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• The Final is cumulative. Please also review
material before midterm.

• This review may not cover all possible
topics for the midterm exam. Please
also review lecture notes and homework
problems.

• To get the most out of these problems,
clearly write down (instead of mumble or
think) your complete answers (instead of a
few lines of the main idea), in full sentences

(instead of formulas connected by arrows).
And then compare with the solutions when
they are posted.

• If don’t know where to start, write down all
definitions involved.

• If have no idea what to do, try proof by
contradiction. Start by writing down the
assumption in logical statements.

• “Justify” means: if true, provide a proof; if
false, give a counterexample.
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L. Differentiation: Definitions

1. Concepts and theorems

• Definitions.

− f is differentiable at x0∈R:

lim
x� x0

f(x)− f(x0)
x−x0

(1)

exists and is finite. (f is not
differentiable at x0 if the limit is ∞).

− f is a differentiable function:

f is differentiable at
every x0 in its domain.

Example 1. sin x, cos x, ex, ln x, 1/x

are differentiable functions.

• Prove differentiability by definition.

− Prove f is differentiable at x0:

1. Write
f(x)− f(x0)

x − x0
or

f(x0 + h)− f(x0)

h
,

simplify if possible;

2. Prove that the limit

limx� x0

f(x)− f(x0)

x− x0
or equivalently

limh→0
f(x0 + h)− f(x0)

h
exists and is

finite.

− Prove f is a differentiable function.

Take any x0 in the domain of f .
Then prove f is differentiable at x0.

Exercise 1. Prove f(x)=x2 is a differentiable

function.

• Prove non-differentiability by definition.

− Prove f is not differentiable at x0:

1. Write Write
f(x)− f(x0)

x − x0
or

f(x0 + h)− f(x0)

h
, simplify if possible;

2. Prove that the limit

limx� x0

f(x)− f(x0)

x− x0
or equivalently

limh→0
f(x0 + h)− f(x0)

h
does not

exist.

− Prove f is not a differentiable function:

1. Understand the behavior of f and
make an educated guess of x0.

2. Prove f is not differentiable at x0.

Exercise 2. Let f(x) =

{

x cos
( 1

x

)

x� 0

0 x= 0
.

Prove that f(x) is not a differentiable function.

2. Solutions to exercises

Exercise 1. f(x) = x2 is defined for all

x ∈ R so its domain is R. Take any x0 ∈
R, write

f(x)− f(x0)
x− x0

=
x2−x0

2

x−x0
=x +x0. (2)

Taking limit x� x0 we see

lim
x→x0

f(x)− f(x0)
x−x0

=2 x0 (3)

is finite so f is differentiable at x0.

Therfore f is differentiable.

Exercise 2. By looking at the function

(or by applying Chain rule) we realize

that we should try x0 = 0.
Write

f(x)− f(0)
x− 0

= cos

(

1
x

)

. (4)

Taking xn =
1

2 n π
, yn =

1

(2 n+ 1) π
we have

limn→∞xn= limn→∞yn=0, ∀n∈N,xn� 0, yn�
0, limn→∞cos

(

1

xn

)

= 1, limn→∞cos
(

1

yn

)

= −

1 so limx→x0

f(x)− f(x0)

x− x0
does not exist and

therefore f is not differentiable at x0.

Consequently f is not a differentiable

function.

3. Problems

Problem 1. Let g(x) be differentiable at x0 =0 and

g(0) = 0. Prove that f(x) =

{

g(x) sin
1

x
x� 0

0 x = 0
is

differentiable at x0 = 0 if and only if g ′(0) = 0.

Problem 2. Let f(x) = |x + 1| + x. Let x0 = −1.

Prove that limh→0
f(x0 + h)− f(x0 − h)

2 h
= 1 but f(x) is

not differentiable at x0.
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M. Differentiation: Arithmetics

Here emphasize Leibniz rule and how to
differentiate ratios.

1. Concepts and theorems

• Differentiability of sum, difference, product,
ratio.

Let f , g be differentiable at x0. Then

− f ± g is differentiable at x0, with

(f ± g)′(x0) = f ′(x0)± g ′(x0); (5)

− For c ∈ R, c f is differentiable at x0,
with

(c f)′(x0) = c f ′(x0). (6)

− (Leibniz rule) f g is differentiable at
x0, with derivative

f(x0) g ′(x0) + f ′(x0) g(x0). (7)

− If g(x0) � 0 then f/g is differentiable
at x0 with derivative

f ′(x0) g(x0)− f(x0) g ′(x0)

g(x0)2
. (8)

Exercise 3. Apply Leibniz rule to f = g (f/g)

to derive (8).

