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e This review may not cover all possible

topics for the midterm exam. Please
also review lecture notes and homework
problems.

To get the most out of these problems,
clearly write down (instead of mumble or
think) your complete answers (instead of a
few lines of the main idea), in full sentences
(instead of formulas connected by arrows).
And then compare with the solutions when
they are posted.

If don’t know where to start, write down all
definitions involved.

If have no idea what to do, try proof by
contradiction. Start by writing down the
assumption in logical statements.

e “Justify” means: if true, provide a proof; if

false, give a counterexample.



A. Propositional Logic: True or False

e To prove: Construct truth table.

1. Concepts and theorems
Exercise 1. Prove that A= B is the same as

(—mA)V B.
e Mathematical statements: Either true or
false. Note. How to remember “If’ and “Only if”
“Sufficient” and “Necessary”...
e New statements can be created from old “Only if” is opposite to “If”. A if B means “If B
ones using then A” that is B = A, so “A only if B” should be
A= B.
— not: - (Negation); “Necessary” is opposite to “Sufficient”. “A is
A —A sufficient for B”is “A=—= B”, therefore “A is necessary
T F for B” is “B=— A”".
F T

Note. “If and only if”. “A if and only if B” means “A
— and: A (Conjunction); if B” and “A only if B”, that is B=— A and A— B
and consequently A <= B.

A B AANB
T T T
T F F . .
F T F 2. Solutions to exercises
F F F
Exercise 1: Truth table:
— or: V (Disjunction); A B A= B -A (mA)VB
A B AVB L
T T T FT T T T
T F T F F T T T
FT T We see that A=—> B and (—A) V B take the same truth
F F F values in all situations. In other words (A = B) <=

((mA) Vv B) is always true.
— implies: = (Conditional);

A B A=—B

T T T 3. Problems

T F F

F T T Problem 1. Let A, B,C be logical statements. Prove
F F T that [(A= B) and (B=—= C)]— (A= C). Explain

in English what this means.
— equivalent: (Bl—COHdlthHal). Problem 2. Critique the following claim. Justify
A< B YOUr answer.

If (PNQ)= (RVS)and Q= R,

A
T
T then P— S.
F
F

NN W
NN



B. Sets

1. Concepts and theorems

e Set: A collection of objects.

e Important sets:
— Empty set @: Vo, x ¢ &;
— Natural numbers: N:={1,2,3,...};
— Integers: Z;
— Rational numbers: @Q;

— Real numbers R.

e Relations between an object and a set.

— Object x is a member of set A: x € A;

— Object x is not a member of set A:

ré¢ A
e Relations between sets.
— Subset: ACB (B2 A)
(reA)= (z€B).

x Prove A C B: Take any = €
argueargueargue, r € B.

* Prove AZB: Find z € A but = ¢
— Equal: A=B.
(reA)<— (x€B).
x Prove A= B: Two steps.
- Step 1. ACB;

- Step 2. BC A.

* Prove A# B: Find x € A but x ¢
or find z € B but = ¢ A.

— Proper subset: AC B (BD A).
(ACB)AN(A+B).
x Prove A C B: Two steps.

- Step 1. AC B;
- Step 2. Find z € B but = ¢ A.

e New sets from old.
— Union:

AUB:={z|(z € A)V (z € B)}.

(1)
A,

B.

(2)

B,

(3)

(4)

— Intersection:
ANB:={z|(x€ A)AN(z€B)}. (5)
— Subtraction:

A—B:={z|(x€cA)N(x¢B)}. (6)

— Complement: Universal set X — all sets
under discussion are its subsets:

Ac:={z|z ¢ A}. (7)

This is a shorthand for a special case of
subtraction.

Exercise 2. Prove
ACB— ANnCCBNC. (8)
If AC B, can we conclude ANC C BNC? Justify.

e Intersection and union of arbitrary number
os sets. Let W be a collection of sets. Then

NacwA:={z|VAeW =xze€A} (9)
UdewdA:={z|FJAeW zxze€A}. (10)

Note. In particular, be aware of the difference
between € and C/C. The former is about the
relation between an element and a set (a collection
of elements), while the latter is about the relation
between two sets.

