Contents

А.	Pr	opositional Logic: True or False . 2
	1.	Concepts and theorems $\ldots \ldots 2$
	2.	Solutions to exercises 2
	3.	Problems
В.	Se	ts
	1.	Concepts and theorems 3
	2.	Solutions to exercises 3
	3.	Problems 3
С.	Fu	$nctions$ \dots 4
	1.	Concepts and Theorems 4
	2.	Solutions to exercises 4
	3.	Problems 4
D.	Pr	redicative Logic: Quantifiers 5
	1.	Concepts and theorems $\ldots \ldots 5$
	2.	Solutions to exercises 5
	3.	Problems 5
Е.	Se	ts of Real Numbers 6
	1.	Concepts and Theorems 6
	2.	Solutions to Exercises 6
	3.	Problems 6
F.	Li	mits of Sequences 7
	1.	Concepts and Theorems 7
	2.	Solutions to Exercises 7
$\mathbf{G}.$	Su	bsequence 8
	1.	Concepts and Theorems 8
	2.	Solutions to Exercises 8
	3.	Problems 8

1. Concepts and Theorems	9
-	
2. Solutions to exercises	9
3. Problems	9
I. Limit of Functions	10
1. Concepts and Theorems	10
2. Solutions to exercises	10
3. Problems	10
J. Continuity/Continuous Functions .	11
1. Continuity \ldots	11
2. Continuous functions	11
K. Solutions	12

- This review may not cover all possible topics for the midterm exam. Please also review lecture notes and homework problems.
- To get the most out of these problems, clearly write down (instead of mumble or think) your complete answers (instead of a few lines of the main idea), in full sentences (instead of formulas connected by arrows). And then compare with the solutions when they are posted.
- If don't know where to start, write down all definitions involved.
- If have no idea what to do, try proof by contradiction. Start by writing down the assumption in logical statements.
- "Justify" means: if true, provide a proof; if false, give a counterexample.

A. Propositional Logic: True or False

1. Concepts and theorems

- Mathematical statements: Either true or false.
- New statements can be created from old ones using

$$-$$
 not: \neg (Negation);

$$\begin{array}{ccc} A & \neg A \\ T & F \\ F & T \end{array}$$

- and: \wedge (Conjunction);

$$\begin{array}{ccccc} A & B & A \wedge B \\ T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

- or: \vee (Disjunction);

$$\begin{array}{cccc} A & B & A \lor B \\ T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$$

- implies: \Longrightarrow (Conditional);

$$\begin{array}{cccc} A & B & A \Longrightarrow B \\ T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

- equivalent: \iff (Bi-conditional).

$$\begin{array}{cccc} A & B & A \Longleftrightarrow B \\ T & T & T \\ T & F & F \\ F & T & F \\ F & F & T \end{array}$$

• To prove: Construct truth table.

Exercise 1. Prove that $A \Longrightarrow B$ is the same as $(\neg A) \lor B$.

Note. How to remember "If" and "Only if", "Sufficient" and "Necessary"...

"Only if" is opposite to "If". A if B means "If B then A" that is $B \Longrightarrow A$, so "A only if B" should be $A \Longrightarrow B$.

"Necessary" is opposite to "Sufficient". "A is sufficient for B" is " $A \Longrightarrow B$ ", therefore "A is necessary for B" is " $B \Longrightarrow A$ ".

Note. "If and only if". "A if and only if B" means "A if B" and "A only if B", that is $B \Longrightarrow A$ and $A \Longrightarrow B$ and consequently $A \Longleftrightarrow B$.

2. Solutions to exercises

Exercise 1: Truth table:

A	B	$A \mathop{\Longrightarrow} B$	$\neg A$	$(\neg A) \lor B$
T	T	T	F	T
T	F	F	F	F
F	T	T	T	T
F	F	T	T	T

We see that $A \Longrightarrow B$ and $(\neg A) \lor B$ take the same truth values in all situations. In other words $(A \Longrightarrow B) \iff$ $((\neg A) \lor B)$ is always true.

3. Problems

Problem 1. Let A, B, C be logical statements. Prove that $[(A \Longrightarrow B) \text{ and } (B \Longrightarrow C)] \Longrightarrow (A \Longrightarrow C)$. Explain in English what this means.

Problem 2. Critique the following claim. Justify your answer.

If
$$(P \land Q) \Longrightarrow (R \lor S)$$
 and $Q \Longrightarrow R$,
then $P \Longrightarrow S$.

B. Sets

1. Concepts and theorems

- Set: A collection of objects.
- Important sets:
 - Empty set \varnothing : $\forall x, x \notin \varnothing$;
 - Natural numbers: $\mathbb{N} := \{1, 2, 3, ...\};$
 - Integers: \mathbb{Z} ;
 - Rational numbers: \mathbb{Q} ;
 - Real numbers \mathbb{R} .
- Relations between an object and a set.
 - Object x is a member of set $A: x \in A$;
 - Object x is not a member of set A: $x \notin A$.
- Relations between sets.

- Subset:
$$A \subseteq B$$
 $(B \supseteq A)$

$$(x \in A) \Longrightarrow (x \in B). \tag{1}$$

- * Prove $A \subseteq B$: Take any $x \in A$, argueargueargue, $x \in B$.
- * Prove $A \not\subseteq B$: Find $x \in A$ but $x \notin B$.
- Equal: A = B.

$$(x \in A) \Longleftrightarrow (x \in B). \tag{2}$$

- * Prove A = B: Two steps.
 - · Step 1. $A \subseteq B$;
 - · Step 2. $B \subseteq A$.
- * Prove $A \neq B$: Find $x \in A$ but $x \notin B$, or find $x \in B$ but $x \notin A$.
- Proper subset: $A \subset B$ $(B \supset A)$.

$$(A \subseteq B) \land (A \neq B). \tag{3}$$

- * Prove $A \subset B$: Two steps.
 - · Step 1. $A \subseteq B$;
 - · Step 2. Find $x \in B$ but $x \notin A$.
- New sets from old.
 - Union: $A \cup B := \{x \mid (x \in A) \lor (x \in B)\}.$ (4)

– Intersection:

$$A \cap B := \{ x \mid (x \in A) \land (x \in B) \}.$$
 (5)

– Subtraction:

$$A - B := \{ x | (x \in A) \land (x \notin B) \}.$$
 (6)

 Complement: Universal set X – all sets under discussion are its subsets:

$$A^c := \{ x \mid x \notin A \}. \tag{7}$$

This is a shorthand for a special case of subtraction.