Exercise 4. Let

f(x)=
ex sin x

cos x
. (9)

Calculate f ′(0).

2. Solutions to exercises

Exercise 3. Let h(x) 8 f(x)

g(x)
. Then we have

f(x) = h(x) g(x) and Leibniz rule gives

f ′(x0) = h′(x0) g(x0) +h(x0) g ′(x0)

= h′(x0) g(x0) +
f(x0)
g(x0)

g ′(x0) (10)

and (8) follows.

Exercise 4. We apply the ratio

differentiation rule followed by Leibniz

rule:

f ′(x) =
(ex sinx)′ cosx− (ex sinx) (cosx)′

(cosx)2

=
(ex sinx+ ex cosx) cosx

(cosx)2
+

ex (sinx)2

(cosx)2

=
ex (sinx+ cosx)

cosx
+

ex (sinx)2

(cosx)2
.

Setting x= 0 we obtain f ′(0) =1.

3. Problems
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N. Differentiation: Chain Rule

1. Concepts and theorems

• Chain rule: If

1. f is differentiable at x0;

2. g is differentiable at f(x0),

then (g ◦ f)(x) 8 g(f(x)) is differentiable
at x0 and

(g ◦ f)′(x0)= g ′(f(x0)) f ′(x0). (11)

Remark. Note that g ′(f(x0)) means

first calculating the function g ′ and then
evaluate it at the point f(x0).

Exercise 5. Prove that f(x) = exp [−1/x3]

is differentiable at every x � 0 and find f ′(x)

there.

Exercise 6. Let f(x) =
(

1 + x2

1− x2

)

3
. Calculate

f ′(x) for x� ±1.

• Inverse function. If

1. f is differentiable at x0;

2. g is the inverse function of f ;

3. f ′(x0)� 0,

then g(y) is differentiable at y0= f(x0) with

g ′(y0) =
1

f ′(x0)
=

1

f ′(g(y0))
. (12)

Exercise 7. Let f(x) = 5 x + sin x. Let g(x)

be its inverse function (for now we assume its

existence). Calculate g ′(0).

Exercise 8. Let f(x) = 2 x − sin x defined on

R. Let g(x) be its inverse function. Calculate

g ′(0), g ′(π − 1).

2. Solutions to exercises

Exercise 5. We know that ex is

differentiable at every x ∈R and − 1

x3 is

differentiable at every x � 0. Therefore

the composite function exp [−1/x3] is

differentiable at every x� 0.

Next calculate

(exp [−1/x3])′ = exp′ (−1/x3) (−1/x3)′

= exp (−1/x3) [−(1/x3)′]

= exp (−1/x3) [3/x4]

=
3 exp (−1/x3)

x4 . (13)

Exercise 6. We have

f ′(x) = 3

(

1 +x2

1−x2

)

2
(

1 + x2

1− x2

)′

= 3

(

1 +x2

1−x2

)

2
(

4 x

(1−x2)2

)

=
12x (1+ x2)2

(1−x2)4
. (14)

Exercise 7. We have

g ′(0)=
1

f ′(x0)
(15)

where x0 = g(0) or equivalently f(x0) = 0.
Since f(0) =0 we see x0 = 0.

f ′(x)=5+cosx� f ′(0)=6. So g ′(0)=
1

6
.

Exercise 8. We have f ′(x) = 2 − cos x >

1 > 0 so g exists and is differentiable.

We have

g ′(y)= 1/f ′(x)=
1

2− cosx
(16)

so all we need to do is to figure out

x1, x2 such that f(x1) = 0 and f(x2) = π −
1. It’s easily seen that x1 = 0, x2 = π/2.
Therefore

g ′(0) = 1, g ′(π − 1) =
1
2
. (17)

3. Problems
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O. Differentiable Functions

1. Concepts and theorems

• f is differentiableat x0� f is continuous
at x0.

• Local maximizer/minimizer.

− x0 is local maximizer: ∃δ >0, ∀x∈ (x0−
δ, x0 + δ), f(x) 6 f(x0);

− x0 is local minimizer: ∃δ >0, ∀x∈ (x0−
δ, x0 + δ), f(x) > f(x0).

− If

1. x0 is a local minimizer or maximizer
for f ;

2. f is differentiable at x0;

then f ′(x0) = 0.

Exercise 9. Let f(x) = x2 sin x Prove or

disprove the following claim:

The local maximizers are x=
(2n + 1/2)π for n∈Z.