2. Solutions to exercises

Exercise 2. Take any x € A N C. By definition
of intersection x € A and = € C. By definition of
A C B we have x € B. Thus € B and x € C and by
definition of intersection x € BNC.

If AC B we cannot conclude ANC Cc BNC. For
example A={1}, B={1,2},C={1}.

3. Problems

Problem 3. Let E,: ={z € R| > 1/n}. Calculate
UnGNEn-

Problem 4. Let A= {z€R||sinz]| g%};B:{xGIR\
z?— 2?4+ 2 —1<0}.
e Represent A, B, AU B, AN B using intervals.

e Which of these four sets is/are open? Which
is/are closed? Justify your answers.



C.

Functions

Concepts and Theorems

e Function: A triplet consisting of two sets A,

B and a rule assigning to each element in A
one and only one element in B. Notation:

fiA— B.
e Image and pre-image: f: A— B a function.

— S C A has an image:

f(8)={f(z)|xeS}. (11)
— T C B has a pre-image:
fUT) = {a] f(z) €T} (12)

Exercise 3. Let f: X — Y be function. Let A,BC X.

Prove
f(A=B)2 f(A) - f(B). (13)

Give an example where f(A — B)D f(A)— f(B).
e Composite function. f: X — Y, g: 7 —

W functions. If Y C Z, can define a new
function from X to W, denoted go f:

(go f)(x):=g(f(x)). (14)

e One-to-one, onto, bijection.
— One-to-one: Vai, az € A, f(a1) =
f(a2) = a1=as.

* Prove one-to-one: Take any ai,az €
A. Assume f(a1)= f(a2). ... ar=as.

Exercise 4. Suppose f: A— B and ¢g: B— C are
functions. Show that if both f and g are bijections,
then so is go f.

e Increasing, decreasing, monotone.
— Increasing: x1 > o= f(x1) > f(x2).

— Strictly increasing: z1 > zo=— f(z1) >

f(x2).

Decreasing: z1 > xo = f(z1) < f(x2).

Strictly decreasing: 1> xo=—= f(x1) <

f(x2).

— Monotone:
decreasing.

Either increasing or

Solutions to exercises

Exercise 3.

e Proof. Take any y € f(A) — f(B). By definition
of set difference y € f(A) but y ¢ f(B). Now
by definition of image there is a € A such that
y= f(a). If a € B then y € f(B) contradiction.
Therefore a ¢ B. So we have

a€A,a¢ B=acA—B. (15)

e Example. Let f: R +— R be constant: Vx € R,
f(x)=0. Let A={1,2}, B={1}. Then

f(A—=B)=f({2})={0}, but
f(A) = f(B)={0} - {0} =2.

(16)

(17)

Exercise 4.

— Onto: f(A)=B.
* Prove onto: Let b € B be arbitrary.
We take a=...., ..., f(a)=Db.

— Bijection: one-to-one and onto.

e Inverse funtion. f: X —Y is a function.

— Definition. g is the inverse function of
f is and only if

i. g:Y — X is a function;
ii. Vee X, g(f(z))=u=;
iii. YyeY, f(g(y) =v.

— f: X — Y has inverse function if and
only if it is a bijection.

3.

e go f is one-to-one. For any x; # 2, since f is
one-to-one, f(x1) £ f(x2). Now because g is

one-to-one, g(f(x1))# g(f(z2)).

e go f is onto. Take any z € C'. Since g is onto,
there is y € B such that z= g(y). Now because f
is onto, there is x € A such that y= f(z). Thus

z=g(f(2))-

Problems.

Problem 5. Let f: X+—Y be a function. Prove that
f is one-to-one if and only if f(A— B)= f(A)— f(B)
for all subsets A, B of X.



