Integration

TABLE OF CONTENTS

1. Definition of Riemann Integration 1
1.1. Partition of intervals 1
1.2. Upper/lower Riemann sum 1
1.3. Upper/lower Riemann integrals 2
1.4. Riemann integration 4
2. Criteria and Properties 6
2.1. Checking integrability 6
2.2. Properties of Riemann integrals 8
3. The Fundamental Theorem of Calculus 11
3.1. The theorems 12
3.2. Applications of FTC 14
4. Improper Riemann Integration 17
5. Definition of Riemann Integration

1.1. Partition of intervals.

Definition 1. (Partition) Let $a, b \in \mathbb{R}$ with $a<b$. A partition of the interval $[a, b]$ is the set of points $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ such that

$$
\begin{equation*}
a=x_{0}<x_{1}<\cdots<x_{n}=b . \tag{1}
\end{equation*}
$$

A refinement of a partition P is a partition $Q \supseteq P$. In this case we say Q is finer than P.

The most useful property of partitions is the following.
Lemma 2. Let P, Q be partitions. Then $P \cup Q$ is finer than both P and Q.

Proof. This is obvious since partitions are defined as sets.

1.2. Upper/lower Riemann sum.

Definition 3. (upper/lower Riemann sum) Let $a, b \in \mathbb{R}$ with $a<b$, let $P=\left\{x_{0}, \ldots, x_{n}\right\}$ be a partition. Suppose $f:[a, b] \mapsto \mathbb{R}$ is bounded.
i. The upper Riemann sum of f over P is the number

$$
\begin{equation*}
U(f, P):=\sum_{j=1}^{n} M_{j}(f)\left(x_{j}-x_{j-1}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{j}(f)=\sup _{x \in\left[x_{j-1}, x_{j}\right]} f(x) \tag{3}
\end{equation*}
$$

ii. The lower Riemann sum of f over P is the number

$$
\begin{equation*}
L(f, P):=\sum_{j=1}^{n} m_{j}(f)\left(x_{j}-x_{j-1}\right) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{j}(f)=\inf _{x \in\left[x_{j-1}, x_{j}\right]} f(x) \tag{5}
\end{equation*}
$$

Remark 4. Note that since we assume f to be bounded, $m_{j}(f)$ and $M_{j}(f)$ are real numbers.

Since $m_{j}(f) \leqslant M_{j}(f)$, we clearly have

Lemma 5. $U(f, P) \geqslant L(f, P)$.

1.3. Upper/lower Riemann integrals.

Definition 6. (Upper and lower integral) We define the upper integral $U(f)$ of f over $[a, b]$ by

$$
\begin{equation*}
U(f):=\inf \{U(f, P): P \text { is a partition of }[a, b]\} \tag{6}
\end{equation*}
$$

We define the lower integral $L(f)$ of f over $[a, b]$ by

$$
\begin{equation*}
L(f):=\sup \{L(f, P): P \text { is a partition of }[a, b]\} \tag{7}
\end{equation*}
$$

Theorem 7. Upper and lower integrals exist for every bounded function f.

Proof. All we need to show is that $U(f, P)$ is bounded from below and $L(f, P)$ is bounded from above. Take any bounded function f. There is $M>0$ such that $|f| \leqslant M$, that is $-M \leqslant f \leqslant M$ for all $x \in[a, b]$.

Now by definition

$$
\begin{equation*}
U(f, P)=\sum_{i=1}^{n}\left[\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\right]\left(x_{l}-x_{l-1}\right) \geqslant-M \sum_{i=1}^{n}\left(x_{l}-x_{l-1}\right)=-M(b-a) \tag{8}
\end{equation*}
$$

Similarly we can prove $L(f, P) \leqslant M(b-a)$.

Theorem 8. $U(f) \geqslant L(f)$.

Naïvely, we only need to take inf and sup of left/right side of $U(f, P) \geqslant L(f, P)$. However this is wrong. If we imagine the process of taking inf as finding P_{n} such that $U\left(f, P_{n}\right) \longrightarrow U(f)$, then the fact that it's the same P on both sides leads to

$$
\begin{equation*}
U(f)=\lim _{n \longrightarrow \infty} U\left(f, P_{n}\right) \geqslant \lim _{n \longrightarrow \infty} L\left(f, P_{n}\right) \tag{9}
\end{equation*}
$$

which, even if it exists, is usually not $L(f)=\inf _{P} L(f, P)$. A related issue is, $f(x) \geqslant$ $g(x) \nRightarrow \inf _{x} f(x) \geqslant \sup _{x} g(x)$, for example take $f=g$. Then unless f is a constant, we won't have $\inf _{x} f(x) \geqslant \sup _{x} g(x)=\sup _{x} f(x)$.

To prove Theorem 8, the following Lemma is needed.
Lemma 9. Let $P \subseteq Q$ be partitions. Then $U(f, Q) \leqslant U(f, P)$ and $L(f, Q) \geqslant L(f, P)$.

Proof. We prove the first claim. The proof for the second is similar.
Let $Q=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$. Then as $P \subseteq Q$, we have $P=\left\{x_{n_{0}}, \ldots, x_{n_{k}}\right\}$ with $k \leqslant n$, and $n_{0}=0, n_{k}=n$. Now consider

$$
\begin{align*}
\left.\sup _{x \in\left[x_{n_{i-1}}, x_{n_{i}}\right]} f(x)\right]\left(x_{n_{i}}-x_{n_{i-1}}\right)= & {\left[\sup _{x \in\left[x_{n_{i}-1}, x_{n_{i}}\right]} f(x)\right]\left(x_{n_{i}}-x_{n_{i}-1}\right) } \\
& +\left[\sup _{x \in\left[x_{n_{i-1}}, x_{n_{i}}\right]} f(x)\right]\left(x_{n_{i}-1}-x_{n_{i}-2}\right) \\
& +\cdots+\left[\sup _{x \in\left[x_{n_{i-1}}, x_{n_{i}}\right]} f(x)\right]\left(x_{n_{i-1}+1}-x_{n_{i-1}}\right) \\
\geqslant & {\left[\sup _{x \in\left[x_{n_{i}-1}, x_{n_{i}}\right]} f(x)\right]\left(x_{n_{i}}-x_{n_{i}-1}\right) } \\
& +\left[\sup _{x \in\left[x_{n_{i}-1}, x_{n_{i}-2}\right]} f(x)\right]\left(x_{n_{i}-1}-x_{n_{i}-2}\right) \\
& +\cdots+\left[\sup _{x \in\left[x_{n_{i-1}}, x_{n_{i-1}}+1\right.} f(x)\right]\left(x_{n_{i-1}+1}-x_{n_{i-1}}\right) . \\
= & \sum_{j=n_{i-1}+1}^{n_{i}}\left[\sup _{x \in\left[x_{j-1}, x_{j}\right]} f(x)\right]\left(x_{j}-x_{j-1}\right) . \tag{10}
\end{align*}
$$

Therefore we have

$$
\begin{align*}
U(f, P) & =\sum_{i=1}^{k}\left[\sup _{x \in\left[x_{n_{i-1}}, x_{n_{i}}\right]} f(x)\right]\left(x_{n_{i}}-x_{n_{i-1}}\right) \\
& \geqslant \sum_{i=1}^{k}\left\{\sum_{j=n_{i-1}+1}^{n_{i}}\left[\sup _{x \in\left[x_{j-1}, x_{j}\right]} f(x)\right]\left(x_{j}-x_{j-1}\right)\right\} \\
& =\sum_{l=1}^{n}\left[\sup _{x \in\left[x_{l-1}, x_{l}\right]} f(x)\right]\left(x_{l}-x_{l-1}\right)=U(f, Q) . \tag{11}
\end{align*}
$$

Proof. (of Theorem 8) We first show that $U(f, P) \geqslant L(f, Q)$ for any partitions P, Q. By Lemmas 5 and 9 we have

$$
\begin{equation*}
U(f, P) \geqslant U(f, P \cup Q) \geqslant L(f, P \cup Q) \geqslant L(f, Q) . \tag{12}
\end{equation*}
$$

Now we take infinmum over P :

$$
\begin{equation*}
U(f)=\inf _{P \text { is a partition }} U(f, P) \geqslant \inf _{P} L(f, Q)=L(f, Q) \tag{13}
\end{equation*}
$$

Finally we take supreme over Q :

$$
\begin{equation*}
L(f)=\sup _{Q} L(f, Q) \leqslant U(f) \tag{14}
\end{equation*}
$$

Thus ends the proof.

