{equation*}
$$

- To prove:

$$
-\forall x \in A \quad P(x)
$$

\quad| Let x |
| :--- |
| arbitrary. |\quad| A be |
| :--- |
| arguments here..... $], P(x)$ |
| is true. |

$$
-\exists x \in A \quad P(x) . \text { Two methods. }
$$

1. Find such x and show that $P(x)$ is true;
2. Proof by contradiction. Assume

$$
\begin{equation*}
\forall x \in A \quad \neg P(x) \tag{23}
\end{equation*}
$$

and reach contradiction.
Note. To obtain working negation correctly, the following steps should be followed:

1. Write all the quantifiers first.
2. When applying "not", \forall becomes \exists, and \exists becomes \forall.

2. Solutions to exercises

Exercise 5. $\forall x>0 x^{2}>0$ means

$$
\begin{equation*}
\wedge_{x>0}\left(x^{2}>0\right) \tag{24}
\end{equation*}
$$

that is

$$
\begin{equation*}
\left(x_{1}^{2}>0\right) \wedge\left(x_{2}^{2}>0\right) \wedge\left(x_{3}^{2}>0\right) \cdots \tag{25}
\end{equation*}
$$

where $x_{1}, x_{2}, x_{3}, \ldots$ lists all positive numbers (Note that more logic theory is needed to justify this).

Taking \neg :

$$
\begin{aligned}
& \neg\left[\left(x_{1}^{2}>0\right) \wedge\left(x_{2}^{2}>0\right) \wedge\left(x_{3}^{2}>0\right) \cdots\right] \\
= & \neg\left(x_{1}^{2}>0\right) \vee \neg\left(x_{2}^{2}>0\right) \vee \neg\left(x_{3}^{2}>0\right) \cdots \\
= & \left(x_{1}^{2} \leqslant 0\right) \vee\left(x_{2}^{2} \leqslant 0\right) \vee\left(x_{3}^{2} \leqslant 0\right) \cdots
\end{aligned}
$$

which is (note that still the same $x_{1}, x_{2}, x_{3}, \ldots$)

$$
\begin{equation*}
\exists x>0 \quad x^{2} \leqslant 0 \tag{26}
\end{equation*}
$$

3. Problems

Problem 6. A function $f:[0, \infty) \mapsto \mathbb{R}$ is "Lipschitz" if and only if
$\exists M>0 \forall x, y \geqslant 0 \quad|f(x)-f(y)| \leqslant M \mid x-$ $y \mid$.
Write down the working negation of the above.
Problem 7. A function $f(x): \mathbb{R} \mapsto \mathbb{R}$ is increasing if $f\left(x_{1}\right) \geqslant f\left(x_{2}\right)$ whenever $x_{1} \geqslant x_{2}$ Write down the logical statement for " $f(x)$ is not increasing".

E. Sets of Real Numbers

1. Concepts and Theorems.

- Intervals: $[a, b],(a, b),[a, b),(a, b]$.
- Open sets:

$$
\begin{equation*}
\forall x \in A \exists(a, b) \ni x \quad(a, b) \subseteq A \tag{28}
\end{equation*}
$$

- Prove A is open: Take any $x \in A$. Find a, b depending on x and A such that $x \in(a, b) \subseteq A$.
- Prove A is not open: Find $x \in A$, whenever $a<x<b$, there is $y \in(a$, b), $y \notin A$.

Exercise 6. Find a set A that is not open but also not closed. Justify.

- Closed sets: A is closed $\Longleftrightarrow A^{c}$ is open.
- To prove A is closed: Prove A^{c} is open.
- To prove A is not closed: Prove A^{c} is not open.

Theorem 1. Unions and intersections of open/closed sets.

- sup and inf.
- Intuition:
* Sup: Best upper bound;
* Inf: Best lower bound.
- To prove $b=\sup A$. Two steps:
* Step 1. Prove b is an upper bound:

$$
\begin{equation*}
\forall a \in A, \quad a \leqslant b \tag{29}
\end{equation*}
$$

* Step 2. Prove b is the best, that is smallest, upper bound:

$$
\begin{equation*}
\forall b^{\prime}<b \exists a \in A \quad a>b^{\prime} \tag{30}
\end{equation*}
$$

- To prove $b=\inf A$. Two steps:
* Step 1. Prove b is a lower bound:

$$
\begin{equation*}
\forall a \in A, \quad a \geqslant b \tag{31}
\end{equation*}
$$

* Step 2. Prove b is the best, that is greatest, lower bound:

$$
\begin{equation*}
\forall b^{\prime}>b \exists a \in A \quad a<b^{\prime} \tag{32}
\end{equation*}
$$

- If $\sup A \in A$, it is also denoted $\max A$;
- If $\inf A \in A$, it is also denoted $\min A$.

Exercise 7. Let $A=\left\{\left.\frac{n-2}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Find $\sup A$. Justify your answer.