D. Predicative Logic: Quantifiers

1. Concepts and theorems

e Universal quatifier: V.

— Reads: Vo € A P(x): “For any/every
x in A, the statement P(x), when the
variable takes this value z, is true.”

— Meaning: Can be
a “short hand”.

understood as

Example. A:={1,2,3}. P(x)is “x >
3”. Then Vz € A P(x) means

(1>3)A(2>3)A(3>3). (18)

e Existential quantifier: d.

— Reads: 3z € A P(x): “There is x in A
such that the statement P(x), when the
variable takes this value z, is true.”

— Meaning: Can be
a “short hand”.

understood as

Example. A:={1,2,3}. P(x)is “x >
3”. Then Jz € A P(x) means

(1>3)V(2>3)V(3>3). (19)

o Working negation.

— Try to “push” the “Not” through all
quantifiers.

— We can do this layer by layer.

Example. To write the working negation
of Vee A3Jy,z€ B P(x,y, z), we write

-VxeA3Jy,zeB P(x,y,2)]
= Jxe€A-[Fy,z€B P(z,y,2)]
= Jx€AVy,z€ B -P(z,y,z2).
Exercise 5. Explain why the working negation
of
Yz >0 (20)
is
3>0 (21)

instead of

32 <0 (22)

e To prove:
— VzeA P(x).
Let = € A be
arbitrary. [...some
arguments here...|, P(z)
is true.

— dJxre€e A P(z). Two methods.

1. Find such z and show that P(x) is
true;

2. Proof by contradiction. Assume
Ve A —P(x) (23)
and reach contradiction.

Note. To obtain working negation correctly, the
following steps should be followed:

1. Write all the quantifiers first.

2. When applying “not”, V becomes 3, and 3
becomes V.

2. Solutions to exercises

Exercise 5. Vz >0 22> 0 means
/\w>0(9c2 >0) (24)
that is

(23> 0) A (23> 0) A (23> 0)--- (25)

where x1, 9, x3, ... lists all positive numbers (Note
that more logic theory is needed to justify this).
Taking —:
=[(z?>0) A (23> 0) A (23> 0)--]
= =(21>0)V—(23>0)V (23> 0)---
= (21<0)V (23<0)V (23<0)---
which is (note that still the same x4, x2, x3,...)

dr >0 22<0

3. Problems

Problem 6. A function f:[0,00)— R is “Lipschitz”
if and only if

M > 0vz, y 20 |f() = fy)l < M |z -
yl- (27)
Write down the working negation of the above.

Problem 7. A function f(z): R — R is increasing
if f(xz1) > f(x2) whenever z; > xo Write down the
logical statement for “f(z) is not increasing”.



E. Sets of Real Numbers

1. Concepts and Theorems.

e Intervals: [a,b], (a,b),[a,b), (a,b].
e Open sets:

Vee A3 a,b)dx (a,b)CA (28)
— Prove A is open: Take any z € A. Find
a, b depending on z and A such that

x€(a,b) C A.

— Prove A is not open: Find =z € A,
whenever a < xz < b, there is y € (a,

b), y¢ A.

Exercise 6. Find a set A that is not open but
also not closed. Justify.

e Closed sets: A is closed <= A€ is open.
— To prove A is closed: Prove A° is open.

— To prove A is not closed: Prove A€ is
not open.

Theorem 1.
open/closed sets.

Unions and intersections of

e sup and inf.

— Intuition:
* Sup: Best upper bound;

* Inf: Best lower bound.

— To prove b=sup A. Two steps:
x Step 1. Prove b is an upper bound:

Vaec A, a<b (29)

x Step 2. Prove b is the best, that is
smallest, upper bound:

Vb'<bJac A a>b. (30)

— To prove b=1inf A. Two steps:
x Step 1. Prove b is a lower bound:

Vac A, azb (31)

x Step 2. Prove b is the best, that is
greatest, lower bound:

Vo' >b Jac A a<lb. (32)

— If sup A€ A, it is also denoted max A;
— Ifinf A€ A, it is also denoted min A.