• MVT: If

1. f is continuous on [a, b];

2. f is differentiable on (a, b);

Then ∃ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
. (18)

• Cauchy’s MVT: If

1. f , g are continuous on [a, b],

2. f , g are differentiable on (a, b),

3. g(a)� g(b),

then ∃ξ ∈ (a, b) such that

f(a)− f(b)
g(a)− g(b)

=
f ′(ξ)
g ′(ξ)

. (19)

• Monotonicity: f differentiable. Then

− f increasing� f ′> 0;

− f decreasing� f ′6 0;

− f ′> 0� f strictly increasing;

− f ′< 0� f strictly decreasing;

− f is constant� f ′=0.

Note that f strictly increasing/decreasing
on (a, b) does not imply f ′>0/<0 on (a, b)!

Exercise 10. Let f(x) = 3 x + x3 + 2 sin x.

Prove that f is strictly increasing on R.

2. Solutions to exercises

Exercise 9. The claim is false. Since

f(x) is differentiable, its local

maximizers must satisfy f ′(x) = 0:

0 = (x2 sinx)′= 2 x sinx+ x2 cosx. (20)

We check

f ′(2 n π + π/2) = (4 n+1) π� 0 (21)

so x = (2 n + 1/2) π cannot be local

maximizers.

Exercise 10. We calculate

f ′(x) = 3 +3 x2 +2 cosx> 1 > 0 (22)

so f is strictly increasing on R.

3. Problems

Problem 3. Let f be continuous and differentiable

on R. If limx�+∞f(x)= limx�−∞f(x), then there

is ξ ∈R such that f ′(ξ) = 0.

Problem 4. Prove

2
π

6
sin x

x
6 1 (23)

for all 0 6 x 6 π/2. (Hint: Show f(x) =
sin x

x
is

decreasing).
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P. L’Hospital

1. Concepts and theorems

• Let x0∈ (a, b). Try to If

1. f(x), g(x) are differentiable on (a, b)−
{x0};

2. limx� x0 f(x)= limx� x0 g(x) = 0;

3. limx� x0

f ′(x)

g ′(x)
exists;

4. g ′(x)� 0 for x∈ (a, b)−{x0};

Then

lim
x� x0

f(x)

g(x)
= lim

x� x0

f ′(x)

g ′(x)
. (24)

Exercise 11. Calculate

lim
x� 0

sin x−x

x3
(25)

using L’Hospital’s rule.

Exercise 12. Calculate

lim
x� 0

1− cos2 x

1+ x2
√

− 1
(26)

using L’Hospital’s rule.

2. Solutions to exercises

Exercise 11. Now that sin x − x and

x3 satisfies 1-4. Therefore the limit

equals limx→0
cosx− 1

3 x2 if the latter

exists. Since cos x − 1 and 3 x2 still

satisfies 1-4, the original limit would

equal limx→0
−sinx

6 x
if this limit exists.

As −sin x and 6 x still satisfies 1-4, we

can apply L’Hospital again to obtain

lim
x→0

−cosx

6
=−1

6
. (27)

Therefore

lim
x� 0

sinx− x

x3
=−1

6
. (28)

Exercise 12. We first check that

lim
x� 0

(1 − cos2x) = lim
x� 0

(

1 + x2
√

− 1
)

=

0 (29)

so we should apply L’Hospital’s rule.

lim
x� 0

1− cos2 x

1 + x2
√

− 1
= lim

x� 0

2 cosx sinx

x/ 1 +x2
√

= lim
x� 0

2 cosx

1 +x2
√ ·

sinx

x
. (30)

Notice that limx� 0
2 cosx

1 + x2
√ =

2

1
= 2. We

only need to find limx� 0
sinx

x
. Applying

L’Hospital’s rule again:

lim
x� 0

sinx

x
= lim

x� 0

cosx

1
= 1. (31)

So finally we conclude

lim
x� 0

1− cos2 x

1 +x2
√

− 1
= 2. (32)

3. Problems
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Q. Taylor Expansion

1. Concepts and theorems

• Higher order derivatives: Denote f (0)(x) =
f(x).

∀n∈N, f(x) is n-th differentiable if and

only if f (n−1)(x) exists and is differentiable
at x0. Denote

f (n)(x0) =
(

f (n−1)
)′(x0). (33)

Exercise 13. Let n ∈ N. Let f(x) = e2x.

Calculate f (n)(0) for all n ∈ N. Justify your

answer.

• Let f(x) be n-th differentiable.