Exercise 2. Prove

$$A \subseteq B \Longrightarrow A \cap C \subseteq B \cap C. \tag{8}$$

If $A \subset B$, can we conclude $A \cap C \subset B \cap C$? Justify.

• Intersection and union of arbitrary number os sets. Let W be a collection of sets. Then

 $\bigcap_{A \in W} A := \{ x | \forall A \in W \quad x \in A \}$ (9)

$$\cup_{A \in W} A := \{ x | \exists A \in W \quad x \in A \}.$$
 (10)

Note. In particular, be aware of the difference between \in and \subseteq/\subset . The former is about the relation between an element and a set (a collection of elements), while the latter is about the relation between two sets.

2. Solutions to exercises

Exercise 2. Take any $x \in A \cap C$. By definition of intersection $x \in A$ and $x \in C$. By definition of $A \subseteq B$ we have $x \in B$. Thus $x \in B$ and $x \in C$ and by definition of intersection $x \in B \cap C$.

If $A \subset B$ we cannot conclude $A \cap C \subset B \cap C$. For example $A = \{1\}, B = \{1, 2\}, C = \{1\}.$

3. Problems

Problem 3. Let $E_n := \{x \in \mathbb{R} | x > 1/n\}$. Calculate $\bigcup_{n \in \mathbb{N}} E_n$.

Problem 4. Let $A = \{x \in \mathbb{R} | |\sin x| \le \frac{1}{2}\}; B = \{x \in \mathbb{R} | x^3 - x^2 + x - 1 < 0\}.$

- Represent $A, B, A \cup B, A \cap B$ using intervals.
- Which of these four sets is/are open? Which is/are closed? Justify your answers.

C. Functions

1. Concepts and Theorems

- Function: A triplet consisting of two sets A, B and a rule assigning to each element in A one and only one element in B. Notation: f: A → B.
- Image and pre-image: $f: A \mapsto B$ a function.
 - $S \subseteq A$ has an image:

$$f(S) := \{ f(x) | x \in S \}.$$
(11)

 $-T \subseteq B$ has a pre-image:

$$f^{-1}(T) := \{ x | f(x) \in T \}$$
(12)

Exercise 3. Let $f: X \mapsto Y$ be function. Let $A, B \subseteq X$. Prove

$$f(A-B) \supseteq f(A) - f(B). \tag{13}$$

Give an example where $f(A - B) \supset f(A) - f(B)$.

• Composite function. $f: X \mapsto Y, g: Z \mapsto W$ functions. If $Y \subseteq Z$, can define a new function from X to W, denoted $g \circ f$:

$$(g \circ f)(x) := g(f(x)). \tag{14}$$

- One-to-one, onto, bijection.
 - One-to-one: $\forall a_1, a_2 \in A, f(a_1) = f(a_2) \Longrightarrow a_1 = a_2.$
 - * Prove one-to-one: Take any $a_1, a_2 \in A$. Assume $f(a_1) = f(a_2) \dots a_1 = a_2$.
 - Onto: f(A) = B.
 - * Prove onto: Let $b \in B$ be arbitrary. We take a = ..., ..., f(a) = b.
 - Bijection: one-to-one and onto.
- Inverse function. $f: X \mapsto Y$ is a function.
 - Definition. g is the inverse function of f is and only if
 - i. $g: Y \mapsto X$ is a function;

ii.
$$\forall x \in X, g(f(x)) = x$$

- iii. $\forall y \in Y, f(g(y)) = y.$
- $-f: X \mapsto Y$ has inverse function if and only if it is a bijection.

Exercise 4. Suppose $f: A \mapsto B$ and $g: B \mapsto C$ are functions. Show that if both f and g are bijections, then so is $g \circ f$.

- Increasing, decreasing, monotone.
 - Increasing: $x_1 \ge x_2 \Longrightarrow f(x_1) \ge f(x_2)$.
 - Strictly increasing: $x_1 > x_2 \Longrightarrow f(x_1) > f(x_2)$.
 - Decreasing: $x_1 \ge x_2 \Longrightarrow f(x_1) \le f(x_2)$.
 - Strictly decreasing: $x_1 > x_2 \Longrightarrow f(x_1) < f(x_2)$.
 - Monotone: Either increasing or decreasing.

2. Solutions to exercises

Exercise 3.

• Proof. Take any $y \in f(A) - f(B)$. By definition of set difference $y \in f(A)$ but $y \notin f(B)$. Now by definition of image there is $a \in A$ such that y = f(a). If $a \in B$ then $y \in f(B)$ contradiction. Therefore $a \notin B$. So we have

$$a \in A, a \notin B \Longrightarrow a \in A - B. \tag{15}$$

• Example. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be constant: $\forall x \in \mathbb{R}$, f(x) = 0. Let $A = \{1, 2\}, B = \{1\}$. Then

$$f(A-B) = f(\{2\}) = \{0\},$$
 but (16)

$$f(A) - f(B) = \{0\} - \{0\} = \emptyset.$$
(17)

Exercise 4.

- $g \circ f$ is one-to-one. For any $x_1 \neq x_2$, since f is one-to-one, $f(x_1) \neq f(x_2)$. Now because g is one-to-one, $g(f(x_1)) \neq g(f(x_2))$.
- $g \circ f$ is onto. Take any $z \in C$. Since g is onto, there is $y \in B$ such that z = g(y). Now because f is onto, there is $x \in A$ such that y = f(x). Thus z = g(f(x)).

3. Problems.

Problem 5. Let $f: X \mapsto Y$ be a function. Prove that f is one-to-one if and only if f(A - B) = f(A) - f(B) for all subsets A, B of X.