1.4. Riemann integration.

Definition 10. A bounded function on $[a, b]$ is said to be Riemann integrable if $L(f)=U(f)$. In this case we denote this common value by $\int_{a}^{b} f(x) \mathrm{d} x$.

In the following examples we set $a, b \in \mathbb{R}, a<b$.

Example 11. The constant function $f(x)=c$ is integrable with $\int_{a}^{b} f(x) \mathrm{d} x=c(b-a)$.

Proof. Let $P=\{a, b\}$. Then

$$
\begin{equation*}
\sup _{x \in[a, b]} f(x)=\inf _{x \in[a, b]} f(x)=c \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
U(f, P)=L(f, P)=c(b-a) \tag{16}
\end{equation*}
$$

As

$$
\begin{equation*}
L(f, P) \leqslant L(f) \leqslant U(f) \leqslant U(f, P) \tag{17}
\end{equation*}
$$

we have $L(f)=U(f)=c(b-a)$ and the conclusions follow.

Example 12. The function $f(x)=x$ is integrable with $\int_{a}^{b} f(x) \mathrm{d} x=\frac{b^{2}-a^{2}}{2}$.

Proof. This time we cannot expect to find P such that $U(f, P)=L(f, P)$. But we can try to find P_{n} such that $U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \longrightarrow 0$.

Let $P_{n}:=\left\{a, a+\frac{b-a}{n}, \ldots, a+\frac{n-1}{n}(b-a), b\right\}$, that is

$$
\begin{equation*}
x_{i}=a+i \frac{b-a}{n} \text { for } i=0,1,2, \ldots, n \tag{18}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)=x_{i}=a+i \frac{b-a}{n} ; \quad \inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)=x_{i-1}=a+(i-1) \frac{b-a}{n} . \tag{19}
\end{equation*}
$$

Thus

$$
\begin{align*}
U\left(f, P_{n}\right) & =\sum_{i=1}^{n}\left(a+i \frac{b-a}{n}\right) \frac{b-a}{n} \\
& =a(b-a)+\frac{(b-a)^{2}}{n^{2}}\left(\sum_{i=1}^{n} i\right) \\
& =a(b-a)+\frac{(b-a)^{2}}{n^{2}} \frac{n(n+1)}{2} \\
& =a(b-a)+\frac{(b-a)^{2}}{2} \frac{n(n+1)}{n^{2}} . \tag{20}
\end{align*}
$$

Similarly

$$
\begin{align*}
L\left(f, P_{n}\right) & =\sum_{i=1}^{n}\left(a+(i-1) \frac{b-a}{n}\right) \frac{b-a}{n} \\
& =a(b-a)+\frac{(b-a)^{2}}{2} \frac{n(n-1)}{n^{2}} . \tag{21}
\end{align*}
$$

These now give

$$
\begin{equation*}
a(b-a)+\frac{(b-a)^{2}}{2} \frac{n(n-1)}{n^{2}} \leqslant L(f) \leqslant U(f) \leqslant a(b-a)+\frac{(b-a)^{2}}{2} \frac{n(n+1)}{n^{2}} . \tag{22}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$, by Comparison Theorem we have

$$
\begin{equation*}
a(b-a)+\frac{(b-a)^{2}}{2} \leqslant L(f) \leqslant U(f) \leqslant a(b-a)+\frac{(b-a)^{2}}{2} . \tag{23}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
L(f)=U(f)=a(b-a)+\frac{(b-a)^{2}}{2}=\frac{b^{2}-a^{2}}{2} \tag{24}
\end{equation*}
$$

and the conclusions follow.
Remark 13. Note that similar to the proof of Theorem 8, the fact that it's the same P in

$$
\begin{equation*}
U(f, P)+L(f, P)=b^{2}-a^{2} \tag{25}
\end{equation*}
$$

makes it incorrect to conclude directly

$$
\begin{equation*}
\inf _{P} U(f, P)+\sup _{P} L(f, P)=b^{2}-a^{2} . \tag{26}
\end{equation*}
$$

Example 14. Consider the Dirichlet function: $f(x)=\left\{\begin{array}{ll}1 & x \text { rational } \\ 0 & x \text { irrational }\end{array}\right.$, then $f(x)$ is not integrable.
Proof. Let P be an arbitrary partition. We know that in every $\left[x_{i-1}, x_{i}\right]$, there is at least one rational number and one irrational number. That is $\sup _{\left[x_{i-1}, x_{i}\right]} f=1, \inf _{\left[x_{i-1}, x_{i}\right]} f=0$. Consequently

$$
\begin{equation*}
U(f, P)=1, \quad L(f, P)=0 \tag{27}
\end{equation*}
$$

for every partition. Therefore $U(f)=1 \neq 0=L(f)$, that is f is not integrable.

2. Criteria and Properties

2.1. Checking integrability.

Theorem 15. A bounded function on $[a, b]$ is integrable if and only if for each $\varepsilon>0$, there exists a partition P of $[a, b]$ such that

$$
\begin{equation*}
U(f, P)-L(f, P)<\varepsilon \tag{28}
\end{equation*}
$$

More practically, if we can find partitions P_{n} such that $U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \longrightarrow 0$, then f is integrable and

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \longrightarrow \infty} U\left(f, P_{n}\right)=\lim _{n \longrightarrow \infty} L\left(f, P_{n}\right) \tag{29}
\end{equation*}
$$

Proof.

- "Only if". Let f be integrable. Then $U(f)=L(f)$. By definition there are partitions P_{1} and P_{2} such that

$$
\begin{equation*}
U\left(f, P_{1}\right)<U(f)+\varepsilon / 2 ; \quad L\left(f, P_{2}\right)>L(f)-\varepsilon / 2 . \tag{30}
\end{equation*}
$$

Now set $P=P_{1} \cup P_{2}$. We have, by Lemma 9 ,

$$
\begin{equation*}
U(f, P) \leqslant U\left(f, P_{1}\right)<U(f)+\varepsilon / 2 ; \quad L(f, P) \geqslant L\left(f, P_{2}\right)>L(f)-\varepsilon / 2 \tag{31}
\end{equation*}
$$

As $U(f)=L(f)$, and $U(f, P) \geqslant L(f, P)$, it follows that

$$
\begin{equation*}
U(f, P)-L(f, P)<\varepsilon \tag{32}
\end{equation*}
$$

- "If". Take $\varepsilon=1 / n$. Then there is a partition P_{n} such that

$$
\begin{equation*}
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)<\varepsilon<1 / n \tag{33}
\end{equation*}
$$

As $U\left(f, P_{n}\right) \geqslant U(f) \geqslant L(f) \geqslant L\left(f, P_{n}\right)$, we have $0 \leqslant U(f)-L(f)<1 / n$ for any $n \in \mathbb{N}$. This can hold only when $U(f)=L(f)$.