Exercise 7. Let A = {niz\ n € N}. Find

n
sup A. Justify your answer.

2. Solutions to Exercises.

Exercise 6. Take A=1[0,1):={z€R|0<z <1}

e Aisnot open. We take 0 € A. For any a <0< b,
we have a < % <0< b. This gives

%E(a,b) but %géA. (33)

e A is not closed. We prove A°=(—00,0)U][1,00)
is not open. Take 1€ A¢. For any a <1<, we
have b>1>i2a>a SO

1+a
2

1+a
2

€ (a,b) but ¢ A°. (34)

Exercise 7. Guess sup A=1. Justify:

1. 1is an upper bound of A. Take any x € A. Then
there is n € N such that x:"fzzl—%gl.

2. 1is the best upper bound of A. Take any b< 1.
There is n € N such that %< 1—10. Then

n—2
n

—1-251-(-p)=b (35)

So b is not an upper bound of A.

3. Problems.

Problem 8. Let A be a nonempty subset of R. Let
B=3A:={3x:2 € A}. Derive the relations between
sup B, inf B and sup A, inf A. Justify your answers.
Note that you may need to discuss different cases for
c and for sup A.



F.

1.

Limits of Sequences

Concepts and Theorems

e Definition

lim,,_ ooz =L is defined as

— L € R. Ve > 0, dN € N such that
Vn>N, |z, —L|<e.

— L =00. VM € R, dN € N such that
VYn>N, x,>M.

— L=—00. VM € R, AN € N such that
Yn>N, x, <M.

Observe the pattern.

e Calculating limits.

— Tools:

then

a, lim, .coyn = b

a) lim, oo (zptyn) =a+b;

b) lim, .o (nyn) =ab;

c) If b0, limy,— o0 (zn/Yn) =a/b.
e Proving existence of limits.

— Definition.
1. Guess the limit L.

2. Proof: For any € > 0, we take N =
[formula involving €], then for all
n> N, we have

|z, — L] <....<e. (36)

2.

Exercise 8. Take x,,=n

— Cauchy. If Ve >0 IN e NVm,n > N,
| Ty — T | <&, then lim,,_, sz, exists.

Exercise 8. Find a diverging sequence x,,
such that lim, ., o (py2— z,) =0.

— Monotone.
* Increasing. If
1. Vn xp4+1 >z, (increasing);

2. 3b Vn x, <b (upper bound);
then lim,,_, ox, exists.

x Decreasing. If
1. Vn zp41 < 2y (decreasing);

2. 3b Vn x, > b (lower bound);
then lim,,_, .oz, exists.

— Squeeze.
1. ANgeNVR >Ny wp < Tp < Yn;

2. limy, s sowpn =1limy, oo Yn-
Then

1. lim,__ .oz, exists;

2. limy, ooxy, = limpoow, =

limy, oo Y.

e Comparing limits. If
1. limy,— 0oy, limy,— ooy exist;

2. ANgeN Vn > Ny Tn < Yn,

then lim,, ooy, <limy,— oo Yn.

Solutions to Exercises.

1/2.



G. Subsequence x Use limsup is the largest limit
of convergent subsequences. First
guess the limit L. Then show

1. Concepts and Theorems 1 El{.%‘nk} converging to L.

2. For every convergent

e Subsequence.
subsequence x,, — a, a < L.

{xnk} - {xnla xnza } (37) Exercise 11. Tp= (—1)” —+ e,n2.
is a subsequence of {z,, } ={z1,x9,...} if and e Some relations.

only if — {z,} convergent — {x,} bounded;

1. VkeN, nyeN; {zn,} bounded = {z,} has a
convergent subsequence;

2. m<ng<ng<...
PR — {x,} convergent <= All of its

Exercise 9. Let {z,} be a sequence. Prove: subsequences are convergent;

{z,} is bounded <= Every subsequence of .
{2} is bounded. — {xp} convergent <= limsup, ooy =

liminf,, ., soZsn.

e limsup and liminf.
— limsup,— ooy 18 2. Solutions to Exercises.