D. Predicative Logic: Quantifiers

1. Concepts and theorems

- Universal quatifier: \forall .
 - Reads: $\forall x \in A \ P(x)$: "For any/every x in A, the statement P(x), when the variable takes this value x, is true."
 - Meaning: Can be understood as a "short hand".

Example. $A := \{1, 2, 3\}$. P(x) is "x > 3". Then $\forall x \in A \ P(x)$ means

$$(1 > 3) \land (2 > 3) \land (3 > 3). \tag{18}$$

- Existential quantifier: \exists .
 - Reads: $\exists x \in A \ P(x)$: "There is x in A such that the statement P(x), when the variable takes this value x, is true."
 - Meaning: Can be understood as a "short hand".

Example. $A := \{1, 2, 3\}$. P(x) is "x > 3". Then $\exists x \in A \ P(x)$ means

$$(1 > 3) \lor (2 > 3) \lor (3 > 3). \tag{19}$$

- Working negation.
 - Try to "push" the "Not" through all quantifiers.
 - We can do this layer by layer.

Example. To write the working negation of $\forall x \in A \exists y, z \in B P(x, y, z)$, we write

$$\neg [\forall x \in A \exists y, z \in B \ P(x, y, z)]$$

=
$$\exists x \in A \ \neg [\exists y, z \in B \ P(x, y, z)]$$

=
$$\exists x \in A \forall y, z \in B \ \neg P(x, y, z).$$

Exercise 5. Explain why the working negation of

$$\forall x > 0 \qquad f(x) > 0 \tag{20}$$

is

$$\exists x > 0 \qquad f(x) \leqslant 0 \tag{21}$$

instead of

$$\exists x \leqslant 0 \qquad f(x) \leqslant 0. \tag{22}$$

• To prove:

 $- \quad \forall x \in A \quad P(x).$

Let $x \in A$ be arbitrary. [...some arguments here...], P(x)is true.

- $\exists x \in A \quad P(x).$ Two methods.
 - 1. Find such x and show that P(x) is true;
 - 2. Proof by contradiction. Assume

$$\forall x \in A \quad \neg P(x) \tag{23}$$

and reach contradiction.

Note. To obtain working negation correctly, the following steps should be followed:

- 1. Write all the quantifiers first.
- 2. When applying "not", \forall becomes \exists , and \exists becomes \forall .

2. Solutions to exercises

Exercise 5. $\forall x > 0 \ x^2 > 0$ means

$$\wedge_{x>0}(x^2>0)\tag{24}$$

that is

$$(x_1^2 > 0) \land (x_2^2 > 0) \land (x_3^2 > 0) \cdots$$
(25)

where $x_1, x_2, x_3, ...$ lists all positive numbers (Note that more logic theory is needed to justify this).

Taking \neg :

$$\begin{split} \neg [(x_1^2 > 0) \land (x_2^2 > 0) \land (x_3^2 > 0) \cdots] \\ = & \neg (x_1^2 > 0) \lor \neg (x_2^2 > 0) \lor \neg (x_3^2 > 0) \cdots \\ = & (x_1^2 \leqslant 0) \lor (x_2^2 \leqslant 0) \lor (x_3^2 \leqslant 0) \cdots \end{split}$$

Example. To write the working negation which is (note that still the same $x_1, x_2, x_3, ...$)

$$4x > 0 \qquad x^2 \leqslant 0 \tag{26}$$

3. Problems

Problem 6. A function $f:[0,\infty) \mapsto \mathbb{R}$ is "Lipschitz" if and only if

$$\exists M > 0 \ \forall x, \ y \ge 0 \qquad |f(x) - f(y)| \le M \ |x - y|.$$
(27)

Write down the working negation of the above.

Problem 7. A function $f(x): \mathbb{R} \to \mathbb{R}$ is increasing if $f(x_1) \ge f(x_2)$ whenever $x_1 \ge x_2$ Write down the logical statement for "f(x) is not increasing".

E. Sets of Real Numbers

1. Concepts and Theorems.

- Intervals: [a, b], (a, b), [a, b), (a, b].
- Open sets:

$$\forall x \in A \ \exists (a,b) \ni x \qquad (a,b) \subseteq A \qquad (28)$$

- Prove A is open: Take any $x \in A$. Find a, b depending on x and A such that $x \in (a, b) \subseteq A$.
- Prove A is not open: Find $x \in A$, whenever a < x < b, there is $y \in (a, b), y \notin A$.

Exercise 6. Find a set A that is not open but also not closed. Justify.

- Closed sets: A is closed $\iff A^c$ is open.
 - To prove A is closed: Prove A^c is open.
 - To prove A is not closed: Prove A^c is not open.

Theorem 1. Unions and intersections of open/closed sets.

- sup and inf.
 - Intuition:
 - * Sup: Best upper bound;
 - * Inf: Best lower bound.
 - To prove $b = \sup A$. Two steps:
 - * Step 1. Prove b is an upper bound:

 $\forall a \in A, \qquad a \leqslant b \tag{29}$

* Step 2. Prove *b* is the best, that is smallest, upper bound:

$$\forall b' < b \; \exists a \in A \qquad a > b'. \tag{30}$$

- To prove $b = \inf A$. Two steps:
 - * Step 1. Prove b is a lower bound:

$$\forall a \in A, \qquad a \geqslant b \tag{31}$$

* Step 2. Prove *b* is the best, that is greatest, lower bound:

$$\forall b' > b \ \exists a \in A \qquad a < b'. \tag{32}$$

- If $\sup A \in A$, it is also denoted $\max A$;
- If $\inf A \in A$, it is also denoted $\min A$.

Exercise 7. Let $A = \left\{ \frac{n-2}{n} | n \in \mathbb{N} \right\}$. Find sup A. Justify your answer.