− Define its Taylor polynomial of degree
n at x0 as:

Pn(x) = f(x0) + f ′(x0)(x − x0) + � +

f (n)(x0)

n!
(x− x0)

n. (34)

− The difference:

Rn(x) = f(x)−Pn(x) (35)

is called the “remainder” at x0.

− Rn(x) can be represented through
several different formulas. The most
popular one is the “Lagrange form”
formula:

If f is (n+1)-th differentiable, then

Rn(x) =
f (n+1)(ξ)
(n+ 1)!

(x− x0)
n+1 (36)

where ξ satisfies 0 < |ξ −x0|< |x−x0|.

Exercise 14. Calculate the Taylor expansion

with Lagrange form of remainder to degree 2
at x0 =0 for f(x) = tan x.

Exercise 15. Calculate Taylor expansion to

degree 2 with Lagrange form of remainder at

x0 = 1 for

f(x) =
1

1 + x2
. (37)

2. Solutions to exercises

Exercise 13. We prove by induction that

f (n)(x)= 2n e2x. Denote the claim by P (n).
The base case P (1): f ′(x) = 2 e2x.

Assume f (n)(x)= 2n e2x. By definition

f (n+1)(x) = (2n e2x)′= 2n+1 e2x. (38)

Thus P (n)� P (n+ 1).

Therefore f (n)(x) = 2n e2x and

consequently f (n)(0) = 2n.

Exercise 14. We have

f(0)= tan 0 =0; (39)

f ′(x) =

(

sinx

cosx

)′

=
1

(cosx)2
. (40)

so

f ′(0) =1; (41)

f ′′(x) =

(

1

(cosx)2

)′

=
2 sinx

(cosx)3
(42)

so f ′′(0) =0;

f ′′′(x)=
2

(cosx)2
+3

2 (sinx)2

(cosx)4
. (43)

Therefore the expansion is

sinx

cosx
= x+

[

2 (cos ξ)2 + 6 (sin ξ)2

(cos ξ)4

]

x3

6
. (44)

Exercise 15. We calculate:

f(1) =
1

2
; (45)

f ′(x) =− 2 x

(1 +x2)2
⇒ f ′(1) =−1

2
. (46)

f ′′(x)=
6 x2− 2
(1 +x2)3

� f ′′(1) =
1
2
. (47)

f ′′′(x) =
24x (1− x2)

(1 +x2)4
. (48)

Therefore the expansion is

1

2
− x− 1

2
+

(x− 1)2

4
+

4 ξ (1− ξ2)

(1+ ξ2)4
(x− 1)3. (49)

3. Problems
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R. Definition of Riemann Integration

1. Concepts and Theorems.

• (Partition) Let a, b ∈ R with a < b. A
partition of the interval [a, b] is the set of
points P = {x0, x1,
 , xn} such that

a =x0 <x1 <� <xn = b. (50)

• (Upper/Lower Riemann sums)

U(f , P )8∑

j=1

n

Mj(f) (xj −xj−1) (51)

L(f , P )8∑

j=1

n

mj(f) (xj − xj−1) (52)

where

Mj(f) 8 sup
x∈[xj−1,xj]

f(x) (53)

mj(f) 8 inf
x∈[xj−1,xj]

f(x). (54)

• (Upper/lower Riemann integrals)

U(f): =inf
P

{U(f , P )} (55)

L(f): =sup
P

{L(f , P )}. (56)

• (Riemann integrability)

Integrable if and only if U(f) = L(f).
When integrable,

∫

a

b

f(x) dx= U(f) =L(f). (57)

• Proving integrability by definition:

Choose appropriate partitions Pn such
that

lim
n→∞

U(f , Pn) = lim
n→∞

L(f , Pn). (58)

Exercise 16. Prove by definition that

f(x) =

{

c x = 0
0 x� 0

(59)

is Riemann integrable on [0, 1], no matter what c is.

2. Solutions to Exercises.

Exercise 16. Let Pn={0=x0<x1<� <xn=

1} be such that xi =
i

n
. Then we have

inf
x∈[xi,xi+1]

f(x) >−|c| (60)

for i =0 and =0 for all other i’s.

Similarly

sup
x∈[xi,xi+1]

f(x) 6 |c| (61)

for i =0 and =0 for all other i’s.