- Proof of the "more practically" part. Assume that there are partitions P_{n} such that $U(f$, $\left.P_{n}\right)-L\left(f, P_{n}\right) \longrightarrow 0$.

First we show that f is integrable. For any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that $U(f$, $\left.P_{N+1}\right)-L\left(f, P_{N+1}\right)<\varepsilon$. Therefore f is integrable.

Now we show that $\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n} \longrightarrow \infty U\left(f, P_{n}\right)=\lim _{n \longrightarrow \infty} L\left(f, P_{n}\right)$. Note that the existence of the two limits is not given, that is we need to show this existence.

Consider the partition $Q_{n}=P_{1} \cup \cdots \cup P_{n}$. Then we have

$$
\begin{align*}
& L\left(f, Q_{1}\right) \leqslant L\left(f, Q_{2}\right) \leqslant \cdots \leqslant L\left(f, Q_{n}\right) \leqslant \cdots \leqslant U\left(f, Q_{1}\right) \tag{34}\\
& U\left(f, Q_{1}\right) \geqslant U\left(f, Q_{2}\right) \geqslant \cdots \geqslant U\left(f, Q_{n}\right) \geqslant \cdots \geqslant L\left(f, Q_{1}\right) . \tag{35}
\end{align*}
$$

Thus $\lim _{n \longrightarrow \infty} U\left(f, Q_{n}\right)$ and $\lim _{n \longrightarrow \infty} L\left(f, Q_{n}\right)$ exist.
Since

$$
\begin{equation*}
U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \geqslant U\left(f, Q_{n}\right)-L\left(f, Q_{n}\right) \tag{36}
\end{equation*}
$$

we have, by Squeeze Theorem

$$
\begin{equation*}
U\left(f, Q_{n}\right)-L\left(f, Q_{n}\right) \longrightarrow 0 \tag{37}
\end{equation*}
$$

which, together with the definition of $U(f), L(f)$, gives us

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=U(f)=L(f)=\lim _{n \longrightarrow \infty} U\left(f, Q_{n}\right)=\lim _{n \longrightarrow \infty} L\left(f, Q_{n}\right) . \tag{38}
\end{equation*}
$$

Finally we show that $\lim _{n \rightarrow \infty} U\left(f, P_{n}\right)$ and $\lim _{n} \longrightarrow \infty L\left(f, P_{n}\right)$ exist and equal the integral. Write

$$
\begin{equation*}
U(f) \leqslant U\left(f, P_{n}\right) \leqslant L\left(f, Q_{n}\right)+U\left(f, P_{n}\right)-L\left(f, P_{n}\right) \tag{39}
\end{equation*}
$$

Taking limits on both sides and apply Squeeze Theorem gives the desired result.
As we have seen in Example 12, establishing integrability through definition is surprisingly tricky, even for very simple functions. Also note that what we essentially did in Example 12 is just proving a special case of Theorem 15.

Theorem 16. If f is continuous over $[a, b]$, then f is integrable.
Proof. (Not required) Since f is continuous, f is uniformly continuous. For any $\varepsilon>0$, there is $\delta>0$ such that whenever $|x-y|<\delta$, we have $|f(x)-f(y)|<\varepsilon /(b-a)$.

Now take $n \in \mathbb{N}$ such that $\frac{b-a}{n}<\delta$, and let $P=\left\{a, a+\frac{b-a}{n}, a+2 \frac{b-a}{n}, \ldots, b\right\}$. Then we have

$$
\begin{equation*}
|f(x)-f(y)|<\varepsilon /(b-a) \quad \forall x, y \in\left[a+j \frac{b-a}{n}, a+(j+1) \frac{b-a}{n}\right] . \tag{40}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
M_{j}(f)-m_{j}(f)<\varepsilon /(b-a) . \tag{41}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
U(f)-L(f) \leqslant U(f, P)-L(f, P)<\frac{\varepsilon}{b-a}(b-a)=\varepsilon . \tag{42}
\end{equation*}
$$

So f is integrable.
When f is not continuous, it may or may not be integrable.
Example 17. Let $f=\left\{\begin{array}{ll}1 & x<0 \\ 0 & x \geqslant 0\end{array}\right.$. Prove that f is integrable over $[-1,1]$.
Proof. Thanks to Theorem 15, all we need to show is that, for every ε, there exists a partition $P=\left\{x_{0}, \ldots, x_{n}\right\}$ such that $U(f, P)-L(f, P)<\varepsilon$.

Take $n \in \mathbb{N}$ such that $1 / n<\varepsilon$. Set $P=\left\{-1,-\frac{1}{n}, 0,1\right\}$. Then we have

Thus

$$
\begin{equation*}
L(f, P)=1 \cdot\left(\left(-\frac{1}{n}\right)-(-1)\right)+0 \cdot\left(0-\left(-\frac{1}{n}\right)\right)+0 \cdot(1-0)=\frac{n-1}{n} ; \tag{44}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\sup _{x \in[-1,-1 / n]} f(x)=1, \quad \sup _{x \in[-1 / n, 0]} f(x)=1, \quad \sup _{x \in[0,1]} f(x)=0 . \tag{45}
\end{equation*}
$$

Thus

$$
\begin{equation*}
U(f, P)=1 \cdot\left(\left(-\frac{1}{n}\right)-(-1)\right)+1 \cdot\left(0-\left(-\frac{1}{n}\right)\right)+0 \cdot(1-0)=1 \tag{46}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
U(f, P)-L(f, P)=\frac{1}{n}<\varepsilon \tag{47}
\end{equation*}
$$

and integrability follows.

Remark 18. Note that once f is unbounded, it is never integrable according to Definition 10, because the supreme of f over at least one of the subinterval would be ∞, causing $U(f, P)-L(f$, $P)=\infty$ for every partition P. Similarly, Definition 10 does not cover the case when the interval $[a, b]$ is of infinite size (that is $a=-\infty$ or $b=\infty$ or both). We will see later that there is a natural extension (improper integrals) of integrability to these situations.

Exercise 1. Let f, g be integrable on $[a, b]$. Prove the following.

1. If $f \leqslant g$, then $\int_{a}^{b} f \mathrm{~d} x \leqslant \int_{a}^{b} g \mathrm{~d} x$.
2. $\left|\int_{a}^{b} f \mathrm{~d} x\right| \leqslant \int_{a}^{b}|f| \mathrm{d} x$.

2.2. Properties of Riemann integrals.

Theorem 19. (Arithmetics) Let f and g be integrable functions on $[a, b]$ and let c be a real number. Then
a) $c f$ is integrable and $\int_{a}^{b}(c f)(x) \mathrm{d} x=c \int_{a}^{b} f(x) \mathrm{d} x$.
b) $f+g$ is integrable and $\int_{a}^{b}(f+g)(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x$.
c) $f g$ is integrable.
d) If $|g|$ is bounded below by a positive constant, then f / g is integrable.

Proof. We prove b), c) and leave a) as exercise (note that you need to consider the cases $c>,<,=0$).