2. Solutions to Exercises.

Exercise 6. Take $A=[0,1):=\{x \in \mathbb{R} \mid 0 \leqslant x<1\}$.

- A is not open. We take $0 \in A$. For any $a<0<b$, we have $a<\frac{a}{2}<0<b$. This gives

$$
\begin{equation*}
\frac{a}{2} \in(a, b) \text { but } \frac{a}{2} \notin A \text {. } \tag{33}
\end{equation*}
$$

- A is not closed. We prove $A^{c}=(-\infty, 0) \cup[1, \infty)$ is not open. Take $1 \in A^{c}$. For any $a<1<b$, we have $b>1>\frac{1+a}{2}>a$ so

$$
\begin{equation*}
\frac{1+a}{2} \in(a, b) \text { but } \frac{1+a}{2} \notin A^{c} . \tag{34}
\end{equation*}
$$

Exercise 7. Guess $\sup A=1$. Justify:

1. 1 is an upper bound of A. Take any $x \in A$. Then there is $n \in \mathbb{N}$ such that $x=\frac{n-2}{n}=1-\frac{2}{n} \leqslant 1$.
2. 1 is the best upper bound of A. Take any $b<1$. There is $n \in \mathbb{N}$ such that $\frac{2}{n}<1-b$. Then

$$
\begin{equation*}
\frac{n-2}{n}=1-\frac{2}{n}>1-(1-b)=b . \tag{35}
\end{equation*}
$$

So b is not an upper bound of A.

3. Problems.

Problem 8. Let A be a nonempty subset of \mathbb{R}. Let $B=3 A:=\{3 x: x \in A\}$. Derive the relations between $\sup B, \inf B$ and $\sup A, \inf A$. Justify your answers. Note that you may need to discuss different cases for c and for $\sup A$.

F. Limits of Sequences

1. Concepts and Theorems

- Definition
$\lim _{n \longrightarrow \infty} x_{n}=L$ is defined as
$-L \in \mathbb{R} . \forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\forall n>N,\left|x_{n}-L\right|<\varepsilon$.
$-L=\infty . \forall M \in \mathbb{R}, \exists N \in \mathbb{N}$ such that $\forall n>N, x_{n}>M$.
$-L=-\infty . \forall M \in \mathbb{R}, \exists N \in \mathbb{N}$ such that $\forall n>N, x_{n}<M$.

Observe the pattern.

- Calculating limits.
- Tools:

$$
\lim _{n \longrightarrow \infty} x_{n}=a, \lim _{n \longrightarrow \infty} y_{n}=b
$$ then

a) $\lim _{n \longrightarrow \infty}\left(x_{n} \pm y_{n}\right)=a \pm b$;
b) $\lim _{n \longrightarrow \infty}\left(x_{n} y_{n}\right)=a b ;$
c) If $b \neq 0, \lim _{n \longrightarrow \infty}\left(x_{n} / y_{n}\right)=a / b$.

- Proving existence of limits.
- Definition.

1. Guess the limit L.
2. Proof: For any $\varepsilon>0$, we take $N=$ [formula involving ε], then for all $n>N$, we have

$$
\begin{equation*}
\left|x_{n}-L\right| \leqslant \ldots \leqslant \varepsilon \tag{36}
\end{equation*}
$$

- Cauchy. If $\forall \varepsilon>0 \exists N \in \mathbb{N} \forall m, n>N$, $\left|x_{n}-x_{m}\right|<\varepsilon$, then $\lim _{n \rightarrow \infty} x_{n}$ exists.

Exercise 8. Find a diverging sequence x_{n} such that $\lim _{n} \longrightarrow \infty\left(x_{n+2}-x_{n}\right)=0$.

- Monotone.
* Increasing. If

1. $\forall n x_{n+1} \geqslant x_{n}$ (increasing);
2. $\exists b \forall n x_{n} \leqslant b$ (upper bound); then $\lim _{n \rightarrow \infty} x_{n}$ exists.

* Decreasing. If

1. $\forall n x_{n+1} \leqslant x_{n}$ (decreasing);
2. $\exists b \forall n x_{n} \geqslant b$ (lower bound); then $\lim _{n \rightarrow \infty} x_{n}$ exists.

- Squeeze.

1. $\exists N_{0} \in \mathbb{N} \forall n>N_{0} \quad w_{n} \leqslant x_{n} \leqslant y_{n}$;
2. $\lim _{n \longrightarrow \infty} w_{n}=\lim _{n \longrightarrow \infty} y_{n}$. Then
3. $\lim _{n \longrightarrow \infty} x_{n}$ exists;
4. $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} w_{n}=$ $\lim _{n \rightarrow \infty} y_{n}$.