* lim,,_ oy, where ]
—ooY Exercise 9.

1 =SUpTn, T . 38

Yn P A0, Tot1, o s (38) e —>. Since {z,} is bounded there is M > 0 such
that Vn € N |z, | < M. Since n, € N, we have
VEEN |xy,,| < M.

*+ max A where A is the set

{a€R| H{x"k}klin;f”k:“} (39) e «—. Assume {z,} is not bounded. Then for

every N €N there is ny € N such that |z,,| > M.

— liminf,, o2y 1S The subsequence {x,, } is then not bounded.
s lim,—00yn where Exercise 10. We have
. 1< —DF e *l <146 43
UYn: :Hlf{xnaxn—i-la---}; (40) :;i[( ) +e } +e ( )
x min A where A is the set Taking limit n — co we conclude
. limsup z,, = 1. (44)
a€R|Hz lim x,,, — } 41
{ | { nk}k—wo = ( ) Exercise 11.
— How to calculate: Evaluating exactly 1. Take ny =2k then @, =14 4 — 1,

Supk>n 2k could be hard. There are two

ways to overcome: 2. Comparison theorem:

x Use Squeeze theorem: Find Ny € N Tnp = (F1)™ 4+ e <1 + e = a =
such that for all n > N, lim 2,, < lim (1+e %) =1. (45)
k—s o0 k—s o0
wp, <sup {xn, ...} <z, (42)
im w, = lim 2 = L = 3. Problems.

limsupy,— con = L.

Exercise 10. z,=(—1)"+e ™.



H. Infinite Series

1. Concepts and Theorems.

e Definitions.

— Infinite series: Formal summation

oo
Z an=air+az+---

(46)
n=1
— Convergence: Define partial sum
n
Sn: :Z api=ai+ -+ an. (47)

k=1

EZO:1 an convergens if and only if
the sequence {s,} convergens. Call
lim,,— oS, the “sum” of the infinite
series.

e Convergence.

— Definition: > >° | a, = L if and only
ifVe>03INeNVn>N, |>)_, arp—
Li<e.

— Convergence theorems: Adaptation of
convergence theorems for sequences.

x Cauchy criterion: Ve > 0dN €
NVn>m>N ‘an+1ak‘<5-

x Non-negative series: If a, >0 for all
ne€N, then > >  a, R if and only
if {s,,} is bounded from above.

« Comparison: If |a,| < b, and
e e}
> 1 bn converges, then so does

Zzozl G-

— Y07 | an converges = limy, ooy, =0.
But <= is not true!

e Typical series.

— Geometric. Y7 L

1 .
1—7’

« r=21=3" 1 l=00;

w r|<l=Y " r"l=

xr < —1 = ZZOZI r"~1 does not
converge.

— Harmonic. > >°  n™%

% a>1= 3" n~%converges;

x a< 1:>ZZ°:1 n~%=oo.
e Convergence tests.

— Ratio Test.

* limsup,— oo < 1= converge;

QAn 41
v

M

an 41

x liminf,_,

> 1 = diverge;

n

x Other situations = further study
needed;

— Root Test.

1/n

* limsupy,— oo |an |/ < 1= converge;

1/n

« liminf,, o |ap|/" > 1= diverge;

x Other situations = further study
needed;

. oo
Exercise 12. Prove that )", n " converges

when |z| <1 and diverges when |z|> 1.
Remark. Keep in mind that if
lim,, ., ox, exists, then liminf, .z, =
limsupy, . coyn = lim, . 50T
Remark. Note that ratio/root tests are

usually useless if the formulas for a,, are not
given.