2. Solutions to Exercises.

- **Exercise 6.** Take $A = [0, 1) := \{x \in \mathbb{R} | 0 \le x < 1\}.$
 - A is not open. We take 0 ∈ A. For any a < 0 < b, we have a < ^a/₂ < 0 < b. This gives

$$\frac{a}{2} \in (a, b) \text{ but } \frac{a}{2} \notin A.$$
(33)

• A is not closed. We prove $A^c = (-\infty, 0) \cup [1, \infty)$ is not open. Take $1 \in A^c$. For any a < 1 < b, we have $b > 1 > \frac{1+a}{2} > a$ so

$$\frac{1+a}{2} \in (a,b) \text{ but } \frac{1+a}{2} \notin A^c.$$
(34)

Exercise 7. Guess $\sup A = 1$. Justify:

- 1. 1 is an upper bound of A. Take any $x \in A$. Then there is $n \in \mathbb{N}$ such that $x = \frac{n-2}{n} = 1 - \frac{2}{n} \leq 1$.
- 2. 1 is the best upper bound of A. Take any b < 1. There is $n \in \mathbb{N}$ such that $\frac{2}{n} < 1 - b$. Then

$$\frac{n-2}{n} = 1 - \frac{2}{n} > 1 - (1-b) = b.$$
(35)

So b is not an upper bound of A.

3. Problems.

Problem 8. Let *A* be a nonempty subset of \mathbb{R} . Let $B = 3A := \{3x : x \in A\}$. Derive the relations between $\sup B$, $\inf B$ and $\sup A$, $\inf A$. Justify your answers. Note that you may need to discuss different cases for *c* and for $\sup A$.

F. Limits of Sequences

1. Concepts and Theorems

• Definition

 $\lim_{n \longrightarrow \infty} x_n = L$ is defined as

- $-L \in \mathbb{R}. \ \forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ such that}$ $\forall n > N, \ |x_n - L| < \varepsilon.$
- $-L = \infty. \ \forall M \in \mathbb{R}, \ \exists N \in \mathbb{N} \text{ such that} \\ \forall n > N, \ x_n > M.$
- $-L = -\infty. \ \forall M \in \mathbb{R}, \ \exists N \in \mathbb{N} \text{ such that} \\ \forall n > N, \ x_n < M.$

Observe the pattern.

- Calculating limits.
 - Tools:

 $\lim_{n \to \infty} x_n = a, \ \lim_{n \to \infty} y_n = b$ then

- a) $\lim_{n \to \infty} (x_n \pm y_n) = a \pm b;$
- b) $\lim_{n \to \infty} (x_n y_n) = a b;$
- c) If $b \neq 0$, $\lim_{n \to \infty} (x_n/y_n) = a/b$.
- Proving existence of limits.
 - Definition.
 - 1. Guess the limit L.
 - 2. Proof: For any $\varepsilon > 0$, we take N = [formula involving $\varepsilon]$, then for all n > N, we have

$$|x_n - L| \leqslant \dots \leqslant \varepsilon. \tag{36}$$

 $\begin{array}{l} - \mbox{ Cauchy. If } \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall m, n > N, \\ |x_n - x_m| < \varepsilon, \mbox{ then } \lim_{n \to \infty} x_n \mbox{ exists.} \end{array}$

Exercise 8. Find a diverging sequence x_n such that $\lim_{n \to \infty} (x_{n+2} - x_n) = 0$.

- Monotone.
 - $\ast\,$ Increasing. If
 - 1. $\forall n \ x_{n+1} \ge x_n$ (increasing);

2. $\exists b \forall n \ x_n \leq b \text{ (upper bound)};$ then $\lim_{n \to \infty} x_n$ exists.

* Decreasing. If

1. $\forall n \ x_{n+1} \leq x_n$ (decreasing);

2. $\exists b \ \forall n \ x_n \ge b$ (lower bound); then $\lim_{n \to \infty} x_n$ exists.

- Squeeze.
 - 1. $\exists N_0 \in \mathbb{N} \forall n > N_0 \quad w_n \leq x_n \leq y_n;$

2. $\lim_{n \to \infty} w_n = \lim_{n \to \infty} y_n$. Then

- 1. $\lim_{n \to \infty} x_n$ exists;
- 2. $\lim_{n \to \infty} x_n = \lim_{n \to \infty} w_n = \lim_{n \to \infty} y_n$.
- Comparing limits. If
 - 1. $\lim_{n\to\infty} x_n$, $\lim_{n\to\infty} y_n$ exist;
 - 2. $\exists N_0 \in \mathbb{N} \ \forall n > N_0 \qquad x_n \leq y_n,$

then $\lim_{n\to\infty} x_n \leq \lim_{n\to\infty} y_n$.

2. Solutions to Exercises.

Exercise 8. Take $x_n = n^{1/2}$.

Subsequence G.

1. Concepts and Theorems

• Subsequence.

$$\{x_{n_k}\} = \{x_{n_1}, x_{n_2}, \dots\}$$
(37)

is a subsequence of $\{x_n\} = \{x_1, x_2, ...\}$ if and only if

- 1. $\forall k \in \mathbb{N}, n_k \in \mathbb{N};$
- 2. $n_1 < n_2 < n_3 < \dots$

Exercise 9. Let $\{x_n\}$ be a sequence. Prove: $\{x_n\}$ is bounded \iff Every subsequence of $\{x_n\}$ is bounded.

- limsup and liminf.
 - $\lim_{n \to \infty} x_n$ is

$$\lim_{n \longrightarrow \infty} y_n$$
 where

$$y_n := \sup \{x_n, x_{n+1}, \dots\};$$
 (38)

 $* \max A$ where A is the set

$$\left\{a \in \mathbb{R} | \exists \{x_{n_k}\} \lim_{k \to \infty} x_{n_k=a}\right\}$$
(39)

- $\operatorname{liminf}_{n \longrightarrow \infty} x_n$ is
 - * $\lim_{n \to \infty} y_n$ where

$$y_n := \inf \{x_n, x_{n+1}, \dots\};$$
 (40)

 $* \min A$ where A is the set

$$\left\{a \in \mathbb{R} | \exists \{x_{n_k}\} \lim_{k \to \infty} x_{n_k=a}\right\}$$
(41)

- How to calculate: Evaluating exactly $\sup_{k \ge n} x_k$ could be hard. There are two ways to overcome:
 - * Use Squeeze theorem: Find $N_0 \in \mathbb{N}$ such that for all $n > N_0$,

$$w_n \leqslant \sup \{x_n, \ldots\} \leqslant z_n \tag{42}$$

 $\lim w_n = \lim z_n = L \implies \mathbf{3.}$ Problems. $\lim_{n\to\infty} x_n = L.$

Exercise 10. $x_n = (-1)^n + e^{-n^2}$.