- Comparing limits. If

1. $\lim _{n \rightarrow \infty} x_{n}, \lim _{n \rightarrow \infty} y_{n}$ exist;
2. $\exists N_{0} \in \mathbb{N} \forall n>N_{0} \quad x_{n} \leqslant y_{n}$, then $\lim _{n \rightarrow \infty} x_{n} \leqslant \lim _{n \rightarrow \infty} y_{n}$.

2. Solutions to Exercises.

Exercise 8. Take $x_{n}=n^{1 / 2}$.

G. Subsequence

1. Concepts and Theorems

- Subsequence.

$$
\begin{equation*}
\left\{x_{n_{k}}\right\}=\left\{x_{n_{1}}, x_{n_{2}}, \ldots\right\} \tag{37}
\end{equation*}
$$

is a subsequence of $\left\{x_{n}\right\}=\left\{x_{1}, x_{2}, \ldots\right\}$ if and only if

1. $\forall k \in \mathbb{N}, n_{k} \in \mathbb{N}$;
2. $n_{1}<n_{2}<n_{3}<\ldots$.

Exercise 9. Let $\left\{x_{n}\right\}$ be a sequence. Prove: $\left\{x_{n}\right\}$ is bounded \Longleftrightarrow Every subsequence of $\left\{x_{n}\right\}$ is bounded.

- limsup and liminf.
$-\limsup _{n \rightarrow \infty} x_{n}$ is
* $\lim _{n \longrightarrow \infty} y_{n}$ where

$$
\begin{equation*}
y_{n}:=\sup \left\{x_{n}, x_{n+1}, \ldots\right\} ; \tag{38}
\end{equation*}
$$

* $\max A$ where A is the set

$$
\begin{equation*}
\left\{a \in \mathbb{R} \mid \exists\left\{x_{n_{k}}\right\} \lim _{k \rightarrow \infty} x_{n_{k}=a}\right\} \tag{39}
\end{equation*}
$$

$-\liminf _{n \longrightarrow \infty} x_{n}$ is

* $\lim _{n \rightarrow \infty} y_{n}$ where

$$
\begin{equation*}
y_{n}:=\inf \left\{x_{n}, x_{n+1}, \ldots\right\} ; \tag{40}
\end{equation*}
$$

* $\min A$ where A is the set

$$
\begin{equation*}
\left\{a \in \mathbb{R} \mid \exists\left\{x_{n_{k}}\right\} \lim _{k \rightarrow \infty} x_{n_{k}=a}\right\} \tag{41}
\end{equation*}
$$

- How to calculate: Evaluating exactly $\sup _{k \geqslant n} x_{k}$ could be hard. There are two ways to overcome:
* Use Squeeze theorem: Find $N_{0} \in \mathbb{N}$ such that for all $n>N_{0}$,

$$
\begin{equation*}
w_{n} \leqslant \sup \left\{x_{n}, \ldots\right\} \leqslant z_{n} \tag{42}
\end{equation*}
$$

$\lim w_{n}=\lim z_{n}=L \Longrightarrow$ $\limsup _{n \rightarrow \infty} x_{n}=L$.

Exercise 10. $x_{n}=(-1)^{n}+e^{-n^{2}}$.

* Use limsup is the largest limit of convergent subsequences. First guess the limit L. Then show

1. $\exists\left\{x_{n_{k}}\right\}$ converging to L.
2. For every convergent subsequence $x_{n_{k}} \longrightarrow a, a \leqslant L$.
Exercise 11. $x_{n}=(-1)^{n}+e^{-n^{2}}$.

- Some relations.
$-\left\{x_{n}\right\}$ convergent $\Longrightarrow\left\{x_{n}\right\}$ bounded; $\left\{x_{n}\right\}$ bounded $\Longrightarrow\left\{x_{n}\right\}$ has a convergent subsequence;
$-\left\{x_{n}\right\}$ convergent \Longleftrightarrow All of its subsequences are convergent;
$-\left\{x_{n}\right\}$ convergent $\Longleftrightarrow \limsup _{n \rightarrow \infty} x_{n}=$ $\liminf _{n \rightarrow \infty} x_{n}$.

2. Solutions to Exercises.

Exercise 9.

- \Longrightarrow. Since $\left\{x_{n}\right\}$ is bounded there is $M>0$ such that $\forall n \in \mathbb{N}\left|x_{n}\right|<M$. Since $n_{k} \in \mathbb{N}$, we have $\forall k \in \mathbb{N}\left|x_{n_{k}}\right|<M$.
- \Longleftarrow. Assume $\left\{x_{n}\right\}$ is not bounded. Then for every $N \in \mathbb{N}$ there is $n_{k} \in \mathbb{N}$ such that $\left|x_{n_{k}}\right| \geqslant M$. The subsequence $\left\{x_{n_{k}}\right\}$ is then not bounded.
Exercise 10. We have

$$
\begin{equation*}
1 \leqslant \sup _{k \geqslant n}\left[(-1)^{k}+e^{-k^{2}}\right] \leqslant 1+e^{-n^{2}} . \tag{43}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$ we conclude

$$
\begin{equation*}
\limsup x_{n}=1 . \tag{44}
\end{equation*}
$$

Exercise 11.