2. Solutions to exercises.

Exercise 12. We apply the ratio test: Since a,=n z"

we have % znTH|x| We have
im " Liel= 2| lm 2o ja). (48)
n— 00 n—- n

Thus the ratio test gives:

>0, na™ converges when |z| < 1 and diverges
when |z| > 1.

The case |x| = 1 has to be analyzed ad hoc. In
this case we have |a,|=n. Clearly lim,, o |a,|=0
doesn’t hold. Therefore the series does not converge
in this case.

3. Problems

Problem 9. Analyze the convegence/divergence of
S0, (@/n?) for z€R.



Limit of Functions

Concepts and Theorems

e lim, .,f(z)=0L is defined as

—a€R,LeR. Ve >0, 36 > 0 such that
VO<|z—al<d, |f(x)—L|<e.

— a€R,L=00. VM €IR,dd >0 such that
VO<|z—al<d, f(z)>M

—a€R,L=—00. YM € R, 30 > 0 such
that VO < |z —a| <4, f(z)> M.

— a=o00, LeR. Ve >0, M € R such that
Vo> M, |f(z)—L|<e.

— a=—-00,L=00. VM €R, IM’' R such
that Vo < M', f(x) > M. Note that M
and M’ are not the same number.

Observe the pattern.

Exercise 13. Write definition for the following
cases.

1. a=o00,L=00.

2. a=—o0,LeR.

e Left and right limits: For example a, L € R:

— Right limit: lim, .+ f(x) = L is
defined as Ve > 0, 30 > 0 such that
Vo<z—a<d, |f(z)—L|<e.

— Left limit: lim,_,,— f(x) =L is defined
as Ve > 0, 39 > 0 such that V-§ <

r—a<0,|f(z)—L|<e.
Exercise 14. Write  definition  for
lim, o4 f(z) = —c0.
e Relation between function limit and
sequence limit:
limgy ,of(x) = L if and

only if for every sequence
{zn} with =, # a for all n €
N, and lim,, ..oz, = a, there
holds lim, o0 f () = L.

Exercise 15. Prove that hng,gsm( ) does
not exist.

10

e Arithmetics: limy_.of () = L,lim,_,,g(x) =

M, then,
lim (fxg)(z)=L+tM (49)
lim (fg)(z)=LM, (50)
It M40, lm <§>(x) = G
e Comparison: h(z) < f(z) < g(x),

limg, .y h(x) = Li, limy_s f(z) = Lo,
limx_)xog(x) = Lg, then Ll < L2 < Lg.

( ) < g(2), limy— oh () =
, then limy ., f(z) = L.

e Squeeze: h(z) <
limg—z09(7) =

2. Solutions to exercises

Exercise 13.
1. VM eR,3IM’'€R such that Vo > M’ f(z)>M.

2. Ye>0, IM € R such that Ve < M, | f(x) —
€.

Li<

Exercise 14.

VM € R, 30 > 0 such that for all 0 < z < 9,
flz)< M.

e a1k = = G
v, 2n#0,y.#0; (52)
lim z,= lim y,=0. (53)
But T e
is different from
nhinoosm<yi) = lim 1=1. (55)

3. Problems

Problem 10. Prove by definition that lim,_.f(z)
exists and equals L € R if and only if lim, o f(z),
lim,_.— f(z) both exist and both equal L.



J.

1.

2.

Continuity/Continuous Functions

Continuity

e Definition: Ve > 030 > 0V|x — xo| < 4,

| f(z) = f(zo)| <e.

e Understanding.

— Continuous at xg:
1. lim,_ ., f(x) exists; and
2. The limit equals f(zp).
— Not continuous at xzg:
1. lim;_ ., f(x) does not exist, or

2. it exists but is different from f(xo).

e Properties: f, g continuous at xg then

— f=*g, fg continuous at xo;

— If furthermore g(zg) +#
continuous at x.

0, fl/g

e Composite functions.

f continuous at xg, g continuous at yo=
f(zo), then go f is continuous at x.

e Everyday functions:

— Continuous at all zg € R:
* polynomials;
* exp [z];
* sin (z), cos ().