- * Use limsup is the largest limit of convergent subsequences. First guess the limit L. Then show
 - 1. $\exists \{x_{n_k}\}$ converging to L.
 - 2. For every convergent subsequence $x_{n_k} \longrightarrow a, a \leq L$.

Exercise 11. $x_n = (-1)^n + e^{-n^2}$.

- Some relations.
 - $\{x_n\}$ convergent $\implies \{x_n\}$ bounded; $\{x_n\}$ bounded \implies $\{x_n\}$ has a convergent subsequence;
 - $\{x_n\}$ convergent \iff All of its subsequences are convergent;
 - $\{x_n\}$ convergent $\iff \text{limsup}_{n \to \infty} x_n =$ $\liminf_{n\to\infty} x_n.$

2. Solutions to Exercises.

Exercise 9.

- \implies . Since $\{x_n\}$ is bounded there is M > 0 such that $\forall n \in \mathbb{N} |x_n| < M$. Since $n_k \in \mathbb{N}$, we have $\forall k \in \mathbb{N} \ |x_{n_k}| < M.$
- \Leftarrow . Assume $\{x_n\}$ is not bounded. Then for every $N \in \mathbb{N}$ there is $n_k \in \mathbb{N}$ such that $|x_{n_k}| \ge M$. The subsequence $\{x_{n_k}\}$ is then not bounded.

Exercise 10. We have

$$1 \leqslant \sup_{k \ge n} \left[(-1)^k + e^{-k^2} \right] \leqslant 1 + e^{-n^2}.$$
 (43)

Taking limit $n \longrightarrow \infty$ we conclude

$$\limsup x_n = 1. \tag{44}$$

Exercise 11.

- 1. Take $n_k = 2k$ then $x_{n_k} = 1 + e^{-4k^2} \longrightarrow 1$.
- 2. Comparison theorem:

$$x_{n_k} = (-1)^{n_k} + e^{-n_k^2} \leqslant 1 + e^{-k^2} \Longrightarrow a = \lim_{k \to \infty} x_{n_k} \leqslant \lim_{k \to \infty} (1 + e^{-k^2}) = 1.$$
(45)

H. Infinite Series

1. Concepts and Theorems.

- Definitions.
 - Infinite series: Formal summation

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots \tag{46}$$

- Convergence: Define partial sum

$$s_n := \sum_{k=1}^n a_n := a_1 + \dots + a_n.$$
(47)

 $\sum_{n=1}^{\infty} a_n$ convergens if and only if the sequence $\{s_n\}$ convergens. Call $\lim_{n\to\infty} s_n$ the "sum" of the infinite series.

- Convergence.
 - Definition: $\sum_{n=1}^{\infty} a_n = L$ if and only if $\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N, \ |\sum_{k=1}^n a_k - L| < \varepsilon.$
 - Convergence theorems: Adaptation of convergence theorems for sequences.
 - * Cauchy criterion: $\forall \varepsilon > 0 \exists N \in \mathbb{N} \quad \forall n > m > N$ $\left| \sum_{m=1}^{n} a_k \right| < \varepsilon.$
 - * Non-negative series: If $a_n \ge 0$ for all $n \in \mathbb{N}$, then $\sum_{n=1}^{\infty} a_n \in \mathbb{R}$ if and only if $\{s_n\}$ is bounded from above.
 - * Comparison: If $|a_n| \leq b_n$ and $\sum_{n=1}^{\infty} b_n$ converges, then so does $\sum_{n=1}^{\infty} a_n$.
 - $-\sum_{n=1}^{\infty} a_n \text{ converges} \Longrightarrow \lim_{n \to \infty} a_n = 0.$ But \Leftarrow is not true!
- Typical series.

- Geometric.
$$\sum_{n=1}^{\infty} r^{n-1}$$
.
* $|r| < 1 \Longrightarrow \sum_{n=1}^{\infty} r^{n-1} = \frac{1}{1-r};$
* $r \ge 1 \Longrightarrow \sum_{n=1}^{\infty} r^{n-1} = \infty;$
* $r \le -1 \Longrightarrow \sum_{n=1}^{\infty} r^{n-1}$ does not converge.

- Harmonic.
$$\sum_{n=1}^{\infty} n^{-a}$$
.
* $a > 1 \Longrightarrow \sum_{n=1}^{\infty} n^{-a}$ converges;

*
$$a \leq 1 \Longrightarrow \sum_{n=1}^{\infty} n^{-a} = \infty.$$

- Convergence tests.
 - Ratio Test.
 - * $\operatorname{limsup}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 \Longrightarrow \text{converge};$
 - $* \ \operatorname{liminf}_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| > 1 \Longrightarrow \operatorname{diverge};$
 - * Other situations \implies further study needed;
 - Root Test.
 - * $\limsup_{n\to\infty} |a_n|^{1/n} < 1 \Longrightarrow$ converge;
 - * $\liminf_{n\to\infty} |a_n|^{1/n} > 1 \Longrightarrow \text{diverge};$
 - * Other situations \implies further study needed;

Exercise 12. Prove that $\sum_{n=1}^{\infty} n x^n$ converges when |x| < 1 and diverges when $|x| \ge 1$.

Remark. Keep in mind that if $\lim_{n \to \infty} x_n$ exists, then $\liminf_{n \to \infty} x_n = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_n$.

Remark. Note that ratio/root tests are usually useless if the formulas for a_n are not given.

2. Solutions to exercises.

Exercise 12. We apply the ratio test: Since $a_n = n x^n$ we have $\left|\frac{a_{n+1}}{a_n}\right| = \frac{n+1}{n} |x|$. We have

$$\lim_{n \to \infty} \frac{n+1}{n} |x| = |x| \lim_{n \to \infty} \frac{n+1}{n} = |x|.$$
(48)

Thus the ratio test gives:

 $\sum_{n=1}^{\infty} n x^n$ converges when |x| < 1 and diverges when |x| > 1.