- b). We try to apply Theorem 15 . For any $\varepsilon>0$, since f, g are integrable, let P, Q be partitions such that

$$
\begin{equation*}
U(f, P)-L(f, P)<\varepsilon, \quad U(g, Q)-L(g, Q)<\varepsilon \tag{48}
\end{equation*}
$$

Now consider the partition $P \cup Q$. We have

$$
\begin{equation*}
U(f, P \cup Q)-L(f, P \cup Q)<\varepsilon / 2, \quad U(g, P \cup Q)-L(g, P \cup Q)<\varepsilon / 2 \tag{49}
\end{equation*}
$$

Since we have
$L(f, P \cup Q)+L(g, P \cup Q) \leqslant L(f+g, P \cup Q) \leqslant U(f+g, P \cup Q) \leqslant U(f, P \cup Q)+U(g$, $P \cup Q)$

We conclude that $U(f+g, P \cup Q)-L(f+g, P \cup Q)<\varepsilon$.

- c). Since f, g are bounded, there is $M>0$ such that $|f|,|g| \leqslant M$. Now for any $\varepsilon>0$, let P_{1} be a partition such that $U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\varepsilon}{2 M}$ and let P_{2} be a partition such that $U\left(g, P_{2}\right)-L\left(g, P_{2}\right)<\frac{\varepsilon}{2 M}$. Now set $P=P_{1} \cup P_{2}=\left\{x_{0}=a, \ldots, x_{n}=b\right\}$. We have

$$
\begin{equation*}
U(f, P)-L(f, P), U(g, P)-L(g, P)<\frac{\varepsilon}{2 M} . \tag{51}
\end{equation*}
$$

Let y, z be two points in $\left[x_{j-1}, x_{j}\right]$. We have

$$
\begin{align*}
|f(y) g(y)-f(z) g(z)| & \leqslant|f(y)(g(y)-g(z))|+|g(z)(f(y)-f(z))| \\
& \leqslant M[|g(y)-g(z)|+|f(y)-f(z)|] \\
& \leqslant M[(\sup g-\inf g)+(\sup f-\inf f)] \\
& =M\left[M_{j}(g)-m_{j}(g)\right]+M\left[M_{j}(f)-m_{j}(f)\right] . \tag{52}
\end{align*}
$$

As this holds for every pair y, z, we conclude

$$
\begin{equation*}
M_{j}(f g)-m_{j}(f g) \leqslant M\left[M_{j}(g)-m_{j}(g)\right]+M\left[M_{j}(f)-m_{j}(f)\right] . \tag{53}
\end{equation*}
$$

Thus

$$
\begin{align*}
U(f g, P)-L(f g, P)= & \sum_{j=1}^{n}\left[M_{j}(f g)-m_{j}(f g)\right]\left|x_{j}-x_{j-1}\right| \\
\leqslant & M\left\{\sum_{j=1}^{n}\left[M_{j}(f)-m_{j}(f)\right]\left|x_{j}-x_{j-1}\right|+\sum_{j=1}^{n}\left[M_{j}(g)-\right.\right. \\
& \left.\left.m_{j}(g)\right]\left|x_{j}-x_{j-1}\right|\right\} \\
\leqslant & M\{[U(f, P)-L(f, P)]-[U(g, P)-L(g, P)]\} \tag{54}\\
< & \varepsilon
\end{align*}
$$

Integrability now follows from Theorem 15.
We will not spend time inventing tricks to prove d) here. But notice that all the above claims become trivial to prove in light of Remark 18. For example, if f, g are integrable, then their sets of discontinuity A_{f}, A_{g} have measure 0 . But then clearly the set of discontinuity for $f+g, f g, f / g$ are all just subsets of $A_{f} \cup A_{g}$ so they all must have measure 0 too.

Remark 20. Note that there is no clear relation between $\int_{a}^{b} f(x) \quad g(x) \quad \mathrm{d} x$ and $\left(\int_{a}^{b} f(x) \mathrm{d} x\right)\left(\int_{a}^{b} g(x) \mathrm{d} x\right) \cdot{ }^{1}$ This is what makes many problems in science and engineering hard to study mathematically. The most famous among these problems is turbulence in fluid mechanics.

Theorem 21. (Composite function) Let f be integrable over $[a, b]$ and g be continuous. Then $g \circ f$ is integrable of $[a, b]$.

Proof. The proof requires uniform continuity and is omitted.

1. Or more precisely, between the "scale-free" quantities $\frac{1}{b-a} \int_{a}^{b} f(x) g(x) \mathrm{d} x$ and $\left[\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x\right]\left[\frac{1}{b-a} \int_{a}^{b} g(x) \mathrm{d} x\right]$.

Exercise 2. Try to prove this theorem with what we have learned so far. What difficulty arises? Can you design a slightly stronger notion of continuity to overcome this difficulty? Compare your "stronger continuity" with the definition of "uniform continuity" (can be found in any analysis textbook or just wiki "uniform continuity").

Exercise 3. Find $f:[a, b] \mapsto[c, d]$ and $g:[c, d] \mapsto \mathbb{R}$ both integrable, but $g \circ f:[a, b] \mapsto \mathbb{R}$ is not integrable.
Theorem 22. Let f be a bounded function on $[a, b]$. Let $c \in(a, b)$. Then f is integrable on $[a, b]$ if and only if f is integrable on both $[a, c]$ and $[c, b]$.

Proof.

- "Only if". If

$$
\begin{equation*}
U(f, P)-L(f, P)<\varepsilon \tag{55}
\end{equation*}
$$

then we can refine ($\operatorname{add} c$) to get $\tilde{P}=P_{1} \cup Q_{1}$.

$$
\begin{equation*}
U\left(f, P_{1}\right)+U\left(f, Q_{1}\right)<L\left(f, P_{1}\right)+L\left(f, Q_{1}\right)+\varepsilon \tag{56}
\end{equation*}
$$

which is enough since we have $U\left(f, P_{1}\right) \geqslant L\left(f, P_{1}\right)$.
This part is easy as any partitions P_{1}, Q_{1} of $[a, c],[c, b]$ can be combined into a partition of $[a, b]$. Application of Theorem 15 then yields the desired result.

- "If". This part is easy as an partition P can be refined to partitions P_{1}, Q_{1}.

Example 23. $f(x)=\left\{\begin{array}{ll}\sin \frac{1}{x} & x \neq 0 \\ 0 & x=0\end{array}\right.$ is integrable on every finite interval $[a, b]$.
Proof. By Theorem 22, we only need to prove the integrability of f over $[0, b]$ for every $b>0$ and $[a, 0]$ for every $a<0$. We prove the first case here, the proof for the second case is similar.

Thanks to Theorem 15, all we need to show is that, for every ε, there exists a partition $P=$ $\left\{x_{0}=0, \ldots, x_{n}=b\right\}$ such that $U(f, P)-L(f, P)<\varepsilon$. Let $\delta=\frac{\varepsilon}{2}$. Since f is continuous on $[\delta, b]$, it is integrable there. Thus there is a partition $P_{1}=\{\delta, \ldots, b\}$ such that

$$
\begin{equation*}
U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\frac{\varepsilon}{2} . \tag{57}
\end{equation*}
$$

Now set $P=\{0\} \cup P_{1}$. Then we have

$$
\begin{gather*}
U(f, P)=\left[\sup _{[0, \delta]} f\right] \delta+U\left(f, P_{1}\right)=\delta+U\left(f, P_{1}\right) ; \tag{58}\\
L(f, P)=\left[\inf _{[0, \delta]} f\right] \delta+L\left(f, P_{1}\right)=L\left(f, P_{1}\right) . \tag{59}
\end{gather*}
$$

Thus

$$
\begin{equation*}
U(f, P)-L(f, P)=\delta+U\left(f, P_{1}\right)-L\left(f, P_{1}\right)<\varepsilon . \tag{60}
\end{equation*}
$$

Thus ends the proof.