1. Take $n_{k}=2 k$ then $x_{n_{k}}=1+e^{-4 k^{2}} \longrightarrow 1$.
2. Comparison theorem:

$$
\begin{align*}
& x_{n_{k}}=(-1)^{n_{k}}+e^{-n_{k}^{2}} \leqslant 1+e^{-k^{2}} \Longrightarrow a= \\
& \lim _{k \longrightarrow \infty} x_{n_{k}} \leqslant \lim _{k \longrightarrow \infty}\left(1+e^{-k^{2}}\right)=1 . \tag{45}
\end{align*}
$$

3. Problems.

H. Infinite Series

1. Concepts and Theorems.

- Definitions.
- Infinite series: Formal summation

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}=a_{1}+a_{2}+\cdots \tag{46}
\end{equation*}
$$

- Convergence: Define partial sum

$$
\begin{equation*}
s_{n}:=\sum_{k=1}^{n} a_{n}:=a_{1}+\cdots+a_{n} . \tag{47}
\end{equation*}
$$

$\sum_{n=1}^{\infty} a_{n}$ convergens if and only if the sequence $\left\{s_{n}\right\}$ convergens. Call $\lim _{n \rightarrow \infty} s_{n}$ the "sum" of the infinite series.

- Convergence.
- Definition: $\sum_{n=1}^{\infty} a_{n}=L$ if and only if $\forall \varepsilon>0 \exists N \in \mathbb{N} \forall n>N, \mid \sum_{k=1}^{n} a_{k}-$ $L \mid<\varepsilon$.
- Convergence theorems: Adaptation of convergence theorems for sequences.
* Cauchy criterion: $\forall \varepsilon>0 \exists N \in$ $\mathbb{N} \forall n>m>N \quad\left|\sum_{m+1}^{n} a_{k}\right|<\varepsilon$.
* Non-negative series: If $a_{n} \geqslant 0$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_{n} \in \mathbb{R}$ if and only if $\left\{s_{n}\right\}$ is bounded from above.
* Comparison: If $\left|a_{n}\right| \leqslant b_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ converges, then so does $\sum_{n=1}^{\infty} a_{n}$.
$-\sum_{n=1}^{\infty} a_{n}$ converges $\Longrightarrow \lim _{n \rightarrow \infty} a_{n}=0$. But \Longleftarrow is not true!
- Typical series.
- Geometric. $\sum_{n=1}^{\infty} r^{n-1}$.
* $|r|<1 \Longrightarrow \sum_{n=1}^{\infty} r^{n-1}=\frac{1}{1-r}$;
* $r \geqslant 1 \Longrightarrow \sum_{n=1}^{\infty} r^{n-1}=\infty$;
* $r \leqslant-1 \Longrightarrow \sum_{n=1}^{\infty} r^{n-1}$ does not converge.
- Harmonic. $\sum_{n=1}^{\infty} n^{-a}$.
* $a>1 \Longrightarrow \sum_{n=1}^{\infty} n^{-a}$ converges;
$* a \leqslant 1 \Longrightarrow \sum_{n=1}^{\infty} n^{-a}=\infty$.
- Convergence tests.
- Ratio Test.
* $\limsup _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \Longrightarrow$ converge;
$* \liminf _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|>1 \Longrightarrow$ diverge;
* Other situations \Longrightarrow further study needed;
- Root Test.
* $\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}<1 \Longrightarrow$ converge;
$* \liminf _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}>1 \Longrightarrow$ diverge;
* Other situations \Longrightarrow further study needed;

Exercise 12. Prove that $\sum_{n=1}^{\infty} n x^{n}$ converges when $|x|<1$ and diverges when $|x| \geqslant 1$.

Remark. Keep in mind that if $\lim _{n \rightarrow \infty} x_{n}$ exists, then $\liminf _{n \longrightarrow \infty} x_{n}=$ $\limsup _{n \rightarrow \infty} x_{n}=\lim _{n \longrightarrow \infty} x_{n}$.

Remark. Note that ratio/root tests are usually useless if the formulas for a_{n} are not given.

2. Solutions to exercises.

Exercise 12. We apply the ratio test: Since $a_{n}=n x^{n}$ we have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n+1}{n}|x|$. We have

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{n+1}{n}|x|=|x| \lim _{n \longrightarrow \infty} \frac{n+1}{n}=|x| . \tag{48}
\end{equation*}
$$

Thus the ratio test gives:
$\sum_{n=1}^{\infty} n x^{n}$ converges when $|x|<1$ and diverges when $|x|>1$.

The case $|x|=1$ has to be analyzed ad hoc. In this case we have $\left|a_{n}\right|=n$. Clearly $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ doesn't hold. Therefore the series does not converge in this case.