— Rational functions: After cancelling
common factors, continuous where g+
0, discontinuous where g =0.

Continuous functions

e Intermediate Value Theorem:

11

Let f(xz) be continuous on the closed
interval [a, b]. Then for every s € [f(a),
7)) or [f(), f(@) i f(b) < f(a)), there
is £ € [a, b] such that f(&)=s.

Remark. Note that f(z) needs to be
continuous on [a, b], that is: For every ¢ €
la, b], we have Ve > 0, 36 > 0, Vz € [a,
b |x — zo| < 9, |f(x) — f(zo)| < e. Or
in other words:

1. Vao € (a,b), limy . f(z) = f(z0);

2. limx_>a+f(37) = f(a); hm:c—>b—f(x) =
f(0).

Note. If f(z) is continuous on (¢, d) D |a,
b], then f(z) is continuous on |[a, b].

Other consequences of f continuous on [a,

b|:

— fis bounded. There is M > 0 such that
Va €la,b], | f(z)| <M.

— f reaches maximum and minimum.
There are Tmax, Tmin € [a, b] such that
Va € la,b],

J(@min) < f(7) < f(Tmax)- (56)

Inverse function. f: A~ B satisfies
1. continuous,
2. onto,

3. strictly  increasing  (or  strictly

decreasing)

then the inverse g: B — A exists and is
continuous, onto, and strictly increasing (or
strictly decreasing).
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K. Solutions Summarizing, we have U,enE, = A.

e Problem 1. We construct the truth table. e Problem 4.

Let AB denote A=— B, BC denote B —
C, AB BC denote (A= B) A (B= (),
AC denote A= C, A...C' denote [(A =
B) and (B=C)|— (A=C).

BC ABBC AC A..C

mRmRTS TS Q
NNNNTENSE

e B s B Mol B S
HENNTTNND

T
F
T
T
T
F
T
T

NN TN
NNSNSNTNTN
e B s e e B B B

Therefore the statement is always true. It
means if A implies B and B implies C, then
A implies C.

Problem 2. We can try to construct a
truth table but we have four statements
which means the table would have 16 rows.
So instead we look at the claim

If (PNQ)=(RVS) and
Q@— R, then P—S.

and decide that it looks wrong. Thus we
need to assign truth values to P, @, R, S
such that (PA Q)= (RVS) and Q— R
are true but P— S is false.

As P = § is false, we have to assigne
P=T,5=F. Now to make PA Q = F
we assign (Q = F. Note that this impiles
(PANQ)= (RVS) and also Q = R are

true.

Problem 3. We prove UpenE, = {2 € R|
x> 0}. Denote this set by A. We prove

1. ACUpenEn. Takeany x € A. As >0,
there is n € N such that x > % which
means x € B, CUpeNFn.

2. UpenEn C A. Take any x € UpenEn.
By definition of union there is n € N
such that z € E,,. This gives = > % >0
therefore x € A.

a)

A:Unez[nw—%,nw—l—%];B:
{reR:(z—1) (2?2 +1) <0} =(—00,1).
AUB = (-0, 1)U (UneN[n T — %,
n7r—i—%]); AﬂB:U%O:O[—nW—

—’I’L7T—{—%].

6?

— A is closed. Since A°¢ =
Unez<n T + %, n T + %) is
open (because it is a union of open
intervals).

— B is open since it is an open
interval.

— C = A U B is neither open nor
closed.

* (' is not open. Take xg= 5% €

C. Then for any (a, b) such
that xog € (a, b), there is ¢ >
0 such that max{1,a} <c<xo.
For this ¢ we have ¢ ¢ AU B.
Consequently (a,b)ZAU B.

* (' is not closed. We have

6

<;L’°:1<n7r+%,n7r+

%”)) (57)

Now take 1 € (AU B)¢. For any
(a,b)>1, we have a < Lte
and therefore 1;—“ € (a,b) but
Ita ¢ (AU B)¢. Consequently

2
(a,b)Z(AUB)".