3. The Fundamental Theorem of Calculus

As we have seen in Example 12, calculating $\int_{a}^{b} f(x) \mathrm{d} x$ by definition is very complicated even for simple functions like $f(x)=x$. Fortunately, the following theorems makes this task much easier through connecting integration to (the much simpler) differentation. Before presenting it, let's suffer through the calculation of one more integral so that we can appreciate the theorem better.

Example 24. Use definition to calculate $\int_{a}^{b} \cos x \mathrm{~d} x$.
First since $\cos x$ is bounded and continuous on $[a, b]$, it is integrable. For $n \in \mathbb{N}$ let $P_{n}=\left\{x_{0}=a, \ldots\right.$, $\left.x_{n}=b\right\}$ with $x_{j}-x_{j-1}=\frac{b-a}{n}$. Then we calculate

$$
\begin{align*}
\frac{b-a}{n} \sum_{j=1}^{n}\left[\cos x_{j}\right] & =\frac{b-a}{n} \sum_{j=1}^{n} \cos \left[a+\frac{j}{n}(b-a)\right] \\
& =\frac{b-a}{n} \sum_{j=1}^{n} \frac{\sin \frac{b-a}{2 n} \cos \left[a+\frac{j}{n}(b-a)\right]}{\sin \frac{b-a}{2 n}} \\
& =\frac{b-a}{n} \sum_{j=1}^{n} \frac{\sin \left[a+\left(\frac{j}{n}+\frac{1}{2 n}\right)(b-a)\right]-\sin \left[a+\left(\frac{j}{n}-\frac{1}{2 n}\right)(b-a)\right]}{2 \sin \frac{b-a}{2 n}} \\
& =\frac{\frac{b-a}{2 n}}{\sin \frac{b-a}{2 n}}\left[\sin \left(b+\frac{b-a}{2 n}\right)-\sin \left(a+\frac{b-a}{2 n}\right)\right] . \tag{61}
\end{align*}
$$

Taking $n \longrightarrow \infty$ we conclude that (recall that $\frac{\sin x}{x} \longrightarrow 1$ as $x \longrightarrow 0$)

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{b-a}{n} \sum_{j=1}^{n}\left[\cos x_{j}\right]=\sin b-\sin a \tag{62}
\end{equation*}
$$

Now consider an arbitrary partition Q. Set $P=Q \cup P_{n}$. Then on each subinterval inside $\left[x_{j-1}, x_{j}\right]$ we have

$$
\begin{equation*}
\left|\sup (\cos x)-\cos x_{j}\right|,\left|\inf (\cos x)-\cos x_{j}\right| \leqslant \frac{b-a}{n} \tag{63}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
U(\cos x, Q) \geqslant U(\cos x, P) \geqslant \frac{b-a}{n} \sum_{j=1}^{n}\left[\cos x_{j}\right]-\frac{(b-a)^{2}}{n} \tag{64}
\end{equation*}
$$

and

$$
\begin{equation*}
L(\cos x, Q) \leqslant L(\cos x, P) \leqslant \frac{b-a}{n} \sum_{j=1}^{n}\left[\cos x_{j}\right]+\frac{(b-a)^{2}}{n} . \tag{65}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$ we conclude

$$
\begin{equation*}
U(\cos x, Q) \geqslant \sin b-\sin a \geqslant L(\cos x, Q) . \tag{66}
\end{equation*}
$$

As this holds for all partitions Q, we have $U(\cos x) \geqslant \sin b-\sin a \geqslant L(\cos x)$.
Finally because $\cos x$ is integrable, we must have $\int_{a}^{b} \cos x \mathrm{~d} x=U(\cos x)=L(\cos x)=\sin b-\sin a$.
Remark 25. In the above argument we used the fact that $\cos x$ is differentiable. It can be proved that in general, if $f(x)$ is integrable over $[a, b]$, then $U\left(f, P_{n}\right) \longrightarrow \int_{a}^{b} f(x) \mathrm{d} x$ when $n \longrightarrow \infty$. Here $P_{n}=\left\{a, a+\frac{b-a}{n}, \ldots, a+\frac{n-1}{n}(b-a), b\right\}$ as in the above example. More generally, any partition with $\max _{j}\left|x_{j}-x_{j-1}\right| \longrightarrow 0$ would do.

3.1. The theorems.

Definition 26. Let f be a real function on an interval I. A function F on I is called an antiderivative of f on I if $F^{\prime}(x)=f(x)$ for all $x \in I$. F is also called an indefinite integral of f, denoted by $\int f(x) \mathrm{d} x$.

Lemma 27. If F is an antiderivative so is $F+C$. And all antiderivatives are of this form.

Proof. If F is an antiderivative then by definition $F^{\prime}(x)=f(x)$. This means $(F+C)^{\prime}=f(x)$ and therefore $F+C$ is also an antiderivative.

On the other hand, if G is also an antiderivative, then $G^{\prime}(x)=f(x)=F^{\prime}(x) \Longrightarrow(G-F)^{\prime}=0 \Longrightarrow$ $G-F$ is a constant. Call this constant C we reach $G(x)=F(x)+C$.

Theorem 28. (FTC 1st Version) Let f be integrable on $[a, b]$. If F is continuous on $[a, b]$ and $i s$ an antiderivative of f on (a, b), then

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \tag{67}
\end{equation*}
$$

Remark 29. Note that if F is an antiderivative of f on (a, b) then F is differentiable on (a, b) and therefore continuous on (a, b). So what the condition " F is continuous on $[a, b]$ " really is about are continuity at the end points a, b.

Proof. Take any $\varepsilon>0$. As f is integrable there is a partition $P=\left\{x_{0}, \ldots, x_{n}\right\}$ such that $U(f, P)-L(f, P)<\varepsilon$ which leads to $\int_{a}^{b} f(x)-\varepsilon<L(f, P) \leqslant U(f, P)<\int_{a}^{b} f(x)+\varepsilon$

Now since F is continuous on $[a, b]$ and $F^{\prime}=f$ on (a, b), by mean value theorem we have

$$
\begin{equation*}
F\left(x_{i}\right)-F\left(x_{i-1}\right)=f\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right) \tag{68}
\end{equation*}
$$

for $\xi_{i} \in\left(x_{i-1}, x_{i}\right)$. Recalling the definitions of $U(f, P), L(f, P)$ we have
which leads to

$$
\begin{equation*}
L(f, P) \leqslant \sum_{i=1}^{n} F\left(x_{i}\right)-F\left(x_{i-1}\right) \leqslant U(f, P) \tag{69}
\end{equation*}
$$

$$
\begin{equation*}
\int_{a}^{b} f(x)-\varepsilon \leqslant F(b)-F(a) \leqslant \int_{a}^{b} f(x)+\varepsilon \tag{70}
\end{equation*}
$$

This holds for any $\varepsilon>0$, consequently we must have $\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)$.
Remark 30. The assumptions are all necessary. In particular we have to assume f to be integrable since otherwise $\int_{a}^{b} f(x) \mathrm{d} x$ is not defined. It can indeed happen that $f(x)=F^{\prime}(x)$ is not integrable. For example $F(x)=x \sin \frac{1}{x}$ and $f(x)=\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}$ which is not bounded and therefore is not integrable.