3. Problems

Problem 9. Analyze the convegence/divergence of $\sum_{n=1}^{\infty}\left(x^{n} / n^{2}\right)$ for $x \in \mathbb{R}$.

I. Limit of Functions

1. Concepts and Theorems

- $\lim _{x \rightarrow a} f(x)=L$ is defined as
- $a \in \mathbb{R}, L \in \mathbb{R} . \forall \varepsilon>0, \exists \delta>0$ such that $\forall 0<|x-a|<\delta,|f(x)-L|<\varepsilon$.
- $a \in \mathbb{R}, L=\infty . \forall M \in \mathbb{R}, \exists \delta>0$ such that $\forall 0<|x-a|<\delta, f(x)>M$.
$-a \in \mathbb{R}, L=-\infty . \forall M \in \mathbb{R}, \exists \delta>0$ such that $\forall 0<|x-a|<\delta, f(x)>M$.
- $a=\infty, L \in \mathbb{R} . \forall \varepsilon>0, \exists M \in \mathbb{R}$ such that $\forall x>M,|f(x)-L|<\varepsilon$.
$-a=-\infty, L=\infty . \forall M \in \mathbb{R}, \exists M^{\prime} \in \mathbb{R}$ such that $\forall x<M^{\prime}, f(x)>M$. Note that M and M^{\prime} are not the same number.

Observe the pattern.

Exercise 13. Write definition for the following cases.

1. $a=\infty, L=\infty$.
2. $a=-\infty, L \in \mathbb{R}$.

- Left and right limits: For example $a, L \in \mathbb{R}$:
- Right limit: $\lim _{x \rightarrow a+} f(x)=L$ is defined as $\forall \varepsilon>0, \exists \delta>0$ such that $\forall 0<x-a<\delta,|f(x)-L|<\varepsilon$.
- Left limit: $\lim _{x \rightarrow a-} f(x)=L$ is defined as $\forall \varepsilon>0, \exists \delta>0$ such that $\forall-\delta<$ $x-a<0,|f(x)-L|<\varepsilon$.

Exercise 14. Write definition for $\lim _{x \rightarrow 0+} f(x)=-\infty$.

- Relation between function limit and sequence limit:
$\lim _{x \rightarrow a} f(x)=L$ if and only if for every sequence $\left\{x_{n}\right\}$ with $x_{n} \neq a$ for all $n \in$ \mathbb{N}, and $\lim _{n \rightarrow \infty} x_{n}=a$, there holds $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

Exercise 15. Prove that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.

- Arithmetics: $\lim _{x \rightarrow a} f(x)=L, \lim _{x \rightarrow a} g(x)=$ M, then,

$$
\begin{gather*}
\lim _{x \rightarrow a}(f \pm g)(x)=L \pm M \tag{49}\\
\lim _{x \rightarrow a}(f g)(x)=L M, \tag{50}\\
\text { If } M \neq 0, \lim _{x \rightarrow x_{0}}\left(\frac{f}{g}\right)(x)=\frac{L}{M} . \tag{51}
\end{gather*}
$$

- Comparison: $h(x) \leqslant f(x) \leqslant g(x)$, $\lim _{x \rightarrow x_{0}} h(x)=L_{1}, \lim _{x \rightarrow x_{0}} f(x)=L_{2}$, $\lim _{x \rightarrow x_{0}} g(x)=L_{3}$, then $L_{1} \leqslant L_{2} \leqslant L_{3}$.
- Squeeze: $h(x) \leqslant f(x) \leqslant g(x), \lim _{x \rightarrow x_{0}} h(x)=$ $\lim _{x \rightarrow x_{0}} g(x)=L$, then $\lim _{x \rightarrow x_{0}} f(x)=L$.

2. Solutions to exercises

Exercise 13.

1. $\forall M \in \mathbb{R}, \exists M^{\prime} \in \mathbb{R}$ such that $\forall x>M^{\prime}, f(x)>M$.
2. $\forall \varepsilon>0, \exists M \in \mathbb{R}$ such that $\forall x<M,|f(x)-L|<$ ε.

Exercise 14.

$\forall M \in \mathbb{R}, \exists \delta>0$ such that for all $0<x<\delta$, $f(x)<M$.
Exercise 15. Take $x_{n}=\frac{1}{n \pi}$ and $y_{n}=\frac{1}{(2 n+1 / 2) \pi}$. Then we have

$$
\begin{align*}
& \forall n, \quad x_{n} \neq 0, y_{n} \neq 0 ; \tag{52}\\
& \lim _{n \rightarrow \infty} x_{n}=\lim _{n \longrightarrow \infty} y_{n}=0 . \tag{53}
\end{align*}
$$

But

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sin \left(\frac{1}{x_{n}}\right)=\lim _{n \longrightarrow \infty} 0=0 \tag{54}
\end{equation*}
$$

is different from

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sin \left(\frac{1}{y_{n}}\right)=\lim _{n \longrightarrow \infty} 1=1 \tag{55}
\end{equation*}
$$

3. Problems

Problem 10. Prove by definition that $\lim _{x \rightarrow a} f(x)$ exists and equals $L \in \mathbb{R}$ if and only if $\lim _{x \rightarrow a+} f(x)$, $\lim _{x \rightarrow a-} f(x)$ both exist and both equal L.