Therefore

−|c|
n

6L(f , Pn) 6 U(f , Pn) 6
|c|
n

. (62)

By definition

L(f , Pn) 6L(f)6 U(f) 6U(f , Pn). (63)

Thus

−|c|
n

6L(f) 6 U(f) 6
|c|
n

. (64)

Taking limit n → ∞, by comparison

theorem we have

0 6L(f) 6 U(f) 6 0 (65)

which gives L(f) = U(f) = 0 and

integrability follows.

3. Problems.

Problem 5. Let f(x) be integrable on [a, b]. Let

c∈R. Prove by definition that c f(x) is integrable

and
∫

a

b
(c f)(x) dx = c

∫

a

b
f(x) dx. (Note that you

need to discuss the sign of c)

Problem 6. Let f(x) be integrable on [a, b]. Prove
by definition of limit that

lim
x→b−

∫

a

x

f(t) dt =

∫

a

b

f(x) dx. (66)

8



S. Criteria and properties

1. Concepts and Theorems

• Integrability: f is integrable on [a, b] if and
only if

− For every ε > 0, there is a partition P

such that U(f , P )−L(f , P ) <ε; or

− There is a sequence of partitions Pn

such that limn→∞ [U(f , Pn) − L(f ,

Pn)] = 0.

• f is integrable on [a, b] if f is continuous on
[a, b].

− Note that f needs to be continuous on
the closed interval;

− Note that the converse: f is integrable
on [a, b] only if f is continuous on [a, b],
is false.

Exercise 17. Find a function f that is

integrable on [0, 1] but is not continuous

on [0, 1]. Justify.

• Properties. Let c∈R and f , g be integrable
on [a, b]. Then so are |f |, c f , f ± g, f g.

∣

∣

∣

∣

∣

∫

a

b

f(x) dx

∣

∣

∣

∣

∣

6

∫

a

b

|f(x)| dx;

∫

a

b

(c f)(x) dx = c

∫

a

b

f(x) dx;

∫

a

b

(f ± g)(x) dx =

∫

a

b

f(x) dx ±
∫

a

b

g(x) dx;

Note that there is no relation

between
∫

a

b
f(x) g(x) dx and

(

∫

a

b
f(x) dx

)(

∫

a

b
g(x) dx

)

.

• More properties. Let a < c < b. Then f

is integrable on [a, b] if and only if f is
integrable on both [a, c] and [c, b].

• Composite function. If f is integrable and
g is continuous, then g ◦ f is integrable.

2. Solutions to Exercises

Exercise 17. Take f =

{

1 x < 1/2
0 x> 1/2

.

Obviously it is not continuous on [0, 1].
To justify its integrability, take Pn =
{

0,
n− 1

2 n
,

1

2
, 1
}

. Then

L(f , Pn) =
n− 1
2 n

, U(f , Pn) =
1
2
. (67)

We have limn→∞ [U(f , Pn) − L(f , Pn)] = 0 so

f is integrable.

3. Problems
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T. Fundamental Theorems of Calculus

1. Concepts and theorems

• FTC V1: If

1. f(x) is integrable on [a, b];

2. F (x) is continuous on [a, b];

3. ∀x∈ (a, b), F ′(x) = f(x),

then

∫

a

b

f(x) dx =F (b)−F (a). (68)

• FTC V2:

− Part I: If f(x) is integrable on [a, b],
then

F (x)8 ∫

a

x

f(t) dt (69)

is continuous on [a, b].

− Part II: If

1. f(x) is integrable on [a, b];

2. f(x) is continuous at x0∈ (a, b),

then F (x) as defined above is
differentiable at x0 and

F ′(x0) = f(x0). (70)

Exercise 18. Let F (x) 8 ∫

sin x

x2+2
et dt.

Calculate F ′(x) and F ′′(x).

• Integration by parts: If

1. u(x), v(x) are continuous on [a, b];

2. u′(x), v ′(x) are integrable on [a, b];

Then

∫

a

b

u v ′ dx = u(b)v(b)−u(a)v(a)−
∫

a

b

u′ v dx. (71)

Exercise 19. Calculate

∫

0

1

x e3x dx. (72)

• Change of variables: If

1. u(x) is continuous on [a, b];

2. u(x) is differentiable on (a, b);

3. u′(x) is integrable on [a, b];

4. f(y) is continuous on I 8 u([a, b]);

Then

∫

a

b

f(u(t)) u′(t) dt=

∫

u(a)

u(b)

f(x) dx. (73)

2. Solutions to exercises

Exercise 19. Set v=x,u′=e3x� u=e3x/3.
∫

0

1

x e3x dx =
x e3x

3
P 01−∫

0

1 e3x

3
dx

=
e3

3
− e3

9
+

e0

9

=
1 + 2 e3

9
. (74)