Example 31. We compute $\int_{a}^{b} \cos x \mathrm{~d} x$ again.
Since $\cos x$ is bounded and continuous on $[a, b]$ it is integrable. We know that $\sin x$ is one antiderivative of $\cos x$. As $\sin x$ is continuous on $[a, b]$ we can apply FTC 1 st version to get

$$
\begin{equation*}
\int_{a}^{b} \cos x \mathrm{~d} x=\sin b-\sin a \tag{71}
\end{equation*}
$$

Theorem 32. (FTC 2nd Version) Let f be integrable on $[a, b]$. Then

$$
\begin{equation*}
G(x):=\int_{a}^{x} f(t) \mathrm{d} t \tag{72}
\end{equation*}
$$

is continuous on $[a, b]$. Furthermore, if f is continuous at a point $x_{0} \in(a, b)$, then G is differentiable at x_{0} and

$$
\begin{equation*}
G^{\prime}\left(x_{0}\right)=f\left(x_{0}\right) \tag{73}
\end{equation*}
$$

Proof. First show G continuous. Since f is integrable, it is bounded. Let $M>0$ be such that $|f(x)| \leqslant M$ for all $x \in[a, b]$.

Now set $x_{0} \in[a, b]$. For any $\varepsilon>0$, take $\delta=\frac{\varepsilon}{M}$. We have, for all $x_{0} \leqslant x<x_{0}+\delta$,

$$
\begin{equation*}
\left|G(x)-G\left(x_{0}\right)\right|=\left|\int_{x_{0}}^{x} f(t) \mathrm{d} t\right| \leqslant M\left(x-x_{0}\right)<\varepsilon . \tag{74}
\end{equation*}
$$

Similarly we can show that the same holds for $x_{0}-\delta<x \leqslant x_{0}$. Thus for all $\left|x-x_{0}\right|<\delta$ we have $\left|G(x)-G\left(x_{0}\right)\right|<\varepsilon$ that is G is continuous at x_{0}.

Now we prove $G^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$ when f is continuous at x_{0}. For any $\varepsilon>0$, since f is continuous at x_{0} there is $\delta>0$ such that when $\left|x-x_{0}\right|<\delta,\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. Now for such x we have

- either $x>x_{0}$, in this case

$$
\begin{equation*}
\left|\frac{G(x)-G\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right|=\left|\frac{1}{x-x_{0}} \int_{x_{0}}^{x}\left(f(t)-f\left(x_{0}\right)\right) \mathrm{d} t\right|<\varepsilon, \tag{75}
\end{equation*}
$$

- or $x<x_{0}$, in this case

$$
\begin{equation*}
\left|\frac{G(x)-G\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right|=\left|\frac{1}{x-x_{0}}\left[-\int_{x}^{x_{0}}\left(f(t)-f\left(x_{0}\right)\right) \mathrm{d} t\right]\right|<\varepsilon \tag{76}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{G(x)-G\left(x_{0}\right)}{x-x_{0}}=f\left(x_{0}\right) \tag{77}
\end{equation*}
$$

and the proof ends.
Definition 33. When $a \geqslant b$, define

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=-\int_{b}^{a} f(x) \mathrm{d} x . \tag{78}
\end{equation*}
$$

Exercise 4. Prove that the above definition necessarily leads to
for any bounded function $f(x)$.

$$
\begin{equation*}
\int_{a}^{a} f(x) \mathrm{d} x=0 \tag{79}
\end{equation*}
$$

Exercise 5. Prove that this definition is consistent with all the properties of integration we derived so far. That is these properties continue to hold for any a, b, no matter $a>b, a<b$, or $a=b$.

Remark 34. Ideally one would like to have a theorem stating

$$
\begin{equation*}
f(x) \text { integrable } \Longrightarrow G(x):=\int_{a}^{x} f(t) \mathrm{d} t \text { differentiable and } G^{\prime}(x)=f(x) \tag{80}
\end{equation*}
$$

However this is not true. An example is $f(x)=\left\{\begin{array}{ll}0 & x<0 \\ 1 & x \geqslant 0\end{array}\right.$, for which $G(x)=\left\{\begin{array}{ll}0 & x<0 \\ x & x \geqslant 0\end{array}\right.$ which is not differentiable at $x=0$.

It may also happen that $\int_{a}^{x} f(t) \mathrm{d} t$ is differentiable at some point x_{0} but the derivative is not $f\left(x_{0}\right)$. For example let $f(x)=\left\{\begin{array}{ll}0 & x \neq 0 \\ 1 & x=0\end{array}\right.$. Set $a=-1$. Then

$$
\begin{equation*}
G(x)=\int_{a}^{x} f(t) \mathrm{d} t=0 \tag{81}
\end{equation*}
$$

for all x but $G^{\prime}(0)=0 \neq f(0)=1 .{ }^{2}$

3.2. Applications of FTC.

Theorem 35. (Integration by parts) If u, v are continuous on $[a, b]$ an differentiable on (a, b), and if u^{\prime}, v^{\prime} are integrable on $[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b} u(x) v^{\prime}(x) \mathrm{d} x=u(b) v(b)-u(a) v(a)-\int_{a}^{b} u^{\prime}(x) v(x) \mathrm{d} x . \tag{82}
\end{equation*}
$$

Proof. Let $F=u v$. Then $F^{\prime}=u v^{\prime}+u^{\prime} v$. Since u, v are continuouson $[a, b]$, they are also integrable on $[a, b]$. Together with integrability of u^{\prime}, v^{\prime} we conclude F^{\prime} is integrable (Theorem 19) on $[a, b]$. Application of the first version of FTC gives the desired result.

Exercise 6. Prove the integration by parts formula using definition of Riemann integral only.

Example 36. Calculate

$$
\begin{equation*}
\int_{0}^{1} x e^{x} \mathrm{~d} x . \tag{83}
\end{equation*}
$$

Solution. We set $v=e^{x}, u=x$. Then we have

$$
\begin{align*}
\int_{0}^{1} x e^{x} \mathrm{~d} x & =\int_{0}^{1} u v^{\prime} \mathrm{d} x \\
& =u(1) v(1)-u(0) v(0)-\int_{0}^{1} v u^{\prime} \mathrm{d} x \\
& =e-\int_{0}^{1} e^{x} \mathrm{~d} x \\
& =e-\left.e^{x}\right|_{x=1} ^{x=1} \\
& =1 \tag{84}
\end{align*}
$$

Example 37. Taylor expansion with integral remainder.

[^0]We can obtain Taylor expansion using integration by parts.

$$
\begin{align*}
f(x)-f(a) & =\int_{a}^{x} f^{\prime}(t) \mathrm{d} t \\
& =\left[t f^{\prime}(t)\right]_{a}^{x}-\int_{a}^{x} t f^{\prime \prime}(t) \mathrm{d} t \\
& =f^{\prime}(a)(x-a)+x\left[f^{\prime}(x)-f^{\prime}(a)\right]-\int_{a}^{x} t f^{\prime \prime}(t) \mathrm{d} t \\
& =f^{\prime}(a)(x-a)+\int_{a}^{x}(x-t) f^{\prime \prime}(t) \mathrm{d} t \\
& =f^{\prime}(a)(x-a)-\int_{a}^{x} f^{\prime \prime}(t)\left[\frac{(x-t)^{2}}{2}\right]^{\prime} \mathrm{d} t \\
& =f^{\prime}(a)(x-a)-\left\{f^{\prime \prime}(t) \frac{(x-t)^{2}}{2}\right\}_{t=a}^{t=x}+\int_{a}^{x} \frac{(x-t)^{2}}{2} f^{\prime \prime \prime}(t) \mathrm{d} t \\
& =f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\int_{a}^{x} \frac{(x-t)^{2}}{2} f^{\prime \prime \prime}(t) \mathrm{d} t \\
& \left.=\cdots=f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{2}+\int_{a}^{x} \frac{(x-t)^{3}}{6} f^{(4)}(t) \mathrm{d} t\right) \\
& \vdots \\
& =\sum_{m=0}^{n} \frac{f^{(m)}(a)}{m!}(x-a)^{m}+\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) \mathrm{d} t . \tag{85}
\end{align*}
$$