The case |x| = 1 has to be analyzed ad hoc. In this case we have $|a_n| = n$. Clearly $\lim_{n \to \infty} |a_n| = 0$ doesn't hold. Therefore the series does not converge in this case.

3. Problems

n

Problem 9. Analyze the convegence/divergence of $\sum_{n=1}^{\infty} (x^n/n^2)$ for $x \in \mathbb{R}$.

I. Limit of Functions

1. Concepts and Theorems

- $\lim_{x \longrightarrow a} f(x) = L$ is defined as
 - $a \in \mathbb{R}, L \in \mathbb{R}. \ \forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that} \\ \forall 0 < |x a| < \delta, |f(x) L| < \varepsilon.$
 - $a \in \mathbb{R}, L = \infty. \ \forall M \in \mathbb{R}, \exists \delta > 0 \text{ such that} \\ \forall 0 < |x a| < \delta, \ f(x) > M.$
 - $a \in \mathbb{R}, L = -\infty. \ \forall M \in \mathbb{R}, \exists \delta > 0 \text{ such} \\ \text{that } \forall 0 < |x a| < \delta, \ f(x) > M.$
 - $a = \infty, L \in \mathbb{R}. \forall \varepsilon > 0, \exists M \in \mathbb{R} \text{ such that} \\ \forall x > M, |f(x) L| < \varepsilon.$
 - $-a = -\infty, L = \infty. \forall M \in \mathbb{R}, \exists M' \in \mathbb{R} \text{ such}$ that $\forall x < M', f(x) > M$. Note that Mand M' are not the same number.

Observe the pattern.

Exercise 13. Write definition for the following cases.

1.
$$a = \infty, L = \infty$$
.
2. $a = -\infty, L \in \mathbb{R}$

- Left and right limits: For example $a, L \in \mathbb{R}$:
 - Right limit: $\lim_{x \to a+} f(x) = L$ is defined as $\forall \varepsilon > 0, \exists \delta > 0$ such that $\forall 0 < x - a < \delta, |f(x) - L| < \varepsilon.$
 - Left limit: $\lim_{x \to a^-} f(x) = L$ is defined as $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\forall -\delta < x - a < 0$, $|f(x) - L| < \varepsilon$.

Exercise 14. Write definition for $\lim_{x\to 0+} f(x) = -\infty$.

• Relation between function limit and sequence limit:

 $\lim_{x\to a} f(x) = L$ if and only if for every sequence $\{x_n\}$ with $x_n \neq a$ for all $n \in$ \mathbb{N} , and $\lim_{n\to\infty} x_n = a$, there holds $\lim_{n\to\infty} f(x_n) = L$.

Exercise 15. Prove that $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

• Arithmetics: $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$, then,

$$\lim_{x \to a} (f \pm g)(x) = L \pm M \tag{49}$$

$$\lim_{x \to a} (fg)(x) = L M, \tag{50}$$

If
$$M \neq 0$$
, $\lim_{x \to x_0} \left(\frac{f}{g}\right)(x) = \frac{L}{M}$. (51)

- Comparison: $h(x) \leq f(x) \leq g(x)$, $\lim_{x \to x_0} h(x) = L_1$, $\lim_{x \to x_0} f(x) = L_2$, $\lim_{x \to x_0} g(x) = L_3$, then $L_1 \leq L_2 \leq L_3$.
- Squeeze: $h(x) \leq f(x) \leq g(x)$, $\lim_{x \to x_0} h(x) = \lim_{x \to x_0} g(x) = L$, then $\lim_{x \to x_0} f(x) = L$.

2. Solutions to exercises

Exercise 13.

1. $\forall M \in \mathbb{R}, \exists M' \in \mathbb{R} \text{ such that } \forall x > M', f(x) > M.$

2. $\forall \varepsilon > 0, \exists M \in \mathbb{R}$ such that $\forall x < M, |f(x) - L| < \varepsilon$.

Exercise 14.

 $\forall M \in \mathbb{R}, \exists \delta > 0 \text{ such that for all } 0 < x < \delta, f(x) < M.$

Exercise 15. Take $x_n = \frac{1}{n\pi}$ and $y_n = \frac{1}{(2n+1/2)\pi}$. Then we have

$$x_n \neq 0, \, y_n \neq 0; \tag{52}$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n = 0.$$
 (53)

 But

$$\lim_{n \to \infty} \sin\left(\frac{1}{x_n}\right) = \lim_{n \to \infty} 0 = 0 \tag{54}$$

is different from

A

$$\lim_{n \to \infty} \sin\left(\frac{1}{y_n}\right) = \lim_{n \to \infty} 1 = 1.$$
 (55)

3. Problems

Problem 10. Prove by definition that $\lim_{x\to a} f(x)$ exists and equals $L \in \mathbb{R}$ if and only if $\lim_{x\to a+} f(x)$, $\lim_{x\to a-} f(x)$ both exist and both equal L.

J. Continuity/Continuous Functions

1. Continuity

- Definition: $\forall \varepsilon > 0 \exists \delta > 0 \forall |x x_0| < \delta$, $|f(x) - f(x_0)| < \varepsilon$.
- Understanding.
 - Continuous at x_0 :
 - 1. $\lim_{x \longrightarrow x_0} f(x)$ exists; and
 - 2. The limit equals $f(x_0)$.
 - Not continuous at x_0 :
 - 1. $\lim_{x \to x_0} f(x)$ does not exist, or
 - 2. it exists but is different from $f(x_0)$.
- Properties: f, g continuous at x_0 then
 - $-f \pm g, fg$ continuous at x_0 ;
 - If furthermore $g(x_0) \neq 0$, f/g continuous at x_0 .
- Composite functions.

f continuous at x_0 , g continuous at $y_0 = f(x_0)$, then $g \circ f$ is continuous at x_0 .