Exercise 18. Let G(x) 8 ∫

0

x
et dt. Then we

have G′(x) = ex, and

F (x) =

∫

0

x2+2

et dt +

∫

sinx

0

et dt =

∫

0

x2+2

et dt −
∫

0

sinx

et dt=G(x2 +2)−G(sinx). (75)

This gives

F ′(x) = G′(x2 +2) (x2 +2)′

−G′(sinx) (sinx)′

= 2 x ex2+2− esinx cosx. (76)

Taking derivative again we have

F ′′(x) = (4x2 + 2) ex2+2 + [sin x− (cos x)2] esin x. (77)

3. Problems

Problem 7. Calculate the following integrals:

I1=

∫

e

e
2

dx

x (ln x)4
; I2=

∫

0

4

e
− x

√

dx; I3=

∫

1

e

x
3 lnxdx (78)

Problem 8. Is the following calculation correct?
Justify your answer.

∫

0

π

cos2xdx =

∫

0

0 dt

(1 + t2)2
=0 (79)

where the change of variable is t = tan x.
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U. Improper Integrals

1. Concepts and Theorems.

• Definition.

Let f : (a, b) � R is improperly
integrable on (a, b) if and only if

a) f is locally integrable: f is integrable
on every [c, d]⊂ (a, b), and

b) limc→a+

(

limd→b−
∫

c

d
f(x) dx

)

exists

and is finite.

Call this limit the improper
Riemann integral of f over (a, b),
denote it by

∫

a

b

f(x) dx. (80)

Exercise 20. Prove that x−1/3 is improperly

integrable on (0, 1).

• Properties

a) Integrable on [a, b] � improperly
integrable on (a, b) and its improper
integral equals its Riemann integral.

b) If f is integrable on [a, d] for every
d∈ (a, b), then its improper integral

∫

a

b

f(x)dx= lim
d� b−

∫

a

d

f(x) dx (81)

If f is integrable on [c, b] for every
c∈ (a, b), then its improper integral

∫

a

b

f(x)dx= lim
c� a+

∫

c

b

f(x) dx (82)

c) If f is improperly integrable on (a, b),
then the order of limit taking does not
matter:

lim
c→a+

(

lim
d→b−

∫

c

d

f(x) dx

)

= lim
d� b−

(

lim
c� a+

∫

c

d

f(x) dx

)

=

∫

a

b

f(x) dx. (83)

Exercise 21. Prove that if f is integrable on

[a, b] then it is improperly integrable on (a, b).

2. Solutions to exercises.

Exercise 20. Take any [c, d] ⊂ (0, 1).
Since x−1/3 is continuous on [c, d], it

is integrable on [c, d]. We calculate,

through FTC Ver 1,

∫

c

d

x−1/3 dx =
3
2

x2/3P cd =
3
2

[

d2/3− c2/3
]

. (84)

Now clearly

lim
c→0+

[

lim
d→1−

3
2

[

d2/3− c2/3
]

]

=
3
2
. (85)

Exercise 21. First we know that if

f is integrable on [a, b], then it is

integrable on every [c, d] ⊂ (a, b). Now

consider

F (x)8 ∫

a

x

f(t) dt. (86)

By FTC Ver 2 we know that F (x) is

continuous on [a, b]. Thus

lim
c→a+

(

lim
d→b−

∫

c

d

f(x) dx

)

= lim
c→a+

(

lim
d→b−

(F (d)−F (c))
)

= lim
c→a+

(F (b)−F (c))

= F (b)−F (a). (87)

Thus f is improperly integrable on (a,

b). Finally by FTC Ver 1 we have

F (b)−F (a) =

∫

a

b

f(t) dt. (88)

3. Problems

Problem 9. Prove that, if f(x) is improperly

integrable on (a, b), then

lim
d→b−

[

lim
c→a+

∫

c

d

f(x) dx

]

(89)

exists and equals
∫

a

b
f(x) dx.

11



Solutions to Problems

Problem 1.

• If. Since g ′(0) = 0, by definition we

have

lim
x→0

g(x)
x

= 0� lim
x→0

∣

∣

∣

∣

g(x)
x

∣

∣

∣

∣

=0. (90)

Now we have

∣

∣

∣

∣

f(x)− f(0)

x− 0
− 0

∣

∣

∣

∣

=

∣

∣

∣

∣

g(x)

x
sin

1
x

∣

∣

∣

∣

6

∣

∣

∣

∣

g(x)
x

∣

∣

∣

∣

. (91)

By Squeeze Theorem we have

lim
x→0

∣

∣

∣

∣

f(x)− f(0)
x− 0

− 0

∣

∣

∣

∣

= 0 (92)

which by definition gives f ′(0) =0.