J. Continuity/Continuous Functions

1. Continuity

- Definition: $\forall \varepsilon>0 \exists \delta>0 \forall\left|x-x_{0}\right|<\delta$, $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
- Understanding.
- Continuous at x_{0} :

1. $\lim _{x \rightarrow x_{0}} f(x)$ exists; and
2. The limit equals $f\left(x_{0}\right)$.

- Not continuous at x_{0} :

1. $\lim _{x \rightarrow x_{0}} f(x)$ does not exist, or
2. it exists but is different from $f\left(x_{0}\right)$.

- Properties: f, g continuous at x_{0} then
- $f \pm g, f g$ continuous at x_{0};
- If furthermore $g\left(x_{0}\right) \neq 0, f / g$ continuous at x_{0}.
- Composite functions.
f continuous at x_{0}, g continuous at $y_{0}=$ $f\left(x_{0}\right)$, then $g \circ f$ is continuous at x_{0}.
- Everyday functions:
- Continuous at all $x_{0} \in \mathbb{R}$:
* polynomials;
* $\exp [x]$;
* $\sin (x), \cos (x)$.
- Rational functions: After cancelling common factors, continuous where $g \neq$ 0 , discontinuous where $g=0$.

2. Continuous functions

- Intermediate Value Theorem:

Let $f(x)$ be continuous on the closed interval $[a, b]$. Then for every $s \in[f(a)$, $f(b)]$ (or $[f(b), f(a)]$ if $f(b) \leqslant f(a))$, there is $\xi \in[a, b]$ such that $f(\xi)=s$.

Remark. Note that $f(x)$ needs to be continuous on $[a, b]$, that is: For every $x_{0} \in$ $[a, b]$, we have $\forall \varepsilon>0, \exists \delta>0, \forall x \in[a$, b] $\left|x-x_{0}\right|<\delta,\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. Or in other words:

1. $\forall x_{0} \in(a, b), \lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$;
2. $\lim _{x \rightarrow a+} f(x)=f(a) ; \lim _{x \rightarrow b-} f(x)=$ $f(b)$.

Note. If $f(x)$ is continuous on $(c, d) \supset[a$, b], then $f(x)$ is continuous on $[a, b]$.

- Other consequences of f continuous on $[a$, b]:
- f is bounded. There is $M>0$ such that $\forall x \in[a, b],|f(x)| \leqslant M$.
- f reaches maximum and minimum. There are $x_{\text {max }}, x_{\text {min }} \in[a, b]$ such that $\forall x \in[a, b]$,

$$
\begin{equation*}
f\left(x_{\min }\right) \leqslant f(x) \leqslant f\left(x_{\max }\right) . \tag{56}
\end{equation*}
$$

- Inverse function. $f: A \mapsto B$ satisfies

1. continuous,
2. onto,
3. strictly increasing (or strictly decreasing)
then the inverse $g: B \mapsto A$ exists and is continuous, onto, and strictly increasing (or strictly decreasing).

K. Solutions

- Problem 1. We construct the truth table. Let AB denote $A \Longrightarrow B$, BC denote $B \Longrightarrow$ C, AB BC denote $(A \Longrightarrow B) \wedge(B \Longrightarrow C)$, AC denote $A \Longrightarrow C, A \ldots C$ denote $[(A \Longrightarrow$ $B)$ and $(B \Longrightarrow C)] \Longrightarrow(A \Longrightarrow C)$.

A	B	C	AB	BC	AB BC	AC	$A \ldots C$
T							
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T						
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Therefore the statement is always true. It means if A implies B and B implies C, then A implies C.

- Problem 2. We can try to construct a truth table but we have four statements which means the table would have 16 rows. So instead we look at the claim

$$
\begin{aligned}
& \text { If }(P \wedge Q) \Longrightarrow(R \vee S) \text { and } \\
& Q \Longrightarrow R, \text { then } P \Longrightarrow S .
\end{aligned}
$$

and decide that it looks wrong. Thus we need to assign truth values to P, Q, R, S such that $(P \wedge Q) \Longrightarrow(R \vee S)$ and $Q \Longrightarrow R$ are true but $P \Longrightarrow S$ is false.

As $P \Longrightarrow S$ is false, we have to assigne $P=T, S=F$. Now to make $P \wedge Q=F$ we assign $Q=F$. Note that this impiles $(P \wedge Q) \Longrightarrow(R \vee S)$ and also $Q \Longrightarrow R$ are true.