The remainder $\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) \mathrm{d} t$ is called "integral remainder". One can show that if $f^{(n+1)}(t)$ is continuous, then there is $\xi \in(a, x)$ such that

$$
\begin{equation*}
\int_{a}^{x} \frac{(x-t)^{n}}{n!} f^{(n+1)}(t) \mathrm{d} t=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} \tag{86}
\end{equation*}
$$

which is exactly the Lagrange remainder. The disadvantage of the Lagrange remainder is that

1. We have no knowledge of where ξ exactly is;
2. The dependence of ξ on x may be rough. For example, we can differentiate the integral remainder but not the Lagrange remainder (due to $\xi(x)$ may not be differentiable).
Therefore in analysis one should try to use integral remainder whenever possible.
Theorem 38. (Change of variables) Let u be continuous on $[a, b]$, differentiable on (a, b) and assume u^{\prime} is integrable on $[a, b]$. If f is continuous on $I:=u([a, b])$, then

$$
\begin{equation*}
\int_{a}^{b} f(u(t)) u^{\prime}(t) \mathrm{d} t=\int_{u(a)}^{u(b)} f(x) \mathrm{d} x . \tag{87}
\end{equation*}
$$

Remark 39. In the case $u(b)<u(a)$, the integral is understood as

$$
\begin{equation*}
\int_{u(a)}^{u(b)} f(x) \mathrm{d} x=-\int_{u(b)}^{u(a)} f(x) \mathrm{d} x . \tag{88}
\end{equation*}
$$

Proof. We notice that, if we define $F(x)=\int_{u(a)}^{x} f(t) \mathrm{d} t$, then $F^{\prime}(x)=f(x)$ and it follows from FTC Version 1 that

$$
\begin{equation*}
\int_{u(a)}^{u(b)} f(t) \mathrm{d} t=F(u(b))-F(u(a)) ; \tag{89}
\end{equation*}
$$

On the other hand, if we set

$$
\begin{equation*}
G(t):=F(u(t)) \tag{90}
\end{equation*}
$$

then by Chain rule

$$
\begin{equation*}
G^{\prime}(t)=\frac{\mathrm{d}}{\mathrm{~d} t} F(u(t))=F^{\prime}(u(t)) u^{\prime}(t)=f(u(t)) u^{\prime}(t) . \tag{91}
\end{equation*}
$$

Note that the last equality is a result of FTC Version 2 and only holds because f is continuous at every $u(t)$.

Next we check that $f(u(t)) u^{\prime}(t)$ is integrable: $f(x), u(t)$ continuous $\Longrightarrow f(u(t))$ continuous $\Longrightarrow f(u(t))$ integrable $\Longrightarrow f(u(t)) u^{\prime}(t)$ integrable thanks to Theorem 19 since $u^{\prime}(t)$ is integrable.

Finally applying FTC Version 1 to G we have

$$
\begin{equation*}
\int_{a}^{b} f(u(t)) u^{\prime}(t) \mathrm{d} t=G(b)-G(a)=F(u(b))-F(u(a)) . \tag{92}
\end{equation*}
$$

and the proof ends. Note that in this last step we need G to be continuous, which follows from the continuity of f and of u.

Exercise 7. Prove the change of variables formula using definition of Riemann integration only.
Remark 40. Note that we don't need u to be one-to-one! ${ }^{3}$
Example 41. Calculate

$$
\begin{equation*}
\int_{0}^{\pi / 4} \frac{\mathrm{~d} x}{\cos x} \tag{93}
\end{equation*}
$$

Solution. Set $y=\sin x$. We see that $[0, \pi / 4]$ is mapped to $[\sin 0, \sin (\pi / 4)]=\left[0, \frac{\sqrt{2}}{2}\right]$.
Now calculate

$$
\begin{align*}
\int_{0}^{\pi / 4} \frac{\mathrm{~d} x}{\cos x} & =\int_{0}^{\pi / 4} \frac{\cos x \mathrm{~d} x}{\cos ^{2} x} \\
& =\int_{0}^{\pi / 4} \frac{\cos x \mathrm{~d} x}{1-\sin ^{2} x} \\
& =\int_{0}^{\sqrt{2} / 2} \frac{\mathrm{~d} y}{1-y^{2}} \\
& =-\frac{1}{2} \int_{0}^{\sqrt{2} / 2}\left[\frac{\mathrm{~d} y}{y-1}-\frac{\mathrm{d} y}{y+1}\right] \\
& =-\frac{1}{2}[\ln |y-1|-\ln |y+1|]_{y=0}^{y=\sqrt{2} / 2} \\
& =\frac{1}{2} \ln \left(\frac{y+1}{1-y}\right)_{y=0}^{y=\sqrt{2} / 2} \\
& =\frac{1}{2} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right) \tag{94}
\end{align*}
$$

[^1]
4. Improper Riemann Integration

Recall that Definition 10 cannot deal with unbounded functions or unbounded intervals. However for some functions there is a reasonable way to define integrals.

Definition 42. Let $a<b$ where $a, b \in \mathbb{R} \cup\{\infty,-\infty\}$. Let $f:(a, b) \mapsto \mathbb{R}$. Then f is said to be improperly integrable on (a, b) if and only if
a) f is locally integrable: For any $c, d \in \mathbb{R}, a<c<d<b, f$ is integrable on $[c, d]$, and
b) $\lim _{c \rightarrow a+}\left(\lim _{d \rightarrow b-} \int_{c}^{d} f(x) \mathrm{d} x\right)$ exists and is finite. Call this limit the improper Riemann integral of f over (a, b), denote it by

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x . \tag{95}
\end{equation*}
$$

Remark 43. The best way to understand this definition is through FTC. Fix $c \in(a, b)$. For any $t \in(a, b)$, define

$$
\begin{equation*}
F(t)=\int_{c}^{t} f(x) \mathrm{d} x \tag{96}
\end{equation*}
$$

Then we see that $F(t)$ is a continuous function on (a, b). Then if the left limit (right limit) $\lim _{t \longrightarrow b-F}(t)\left(\lim _{t \rightarrow a+} F(t)\right)$ exists, it is reasonable to extend the domain of $F(t)$ to include the end point(s) by setting

$$
\begin{equation*}
F(b):=\lim _{t \longrightarrow b-} F(t) \quad\left(F(a):=\lim _{t \longrightarrow a+} F(t)\right) . \tag{97}
\end{equation*}
$$

We state without proof the following theorems which guarantees the consistency of the above definition within itself and also with the definition of integrability.

Theorem 44.

a) If f is integrable on $[a, b]$, then it is improperly integrable and its improper integral equals its integral.
b) If f is integrable on $[a, d]$ for every $d \in(a, b)$, then its improper integral can be defined as

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{d \longrightarrow b-} \int_{a}^{d} f(x) \mathrm{d} x \tag{98}
\end{equation*}
$$

Similarly, if f is integrable on $[c, b]$ for every $c \in(a, b)$, then its improper integral can be defined as

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{c \longrightarrow a+} \int_{c}^{b} f(x) \mathrm{d} x \tag{99}
\end{equation*}
$$

c) If f is improperly integrable on (a, b), then the order of limit taking does not matter:

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{c \rightarrow a+}\left(\lim _{d \rightarrow b-} \int_{c}^{d} f(x) \mathrm{d} x\right)=\lim _{d \longrightarrow b-}\left(\lim _{c \longrightarrow a+} \int_{c}^{d} f(x) \mathrm{d} x\right) . \tag{100}
\end{equation*}
$$

Proof. Not required.
Example 45. Show that $f(x)=x^{-1 / 2}$ is improperly integrable on $(0,1]$.