- Everyday functions:
 - Continuous at all $x_0 \in \mathbb{R}$:
 - * polynomials;
 - * $\exp[x];$
 - * $\sin(x), \cos(x).$
 - Rational functions: After cancelling common factors, continuous where $g \neq 0$, discontinuous where g = 0.

2. Continuous functions

• Intermediate Value Theorem:

Let f(x) be continuous on the closed interval [a, b]. Then for every $s \in [f(a), f(b)]$ (or [f(b), f(a)] if $f(b) \leq f(a)$), there is $\xi \in [a, b]$ such that $f(\xi) = s$.

Remark. Note that f(x) needs to be continuous on [a, b], that is: For every $x_0 \in [a, b]$, we have $\forall \varepsilon > 0, \exists \delta > 0, \forall x \in [a, b] |x - x_0| < \delta, |f(x) - f(x_0)| < \varepsilon$. Or in other words:

- 1. $\forall x_0 \in (a, b), \lim_{x \to x_0} f(x) = f(x_0);$
- 2. $\lim_{x \to a+} f(x) = f(a); \lim_{x \to b-} f(x) = f(b).$

Note. If f(x) is continuous on $(c, d) \supset [a, b]$, then f(x) is continuous on [a, b].

- Other consequences of f continuous on [a, b]:
 - f is bounded. There is M > 0 such that $\forall x \in [a, b], |f(x)| \leq M$.
 - f reaches maximum and minimum. There are $x_{\max}, x_{\min} \in [a, b]$ such that $\forall x \in [a, b],$

$$f(x_{\min}) \leqslant f(x) \leqslant f(x_{\max}). \tag{56}$$

- Inverse function. $f: A \mapsto B$ satisfies
 - 1. continuous,
 - 2. onto,
 - 3. strictly increasing (or strictly decreasing)

then the inverse $g: B \mapsto A$ exists and is continuous, onto, and strictly increasing (or strictly decreasing).

K. Solutions

• **Problem 1.** We construct the truth table. Let AB denote $A \Longrightarrow B$, BC denote $B \Longrightarrow C$, AB BC denote $(A \Longrightarrow B) \land (B \Longrightarrow C)$, AC denote $A \Longrightarrow C$, A...C denote $[(A \Longrightarrow B)$ and $(B \Longrightarrow C)] \Longrightarrow (A \Longrightarrow C)$.

A	B	C	AB	BC	ABBC	AC	AC
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	T
T	F	T	F	T	F	T	T
T	F	F	F	T	F	F	T
F	T	T	T	T	T	T	T
F	T	F	T	F	F	T	T
F	F	T	T	T	T	T	T
F	F	F	T	T	T	T	T

Therefore the statement is always true. It means if A implies B and B implies C, then A implies C.

• **Problem 2.** We can try to construct a truth table but we have four statements which means the table would have 16 rows. So instead we look at the claim

If
$$(P \land Q) \Longrightarrow (R \lor S)$$
 and $Q \Longrightarrow R$, then $P \Longrightarrow S$.

and decide that it looks wrong. Thus we need to assign truth values to P, Q, R, Ssuch that $(P \land Q) \Longrightarrow (R \lor S)$ and $Q \Longrightarrow R$ are true but $P \Longrightarrow S$ is false.

As $P \Longrightarrow S$ is false, we have to assigne P = T, S = F. Now to make $P \land Q = F$ we assign Q = F. Note that this implies $(P \land Q) \Longrightarrow (R \lor S)$ and also $Q \Longrightarrow R$ are true.

- **Problem 3.** We prove $\bigcup_{n \in \mathbb{N}} E_n = \{x \in \mathbb{R} | x > 0\}$. Denote this set by A. We prove
 - 1. $A \subseteq \bigcup_{n \in \mathbb{N}} E_n$. Take any $x \in A$. As x > 0, there is $n \in \mathbb{N}$ such that $x > \frac{1}{n}$ which means $x \in E_n \subseteq \bigcup_{n \in \mathbb{N}} E_n$.
 - 2. $\bigcup_{n \in \mathbb{N}} E_n \subseteq A$. Take any $x \in \bigcup_{n \in \mathbb{N}} E_n$. By definition of union there is $n \in \mathbb{N}$ such that $x \in E_n$. This gives $x > \frac{1}{n} > 0$ therefore $x \in A$.

Summarizing, we have $\cup_{n \in \mathbb{N}} E_n = A$.

• Problem 4.

a)
$$A = \bigcup_{n \in \mathbb{Z}} [n \ \pi \ -\frac{\pi}{6}, n \ \pi \ +\frac{\pi}{6}]; B = \{x \in \mathbb{R}: (x-1) \ (x^2+1) < 0\} = (-\infty, 1).$$

 $A \cup B = (-\infty, 1) \cup (\bigcup_{n \in \mathbb{N}} [n \ \pi \ -\frac{\pi}{6}, n \ \pi \ +\frac{\pi}{6}]); A \cap B = \bigcup_{n=0}^{\infty} [-n \ \pi \ -\frac{\pi}{6}, -n \ \pi \ +\frac{\pi}{6}].$

b)

- A is closed. Since $A^c = \bigcup_{n \in \mathbb{Z}} \left(n \ \pi + \frac{\pi}{6}, \ n \ \pi + \frac{5\pi}{6} \right)$ is open (because it is a union of open intervals).
- -B is open since it is an open interval.
- $-C = A \cup B$ is neither open nor closed.
 - * C is not open. Take $x_0 = \frac{5\pi}{6} \in C$. Then for any (a, b) such that $x_0 \in (a, b)$, there is c > 0 such that $\max\{1, a\} < c < x_0$. For this c we have $c \notin A \cup B$. Consequently $(a, b) \not\subseteq A \cup B$.
 - * C is not closed. We have

$$(A \cup B)^{c} = \left[1, \frac{5\pi}{6}\right] \cup \left(\bigcup_{n=1}^{\infty} \left(n \pi + \frac{\pi}{6}, n \pi + \frac{5\pi}{6}\right)\right).$$

$$(57)$$

Now take $1 \in (A \cup B)^c$. For any $(a, b) \ni 1$, we have $a < \frac{1+a}{2} < 1$ and therefore $\frac{1+a}{2} \in (a, b)$ but $\frac{1+a}{2} \notin (A \cup B)^c$. Consequently $(a, b) \notin (A \cup B)^c$.