- Problem 3. We prove $\cup_{n \in \mathbb{N}} E_{n}=\{x \in \mathbb{R} \mid$ $x>0\}$. Denote this set by A. We prove

1. $A \subseteq \cup_{n \in \mathbb{N}} E_{n}$. Take any $x \in A$. As $x>0$, there is $n \in \mathbb{N}$ such that $x>\frac{1}{n}$ which means $x \in E_{n} \subseteq \cup_{n \in \mathbb{N}} E_{n}$.
2. $\cup_{n \in \mathbb{N}} E_{n} \subseteq A$. Take any $x \in \cup_{n \in \mathbb{N}} E_{n}$. By definition of union there is $n \in \mathbb{N}$ such that $x \in E_{n}$. This gives $x>\frac{1}{n}>0$ therefore $x \in A$.

Summarizing, we have $\cup_{n \in \mathbb{N}} E_{n}=A$.

- Problem 4.

a) $A=\cup_{n \in \mathbb{Z}}\left[n \pi-\frac{\pi}{6}, n \pi+\frac{\pi}{6}\right] ; B=$ $\left\{x \in \mathbb{R}:(x-1)\left(x^{2}+1\right)<0\right\}=(-\infty, 1)$. $A \cup B=(-\infty, 1) \cup\left(\cup_{n \in \mathbb{N}}\left[n \pi-\frac{\pi}{6}\right.\right.$, $\left.\left.n \pi+\frac{\pi}{6}\right]\right) ; A \cap B=\cup_{n=0}^{\infty}\left[-n \pi-\frac{\pi}{6}\right.$, $\left.-n \pi+\frac{\pi}{6}\right]$.
b)
$-A$ is closed. Since $A^{c}=$ $\cup_{n \in \mathbb{Z}}\left(n \pi+\frac{\pi}{6}, n \pi+\frac{5 \pi}{6}\right)$ is open (because it is a union of open intervals).

- B is open since it is an open interval.
- $C=A \cup B$ is neither open nor closed.
* C is not open. Take $x_{0}=\frac{5 \pi}{6} \in$ C. Then for any (a, b) such that $x_{0} \in(a, b)$, there is $c>$ 0 such that max $\{1, a\}<c<x_{0}$. For this c we have $c \notin A \cup B$. Consequently $(a, b) \nsubseteq A \cup B$.
* C is not closed. We have

$$
\begin{align*}
& (A \cup B)^{c}=\left[1, \frac{5 \pi}{6}\right) \cup \\
& \left(\cup _ { n = 1 } ^ { \infty } \left(n \pi+\frac{\pi}{6}, n \pi+\right.\right. \\
& \left.\left.\frac{5 \pi}{6}\right)\right) . \tag{57}
\end{align*}
$$

Now take $1 \in(A \cup B)^{c}$. For any $(a, b) \ni 1$, we have $a<\frac{1+a}{2}<1$ and therefore $\frac{1+a}{2} \in(a, b)$ but $\frac{1+a}{2} \notin(A \cup B)^{c}$. Consequently $(a, b) \nsubseteq(A \cup B)^{c}$.

- $D=A \cap B$ is closed. Since $D^{c}=$ $\left(\cup_{n=0}^{\infty}\left(-n \pi-\frac{5 \pi}{6},-n \pi-\frac{\pi}{6}\right)\right) \cup$ $\left(\frac{\pi}{6}, \infty\right)$ is union of open intervals and is therefore open.

- Problem 5.

- "If". Assume $\forall A, B \subseteq X, f(A \backslash B)=$ $f(A) \backslash f(B)$. For any $x_{1} \neq x_{2}$, take $A=$ $\left\{x_{1}, x_{2}\right\}, B=\left\{x_{2}\right\}$. Then $f(A \backslash B)=$ $\left\{f\left(x_{1}\right)\right\}, \quad f(A)=\left\{f\left(x_{1}\right), \quad f\left(x_{2}\right)\right\}$, $f(B)=\left\{f\left(x_{2}\right)\right\}$. As $f(A) \backslash f(B)=$ $\left\{f\left(x_{1}\right)\right\}, f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
- "Only if". Assume f is one-to-one. We prove $f(A \backslash B) \subseteq f(A) \backslash f(B)$ and $f(A) \backslash f(B) \subseteq f(A \backslash B)$.
* $f(A \backslash B) \subseteq f(A) \backslash f(B)$. Take any $y \in f(A \backslash B)$. By definition there is $x \in A \backslash B$ such that $y=f(x) . x \in$ $A \backslash B$ means $x \in A, x \notin B$.

Because $x \in A, y=f(x) \in f(A)$; On the other hand, since f is one-to-one and $x \notin B, y=f(x) \neq f\left(x^{\prime}\right)$ for any $x^{\prime} \in B$ which means $y \notin$ $f(B)$. Therefore $y \in f(A) \backslash f(B)$.