Proof. For any $0<c<d<1 f$ is continuous on $[c, d]$ so f is locally integrable. We calculate

Then

$$
\begin{equation*}
\int_{c}^{d} f(x) \mathrm{d} x=\left.2 x^{1 / 2}\right|_{x=c} ^{x=d}=2\left[d^{1 / 2}-c^{1 / 2}\right] \tag{101}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{c \rightarrow 0+}\left(\lim _{d \rightarrow 1-} \int_{c}^{d} f(x) \mathrm{d} x\right)=\lim _{c \rightarrow 0+} 2\left[1-c^{1 / 2}\right]=2 . \tag{102}
\end{equation*}
$$

So f is improperly integrable on $(0,1]$ and its improper integral over $(0,1)$ is 2 .
Example 46. Show that $f(x)=x^{-1}$ is not improperly integrable on $(0,1)$.
Proof. For any $0<c<d<1 f$ is continuous on $[c, d]$ so f is locally integrable. We have

Then

$$
\begin{equation*}
\int_{c}^{d} x^{-1} \mathrm{~d} x=\ln d-\ln c . \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{c \rightarrow 0+}\left(\lim _{d \rightarrow 1-} \int_{c}^{d} f(x) \mathrm{d} x\right)=\lim _{c \longrightarrow 0+}-\ln c=\infty \tag{104}
\end{equation*}
$$

The limit is not finite so f is not improperly integrable on $(0,1)$.
Example 47. Show that $f(x)=\left\{\begin{array}{ll}1 & x \text { rational } \\ 0 & x \text { irrational }\end{array}\right.$ is not improperly integrable on $(0,1)$.
Proof. For $0<c<d<1$, we know that $f(x)$ is not integrable on (c, d). So f is not locally integrable and cannot be improperly integrable.

Theorem 48. (Arithmetics) Let f, g be improperly integrable on (a, b). Then
a) For any $c \in \mathbb{R}$, $c f$ is improperly integrable on (a, b) with $\int_{a}^{b} c f(x) \mathrm{d} x=c \int_{a}^{b} f(x) \mathrm{d} x$.
b) $f+g$ is improperly integrable on (a, b) with $\int_{a}^{b}(f(x)+g(x)) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x$.
c) If g is bounded and locally integrable, and $|f|$ is improperly integrable, then $f g$ is improperly integrable.

Instead of proving the theorem, we discuss briefly part c).

- Note that we do not need g to be improperly integrable on (a, b). This relaxation should become natural in light of the following example:

Take $a=0, b=\infty$. Take $g=1$. Then g is not improperly integrable on $(0, \infty)$ but clearly if f is improperly integrable then so is $f g$.

- The (stronger) requirement that $|f|$ (instead of f) being improperly integrable is necessary, as can be seen from the following example:

Consider $a=\pi, b=\infty$ and $f(x)=\frac{\sin x}{x}$. Then for any $1<c<d<\infty$, we have

$$
\begin{align*}
\int_{c}^{d} \frac{\sin x}{x} \mathrm{~d} x & =\int_{c}^{d} \frac{1}{x}(-\cos x)^{\prime} \mathrm{d} x \\
& =\left[\frac{\cos d}{d}-\frac{\cos c}{c}\right]+\int_{c}^{d} \frac{\cos x}{x^{2}} \mathrm{~d} x . \tag{105}
\end{align*}
$$

Now the limit of the first term obviously exists. For the second term, since $\frac{\cos x}{x^{2}}$ is continuous on $[\pi, d]$ for any d, we have

$$
\begin{equation*}
\lim _{d \longrightarrow \infty}\left[\lim _{c \longrightarrow \pi} \int_{c}^{d} \frac{\cos x}{x^{2}} \mathrm{~d} x\right]=\lim _{d \longrightarrow \infty} \int_{\pi}^{d} \frac{\cos x}{x^{2}} \mathrm{~d} x \tag{106}
\end{equation*}
$$

It turns out that this limit exists: Set $F(d):=\int_{\pi}^{d} \frac{\cos x}{x^{2}} \mathrm{~d} x$, we only need to show that $\lim _{d \longrightarrow \infty} F(d)$ exists and is finite. It suffices to show that for any sequence $d_{n} \longrightarrow \infty, \lim _{n \longrightarrow \infty} F\left(d_{n}\right)$ exists and is finite. For any $\varepsilon>0$, take $N \in \mathbb{N}$ such that $d_{n}>\varepsilon^{-1}$ for all $n>N$. Then for any $n, m>N$, we have (assume $m>n$)

$$
\begin{align*}
\left|F\left(d_{m}\right)-F\left(d_{n}\right)\right| & =\left|\int_{d_{n}}^{d_{m}} \frac{\cos x}{x^{2}} \mathrm{~d} x\right| \\
& \leqslant \int_{d_{n}}^{d_{m}} \frac{1}{x^{2}} \mathrm{~d} x \\
& =\left|\frac{1}{d_{n}}-\frac{1}{d_{m}}\right| \\
& <\max \left\{\frac{1}{d_{n}}, \frac{1}{d_{m}}\right\}<\varepsilon \tag{107}
\end{align*}
$$

Thus $F\left(d_{n}\right)$ is Cauchy and therefore converges to a finite limit.
Therefore $f(x)$ is improperly integrable over (π, ∞). Now take $g(x)=$ $\left\{\begin{array}{ll}1 & \sin x>0 \\ -1 & \sin x \leqslant 0\end{array}\right.$. We have $f(x) g(x)=\frac{|\sin x|}{x}$. We have

$$
\begin{align*}
\int_{\pi}^{n \pi} f(x) g(x) \mathrm{d} x & =\sum_{k=1}^{n-1} \int_{k \pi}^{(k+1) \pi} \frac{|\sin x|}{x} \mathrm{~d} x \\
& \geqslant \sum_{k=1}^{n-1} \frac{1}{(k+1) \pi} \int_{k \pi}^{(k+1) \pi}|\sin x| \mathrm{d} x \\
& =\frac{2}{\pi} \sum_{k=1}^{n-1} \frac{1}{(k+1)} \tag{108}
\end{align*}
$$

This sum tends to ∞ as $n \longrightarrow \infty$. So we know
which means even if

$$
\begin{equation*}
\int_{\pi}^{n \pi} f(x) g(x) \mathrm{d} x=\infty \tag{109}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{d \longrightarrow \infty} \int_{\pi}^{d} f(x) g(x) \mathrm{d} x \tag{110}
\end{equation*}
$$

exists, it cannot be finite. Therefore $f g$ is not improperly integrable on (π, ∞).
Remark 49. Recall that the function $\frac{\sin x}{x}$ is integrable on $(0,1]$ ($[0,1]$ if we further define its value at 0 to be 1). Therefore $\frac{\sin x}{x}$ is improperly integrable on $(0, \infty)$.

[^0]: 2. Clearly this counterexample is very artificial. There is a reason behind this. It turns out that, if $f(x)$ is integrable over $[a, b]$, then the derivative of $\int_{a}^{x} f(t) \mathrm{d} t$ must coincide with $f(x)$ for "almost all" $x \in(a, b)$. This is the so-called Lebesgue's Differentiation Theorem.
[^1]: 3. The reason for this is quite deep. In fact, in higher dimensions, we do need the change of variable function to be one-to-one. To fully understand this issue, check out "degree theory".