MLJmc:P,ﬁ>U

— D= AN B is closed. Since D¢ =

(U;L’O:()(—nw—‘%ﬂ, -nT —%)) U

™ . . .
(E’ oo) is union of open intervals
and is therefore open.



e Problem 5.

— “If”. Assume VA, B C X, f(A\B) =
F(A\f(B). For any x1 + x9, take A=
{z1, 22}, B = {x2}. Then f(A\B) =
{f(xl)}v f(A) = {f(xl)v f(x2)}7
f(B) = {f(z2)}. As fLANf(B) =
{f(z0)}, f(x1) # f(22).

— “Only if”. Assume f is one-to-one.
We prove f(A\B) C f(A)\f(B) and
fLANF(B) € f(A\B).

* f(A\B) € f(A)\f(B). Take any
y € f(A\B). By definition there is
x € A\B such that y = f(x). x €
A\B means € A,z ¢ B.

Because z € A, y= f(x) € f(A);
On the other hand, since f is one-
to-one and z ¢ B, y= f(x)# f(z')
for any ' € B which means y ¢

f(B). Therefore y € f(A)\ f(B).

« J(A\f(B) € f(A\B). Take any
y € f(A\f(B). Then y € f(A),
yé f(B). As y € f(A) thereis z €
A such that y = f(z). Since y ¢
f(B), z¢ B. Therefore z € A\ B and
consequently y= f(z) e f(A\B).

e Problem 6. The working negation is

VM >03z,y20 [f(z)— f(y)|>M |z —
yl. (58)
e Problem 7. f(x) is increasing if

Ve, xa x1 =220 f(21) 2 fx2). (59)
f(z) is not increasing if
Az, 29, 1 > T2, f(z1) < f(z2). (60)
Or simply write as

fa1) < f(z2). (61)

dz1> 29

e Problem 8. We prove sup B=3sup A. We

only need to show:

1. 3 sup A is an upper bound of B. For
any b € B, by definition there is a € A
such that b=3a. By definition of sup
we have supA>a=—3supB >3 a=b.
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2. 3sup A is the best upper bound of B.
Let ¢ < 3sup A. Then § < sup A. As
sup A is the best upper bound for A, %

is not an upper bound for A. Therefore
there is a € A such that % < a. This

gives ¢ < 3 @ € B, that is ¢ is not an
upper bound for B.

inf B=3inf A can be proved similarly.

Problem 9. We have a,,= Z—Z and therefore

An+1
an

TL2
oxaydl! (62)

Since

n?
n_mmm = ||, (63)

the ratio test gives convergence for |z| < 1
and divergence for |z|> 1.

For |z| =1 we have

1
lan| = 2 (64)

. (3] 1 (3]
Since 7, —; converges, > ', dan
converges.

Problem 10.
— If. Assume
lim f(z)= lim f(x)=L. (65)
r—a+ r—a—

Then for any ¢ > 0, there are 6,0z >0
such that when 0 < 2 — a < dg or
—dr<x—a<0,

|f(x)—L|<e. (66)
Now take d =min {dr,,dr}, we have

O0<|r—a|<d = O0<zx—a<dpor
—0p<x—a<0

Therefore for all 0 < [x —a| <4,
|f(z)—L|<e (67)
which means

lim f(x)= L. (68)

r—a
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— Only if. Next we prove

We prove first lim f(z)=L= lim f(z)=L. (74)

lim f(z)= L—> lim f(z)=L. (69) e e
T—a r—a+t For any & >0, there is § >0 such that
For any € >0, there is § > 0 such that O<|r—al<di— (75)
O<|z—al<d= (70) |f(z) - L|<e. (76)
|f(z) —L|<e. (71) In particular
In particular —d<r—a<0= (77)
0<z—a<déi= (72) |f(z)—L|<e. (78)

|f(x)—L|<e. (73) Thus the proof ends.



