\qquad I.D.\#: \qquad

1. (16 points)
(a) Let a, b, c, and d be positive real numbers. Prove that

$$
\frac{a}{b}<\frac{c}{d} \quad \text { implies } \quad \frac{a+c}{b+d}<\frac{c}{d}
$$

(b) Use the interval notation to express the set $\{x \in \mathbb{R}:|2 x+1| \geq 5\}$.
2. (16 points)
(a) Let $E:=\left\{(-1)^{n}+(2 / 3)^{n-1}: n \in \mathbb{N}\right\}$. Find $\max E$, $\sup E, \min E$, and $\inf E$. Justify your answer.
(b) Let A be a bounded nonempty subset of \mathbb{R}, and let $B:=\{2 x: x \in A\}$. Prove

$$
\sup B=2(\sup A)
$$

3. (18 points) Find the following limits.
(a) $\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+2 n}-(n+1)\right]$.
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-5 x+6}{x^{2}-4}$.
(c) For $n=1,2, \ldots$, let $s_{n}:=a+a r+a r^{2}+\cdots+a r^{n-1}$, where $-1<r<1$. Find $\lim _{n \rightarrow \infty} s_{n}$.
4. (18 points) Let $a_{1}:=2$ and set

$$
a_{n+1}:=\frac{3 a_{n}+1}{5}, \quad n=1,2, \ldots
$$

(a) Use mathematical induction to prove that $a_{n}>0$ for all $n \in \mathbb{N}$.
(b) Use mathematical induction to show that $a_{n+1}<a_{n}$ for all $n \in \mathbb{N}$.
(c) As a bounded decreasing sequence, $\left(a_{n}\right)_{n=1,2, \ldots}$ converges. Find $\lim _{n \rightarrow \infty} a_{n}$.
5. (16 points)
(a) Let

$$
b_{n}:=\left[1-(-1)^{n}\right] n+\frac{50}{n}, \quad n \in \mathbb{N} .
$$

Find an increasing subsequence of $\left(b_{n}\right)_{n=1,2, \ldots}$. Also, find a convergent subsequence of $\left(b_{n}\right)_{n=1,2, \ldots}$.
(b) Let $\left(x_{n}\right)_{n=1,2, \ldots}$ be a sequence of real numbers. Suppose that

$$
\left|x_{n+1}-x_{n}\right| \leq \frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1} \quad \forall n \in \mathbb{N}
$$

Show that $\left(x_{n}\right)_{n=1,2, \ldots}$ is a Cauchy sequence.
6. (16 points) Let $f(x):=1-x^{2}$ for $x \in \mathbb{R}$, and let

$$
g(x):= \begin{cases}1 & \text { if } x \geq 1 \\ -1 & \text { if } x<1\end{cases}
$$

(a) Prove that g is not continuous at 1 .
(b) Prove that $f \circ g$ is continuous on \mathbb{R}, but $g \circ f$ is not continuous on \mathbb{R}.

