The Final Exam (Math 314 A1)

December 20, 2011

Name: \qquad I.D.\#: \qquad

1. (10 points) Let

$$
f(x):=\frac{\sqrt{x+1}-1}{\sqrt{x}}, \quad x \in(0,1] .
$$

(a) Find $\lim _{x \rightarrow 0^{+}} f(x)$.
(b) Prove that there exists a point $c \in(0,1]$ such that $f(x) \leq f(c)$ for all $x \in(0,1]$.
2. (15 points) Let $g(x):=2^{x}-3 x,-\infty<x<\infty$.
(a) Show that there exists some $a \in(0,1)$ such that $g(a)=0$.
(b) Find $g^{\prime}(x)$ and show that there exists a unique $b \in(-\infty, \infty)$ such that $g^{\prime}(b)=0$. Give an explicit expression of b.
(c) Let b be as given in part (b). Show that $g(x) \geq g(b)$ for all $x \in(-\infty, \infty)$.
3. (10 points) (a) Let f be defined by

$$
f(x):= \begin{cases}a x+b & \text { for } x<-1 \\ x^{3}+1 & \text { for }-1 \leq x \leq 2 \\ c x+d & \text { for } x>2\end{cases}
$$

Determine the constants a, b, c, and d such that f is differentiable on \mathbb{R}.
(b) Let

$$
g(x):= \begin{cases}x^{2} \sin \frac{1}{x} & \text { if } x \in \mathbb{R} \backslash\{0\} \\ 0 & \text { if } x=0\end{cases}
$$

Prove that g is differentiable at 0 and that $g^{\prime}(0)=0$.
4. (10 points) Let f be a differentiable function on an open interval (a, b), and let A and B be two real numbers such that $A<B$.
(a) Suppose that $A \leq f^{\prime}(x) \leq B$ for all $x \in(a, b)$. For $a<x_{1}<x_{2}<b$ prove that

$$
A\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \leq B\left(x_{2}-x_{1}\right) .
$$

(b) Suppose that $A>0$ and $f^{\prime}(x) \geq A$ for all $x \in(a, b)$. Then f is a one-to-one function on (a, b) and its range is an open interval J. Let g denote the inverse function of f. Prove that

$$
0<g^{\prime}(y) \leq \frac{1}{A} \quad \forall y \in J
$$

5. (10 points) Let $g(t):=\ln (1+t), t>-1$.
(a) Find a cubic polynomial p such that $p^{(k)}(0)=g^{(k)}(0)$ for $k=0,1,2,3$. (Hint: p is the Taylor polynomial of third degree of g at 0 .)
(b) Let $f(x):=g\left(x^{2}\right)=\ln \left(1+x^{2}\right),-\infty<x<\infty$. Find a polynomial q of degree six such that $q^{(k)}(0)=f^{(k)}(0)$ for $k=0,1,2,3,4,5,6$. Justify your answer.
6. (15 points) The Fundamental Theorem of Calculus will be used in this problem.
(a) Let $F(x):=\int_{x}^{x^{2}} \sqrt{1+t^{2}} d t, x \in \mathbb{R}$. Find $F^{\prime}(x)$ for $x \in \mathbb{R}$.
(b) Let $G(x):=\int_{0}^{x} x \sin \left(t^{2}\right) d t, x \in \mathbb{R}$. Find $G^{\prime \prime}(x)$ for $x \in \mathbb{R}$.
(c) Let $H(x):=\int_{x}^{x+\pi / 2}|\cos (2 t)| d t, x \in \mathbb{R}$. Show that H is a constant and find this constant.
7. (15 points) Calculate the following integrals.
(a) $\int_{0}^{2} x^{2} \sqrt{x^{3}+1} d x$.
(b) $\int_{0}^{\pi} \cos ^{2} x d x$.
(c) $\int_{0}^{1} e^{\sqrt{x}} d x$.
8. (15 points) (a) It is known that $\frac{1-r^{n+1}}{1-r}=1+r+\cdots+r^{n}$ for $r \neq 1$ and all $n \in \mathbb{N}$. Derive from this identity the following formula for $x \in \mathbb{R}$:

$$
\frac{1-\left(-x^{2}\right)^{n+1}}{1+x^{2}}=\sum_{k=0}^{n}(-1)^{k} x^{2 k}=1-x^{2}+x^{4}-x^{6}+\cdots+(-1)^{n} x^{2 n} \quad \forall n \in \mathbb{N}
$$

(b) For $n \in \mathbb{N}$, let $g_{n}(x):=\sum_{k=0}^{n}(-1)^{k} x^{2 k}$. Use part (a) to prove

$$
\left|g_{n}(x)-\frac{1}{1+x^{2}}\right| \leq x^{2 n+2} \quad \text { for all } x \in[0,1]
$$

(c) Use part (b) to prove

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} g_{n}(x) d x=\int_{0}^{1} \frac{1}{1+x^{2}} d x
$$

Moreover, find $\int_{0}^{1} g_{n}(x) d x$ and the limit $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{(-1)^{k}}{2 k+1}$.