* $f(A) \backslash f(B) \subseteq f(A \backslash B)$. Take any $y \in f(A) \backslash f(B)$. Then $y \in f(A)$, $y \notin f(B)$. As $y \in f(A)$ there is $x \in$ A such that $y=f(x)$. Since $y \notin$ $f(B), x \notin B$. Therefore $x \in A \backslash B$ and consequently $y=f(x) \in f(A \backslash B)$.
- Problem 6. The working negation is

$$
\begin{align*}
& \forall M>0 \exists x, y \geqslant 0 \quad|f(x)-f(y)|>M \mid x- \\
& y \mid . \tag{58}
\end{align*}
$$

- Problem 7. $f(x)$ is increasing if

$$
\begin{equation*}
\forall x_{1}, x_{2} x_{1} \geqslant x_{2} \quad f\left(x_{1}\right) \geqslant f\left(x_{2}\right) . \tag{59}
\end{equation*}
$$

$f(x)$ is not increasing if
$\exists x_{1}, x_{2}, x_{1} \geqslant x_{2}, \quad f\left(x_{1}\right)<f\left(x_{2}\right)$.
Or simply write as

$$
\begin{equation*}
\exists x_{1} \geqslant x_{2} \quad f\left(x_{1}\right)<f\left(x_{2}\right) . \tag{61}
\end{equation*}
$$

- Problem 8. We prove $\sup B=3 \sup A$. We only need to show:

1. $3 \sup A$ is an upper bound of B. For any $b \in B$, by definition there is $a \in A$ such that $b=3 a$. By definition of sup we have $\sup A \geqslant a \Longrightarrow 3 \sup B \geqslant 3 a=b$.
2. $3 \sup A$ is the best upper bound of B. Let $c<3 \sup A$. Then $\frac{c}{3}<\sup A$. As $\sup A$ is the best upper bound for $A, \frac{c}{3}$ is not an upper bound for A. Therefore there is $a \in A$ such that $\frac{c}{3}<a$. This gives $c<3 a \in B$, that is c is not an upper bound for B.
$\inf B=3 \inf A$ can be proved similarly.

- Problem 9. We have $a_{n}=\frac{x^{n}}{n^{2}}$ and therefore

$$
\begin{equation*}
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{n^{2}}{(n+1)^{2}}|x| . \tag{62}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{n^{2}}{(n+1)^{2}}|x|=|x|, \tag{63}
\end{equation*}
$$

the ratio test gives convergence for $|x|<1$ and divergence for $|x|>1$.

For $|x|=1$ we have

$$
\begin{equation*}
\left|a_{n}\right|=\frac{1}{n^{2}} . \tag{64}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, $\sum_{n=1}^{\infty} a_{n}$ converges.

- Problem 10.

- If. Assume

$$
\begin{equation*}
\lim _{x \longrightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=L . \tag{65}
\end{equation*}
$$

Then for any $\varepsilon>0$, there are $\delta_{L}, \delta_{R}>0$ such that when $0<x-a<\delta_{R}$ or $-\delta_{L}<x-a<0$,

$$
\begin{equation*}
|f(x)-L|<\varepsilon \tag{66}
\end{equation*}
$$

Now take $\delta=\min \left\{\delta_{L}, \delta_{R}\right\}$, we have

$$
\begin{aligned}
0<|x-a|<\delta \Longrightarrow & 0<x-a<\delta_{R} \text { or } \\
& -\delta_{L}<x-a<0
\end{aligned}
$$

Therefore for all $0<|x-a|<\delta$,

$$
\begin{equation*}
|f(x)-L|<\varepsilon \tag{67}
\end{equation*}
$$

which means

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=L \tag{68}
\end{equation*}
$$

- Only if.

We prove first
$\lim _{x \rightarrow a} f(x)=L \Longrightarrow \lim _{x \rightarrow a+} f(x)=L$.
For any $\varepsilon>0$, there is $\delta>0$ such that

$$
\begin{gather*}
0<|x-a|<\delta \Longrightarrow \tag{70}\\
|f(x)-L|<\varepsilon \tag{71}
\end{gather*}
$$

In particular

$$
\begin{gather*}
0<x-a<\delta \Longrightarrow \tag{72}\\
|f(x)-L|<\varepsilon \tag{73}
\end{gather*}
$$

Next we prove
$\lim _{x \rightarrow a} f(x)=L \Longrightarrow \lim _{x \rightarrow a-} f(x)=L$.
For any $\varepsilon>0$, there is $\delta>0$ such that

$$
\begin{gather*}
0<|x-a|<\delta \Longrightarrow \tag{75}\\
|f(x)-L|<\varepsilon \tag{76}
\end{gather*}
$$

In particular

$$
\begin{gather*}
-\delta<x-a<0 \Longrightarrow \tag{77}\\
|f(x)-L|<\varepsilon \tag{78}
\end{gather*}
$$

Thus the proof ends.