• Only if.

We have

lim
x→0

g(x)
x

= lim
x→0

g(x)− g(0)
x− 0

= g ′(0). (93)

Now we have

f(x)− f(0)

x− 0
=

g(x)

x
sin

1
x

. (94)

Now take xn =
1

n π
, yn =

1

2 n π + π/2
. Then

xn, yn� 0 and limn→∞xn= limn→∞yn=0.
Therefore

lim
n→∞

g(xn)
xn

= lim
n→∞

g(yn)
yn

= g ′(0). (95)

Consequently

lim
n→∞

f(xn)− f(0)
xn − 0

=0, (96)

lim
n→∞

f(yn)− f(0)
yn − 0

= g ′(0). (97)

Since f is differentiable at 0, we

must have g ′(0) =0.

Problem 2. For h > 0, we have

f(x0 +h) =h +(−1 + h) =−1 +2 h; (98)

f(x0− h) = h +(−1−h) =−1; (99)

For h < 0 we have

f(x0 + h)= (−h)+ (−1 +h) =−1; (100)

f(x0−h)= (−h)+ (−1−h)=−1− 2 h. (101)

Thus for all h we have

f(x0 +h)− f(x0−h)

2 h
= 1 (102)

and the limit is obviously also 1.
Now for h > 0 we have

f(x0 +h)− f(x0)
h

=2 (103)

while for h < 0 we have

f(x0 + h)− f(x0)
h

= 0. (104)

Therefore

lim
h→0

f(x0 +h)− f(x0)
h

(105)

does not exist and f is not

differentiable at x0.

Problem 3. Denote

L8 lim
x→−∞

f(x) = lim
x→∞

f(x). (106)

Three cases.

• supx∈R f(x) = infx∈R f(x) = L. Then

f(x) = L for all x and f ′(ξ) = 0 for

every ξ ∈R.

• supx∈Rf(x) > L. Take {xn} ⊆ R

such that limn→∞f(xn) = supx∈Rf(x).
Denote

ε08 supx∈Rf(x)−L

2
. (107)

Then

− As limx→∞f(x) = L, there is R1 >

0 such that |f(x)−L|< ε0 for all

x > R1;
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− As limx→−∞f(x) = L, there is

R2 > 0 such that |f(x) − L| < ε0

for all x <−R2;

− As limn→∞f(x)= supx∈Rf(x), there

is N0 ∈ N such that |f(x) −
supx∈Rf(x)|<ε0 for all n >N0.

Summarizing, we have

∀n > N0, −R2 6 xn 6 R1. (108)

By Bolzano-Weierstrass there is a

subsequence xnk
converging to some

ξ ∈R. Since f is continuous,

f(ξ) = lim
k→∞

f(xnk
) = sup

x∈R

f(x). (109)

Thus x∞ is a maximizer of f and

consequently f ′(ξ) = 0.

Problem 4. Calculate

(

sinx

x

)′

=
x cosx− sinx

x2
. (110)

To show that f(x) =
sinx

x
is decreasing,

it’s enough to show g(x) = x cos x − sin x 6

0 for 0 6 x 6 π/2. Noticing that g(0) = 0,
we calculate

g ′(x) = cos x − x sin x − cos x = −x sin x <

0 for 0 6 x6 π/2. (111)

Therefore g is decreasing. Together with

g(0) = 0 we have g(x) = f ′(x) 6 0. This

implies f(x) is decreasing. Therefore

2
π

=
sin (π/2)

π/2
6

sinx

x
6

sin δ

δ
(112)

for all x∈ [δ, π/2]. Let δ→ 0 we reach

2
π

6
sinx

x
6 1 (113)

for all 0 6x 6π/2.

Problem 5. We discuss the three cases

c > 0, c = 0, c < 0. When c = 0 we have c f =
0 is constant which is integrable.