 $- D = A \cap B \text{ is closed. Since } D^{c} = \left(\bigcup_{n=0}^{\infty} \left(-n \pi - \frac{5\pi}{6}, -n \pi - \frac{\pi}{6} \right) \right) \cup \left(\frac{\pi}{6}, \infty \right) \text{ is union of open intervals and is therefore open.}$

- "If". Assume $\forall A, B \subseteq X, f(A \setminus B) = f(A) \setminus f(B)$. For any $x_1 \neq x_2$, take $A = \{x_1, x_2\}, B = \{x_2\}$. Then $f(A \setminus B) = \{f(x_1)\}, f(A) = \{f(x_1), f(x_2)\}, f(B) = \{f(x_2)\}$. As $f(A) \setminus f(B) = \{f(x_1)\}, f(x_1) \neq f(x_2)$.
- "Only if". Assume f is one-to-one. We prove $f(A \setminus B) \subseteq f(A) \setminus f(B)$ and $f(A) \setminus f(B) \subseteq f(A \setminus B)$.
 - * $f(A \setminus B) \subseteq f(A) \setminus f(B)$. Take any $y \in f(A \setminus B)$. By definition there is $x \in A \setminus B$ such that y = f(x). $x \in A \setminus B$ means $x \in A, x \notin B$.

Because $x \in A$, $y = f(x) \in f(A)$; On the other hand, since f is oneto-one and $x \notin B$, $y = f(x) \neq f(x')$ for any $x' \in B$ which means $y \notin$ f(B). Therefore $y \in f(A) \setminus f(B)$.

- * $f(A) \setminus f(B) \subseteq f(A \setminus B)$. Take any $y \in f(A) \setminus f(B)$. Then $y \in f(A)$, $y \notin f(B)$. As $y \in f(A)$ there is $x \in$ A such that y = f(x). Since $y \notin$ $f(B), x \notin B$. Therefore $x \in A \setminus B$ and consequently $y = f(x) \in f(A \setminus B)$.
- **Problem 6.** The working negation is

 $\forall M > 0 \; \exists x, y \ge 0 \quad |f(x) - f(y)| > M \; |x - y|.$ (58)

• **Problem 7.** f(x) is increasing if

 $\forall x_1, x_2 \ x_1 \geqslant x_2 \quad f(x_1) \geqslant f(x_2). \tag{59}$

f(x) is not increasing if

$$\exists x_1, x_2, x_1 \ge x_2, \qquad f(x_1) < f(x_2).$$
 (60)

Or simply write as

$$\exists x_1 \geqslant x_2 \qquad f(x_1) < f(x_2). \tag{61}$$

- **Problem 8.** We prove sup *B* = 3 sup *A*. We only need to show:
 - 1. 3 sup A is an upper bound of B. For any $b \in B$, by definition there is $a \in A$ such that b = 3 a. By definition of sup we have sup $A \ge a \Longrightarrow 3$ sup $B \ge 3 a = b$.

2. $3 \sup A$ is the best upper bound of B. Let $c < 3 \sup A$. Then $\frac{c}{3} < \sup A$. As $\sup A$ is the best upper bound for A, $\frac{c}{3}$ is not an upper bound for A. Therefore there is $a \in A$ such that $\frac{c}{3} < a$. This gives $c < 3 \ a \in B$, that is c is not an upper bound for B.

 $\inf B = 3 \inf A$ can be proved similarly.

• **Problem 9.** We have $a_n = \frac{x^n}{n^2}$ and therefore

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{n^2}{(n+1)^2} |x|.$$
 (62)

Since

r

$$\lim_{n \to \infty} \frac{n^2}{(n+1)^2} |x| = |x|, \tag{63}$$

the ratio test gives convergence for |x| < 1and divergence for |x| > 1.

For |x| = 1 we have

$$|a_n| = \frac{1}{n^2}.\tag{64}$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, $\sum_{n=1}^{\infty} a_n$ converges.

• Problem 10.

- If. Assume

$$\lim_{x \longrightarrow a+} f(x) = \lim_{x \to a-} f(x) = L.$$
 (65)

Then for any $\varepsilon > 0$, there are $\delta_L, \delta_R > 0$ such that when $0 < x - a < \delta_R$ or $-\delta_L < x - a < 0$,

$$|f(x) - L| < \varepsilon. \tag{66}$$

Now take $\delta = \min{\{\delta_L, \delta_R\}}$, we have

$$0 < |x-a| < \delta \implies 0 < x-a < \delta_R \text{ or} \\ -\delta_L < x-a < 0$$

Therefore for all $0 < |x - a| < \delta$,

$$|f(x) - L| < \varepsilon \tag{67}$$

which means

$$\lim_{x \to a} f(x) = L. \tag{68}$$

- Only if.

We prove first

$$\lim_{x \to a} f(x) = L \Longrightarrow \lim_{x \to a+} f(x) = L.$$
(69)

For any $\varepsilon > 0$, there is $\delta > 0$ such that

$$0 < |x - a| < \delta \Longrightarrow \tag{70}$$

$$|f(x) - L| < \varepsilon. \tag{71}$$

In particular

$$0 < x - a < \delta \Longrightarrow \tag{72}$$

$$|f(x) - L| < \varepsilon. \tag{73}$$

Next we prove

$$\lim_{x \to a} f(x) = L \Longrightarrow \lim_{x \to a^{-}} f(x) = L.$$
(74)

For any $\varepsilon > 0$, there is $\delta > 0$ such that

$$0 < |x - a| < \delta \Longrightarrow \tag{75}$$

$$|f(x) - L| < \varepsilon. \tag{76}$$

In particular

$$-\delta < x - a < 0 \Longrightarrow \tag{77}$$

$$|f(x) - L| < \varepsilon. \tag{78}$$

Thus the proof ends.