• c > 0. Let P be an arbitrary

partition of [a, b]. We have

U(c f , P ) =
∑

j=1

n
[

sup
[xj−1,xj]

c f(x)
]

|xj −

xj−1| =
∑

j=1

n

c

[

sup
[xj−1,xj]

f(x)
]

|xj − xj−1| =

c U(f , P ). (114)

Taking infimum we have

U(c f) = inf
P

U(c f , P ) = inf
P

[c U(f , P )] =

c inf
P

U(f , P ) = c U(f). (115)

On the other hand,

L(c f , P ) =
∑

j=1

n [

inf
[xj−1,xj]

c f(x)

]

|xj −

xj−1|= c L(f , P ) (116)

which gives

L(c f)= c L(f). (117)

As f is integrable, we have U(f) =
L(f) � U(c f) = L(c f) so c f is

integrable with

∫

a

b

(c f)(x) dx = U(c f) = c U(f) =

c

∫

a

b

f(x) dx. (118)

• c < 0. Let P be an arbitrary

partition of [a, b]. We have

U(c f , P ) =
∑

j=1

n
[

sup
[xj−1,xj]

c f(x)
]

|xj −

xj−1| =
∑

j=1

n

c

[

inf
[xj−1,xj]

f(x)

]

|xj − xj−1| =

c L(f , P ). (119)
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Taking infimum over all partitions

we have

U(c f) = inf
P

U(c f , P ) = inf
P

[c L(f , P )] =

c sup
P

L(f , P ) = c L(f). (120)

and similarly

L(c f) = cU(f). (121)

As f is integrable, we have U(f) =
L(f) � U(c f) = L(c f) so c f is

integrable with

∫

a

b

(c f)(x) dx = U(c f) = c L(f) =

c

∫

a

b

f(x) dx. (122)

Problem 6. Since f(x) is integrable on

[a, b], it is bounded on [a, b]. That is

there is M >0 such that ∀x∈ [a,b], |f(x)|<
M. Now for any ε > 0, take δ 8 ε

M + 1
.

Then for any 0 < b− x <δ, we have
∣

∣

∣

∣

∣

∫

a

x

f(t) dt−
∫

a

b

f(t) dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

x

b

f(t) dt

∣

∣

∣

∣

∣

6

∫

x

b

|f(t)|dt

<

∫

x

b

M dt

= M (b−x)

< M
ε

M + 1
< ε. (123)

Problem 7.

• I1. Change of variable: y = u(x) =
lnx. Then we have

I1 =

∫

e

e2

dx

x (lnx)4
=

∫

e

e2 (

1
u(x)4

)

u′(x) dx

=

∫

u(e)

u(e2) 1

y4
dy

=

∫

1

2 1

y4
dy

= −1
3

y−3P 12
=

7
24

. (124)

• I2. Change of variable: y = u(x) =
x

√
. We have

I2 =

∫

0

4

e− x
√

dx =

∫

0

4

e−u(x) u′(x) (2 u(x)) dx

=

∫

u(0)

u(4)

e−y 2 y dy

= 2

∫

0

2

y e−y dy

= 2

∫

0

2

y (−e−y)′ dy

= 2

[

(−y e−y)P 02 +

∫

0

2

e−y dy

]

= 2 [−2 e−2+1−e−2]

= 2− 6 e−2. (125)

• I3. We integrate by parts:

I3 =

∫

1

e

x3 lnxdx =

∫

1

e

lnx

(

x4

4

)′

dx

=

[

ln x

(

x4

4

)]

x=1

x=e

−
∫

1

e x4

4
(lnx)′dx

=
e4

4
− 1

4

∫

1

e

x3 dx

=
3 e4 + 1

16
. (126)

Problem 8. No. Since cos2x >
1

2
when x ∈ (0,

π/4) we have
∫

0

π

cos2x dx>

∫

0

π/4

cos2x dx>

∫

0

π/4 1
2

dx=
π

8
>

0 (127)

so the calculation is not correct.

The problem is u(x) = tan x is not

differentiable over (0, π).

Problem 9. We are given

lim
c→a+

[

lim
d→b−

∫

c

d

f(x) dx

]

= L∈R. (128)

Take any x0∈ (a, b). Then we have
∫

c

d

f(x)dx=

∫

c

x0

f(x)dx+

∫

x0

d

f(x)dx. (129)
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Thus the existence of

lim
d→b−

∫

c

d

f(x) dx (130)

implies the existence of

lim
d→b−

∫

x0

d

f(x)dx. (131)

Denote it by I(x0). Then clearly

lim
c→a+

∫

c

x0

f(x) dx= L− I(x0). (132)

Now we have

lim
d→b−

[

lim
c→a+

∫

c

d

f(x) dx

]

= lim
d→b−

[

L − I(x0) +
∫

x0

d

f(x) dx

]

= L − I(x0) +

lim
d→b−

∫

x0

d

f(x) dx

= L− I(x0) + I(x0)

= L. (133)
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