MATH 314 FALL 2012 MIDTERM REVIEW

Ост. 18, 2012

• Warning: This is **not** a complete list of materials covered by the midterm. You still need to read the notes, review homeworks, and work on practice problems.

1. Logic

- Logic: Understand the meaning of "and", "or", "not" as well as ∀ and ∃. In particular, know how to start a proof by contradiction.
 - When writing a logical statement, the quantifiers should come first: For example " $\exists M \forall x$ some statement" may sound similar to " $\exists M$ some statement $\forall x$ ", but the latter is not correct.
 - When applying "not", \forall becomes \exists , and \exists becomes \forall .

Example 1. A sequence of functions $f_n(x): E \mapsto \mathbb{R}$ converges to another function $f(x): E \mapsto \mathbb{R}$ uniformly if for every $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for all n > N and all $x \in E$, $|f(x) - f_n(x)| < \varepsilon$. In formal logic, the above reads

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > N \ \forall x \in E, \qquad |f(x) - f_n(x)| < \varepsilon. \tag{1}$$

Therefore the statement " $f_n(x)$ does not converge uniformly to f(x)" should be written as

$$\exists \varepsilon_0 > 0 \ \forall N \in \mathbb{N} \ \exists n > N \ \exists x \in E, \qquad |f(x) - f_n(x)| \ge \varepsilon_0.$$
⁽²⁾

2. Sets

- Sets: Understand set relations $\in, \ni, \subseteq, \supseteq, \subset, \supset, =$ and set operations \cup, \cap, \setminus (the "complement" \cdot^c is a special case of \setminus).
 - In particular, be aware of the difference between \in and \subseteq/\subset . The former is about the relation between an element and a set (a collection of elements), while the latter is about the relation between two sets. Therefore if A is a set, "take $y \in A$ " makes sense, but "take $y \subseteq A$ " does not unless your "y" is a set, but such use is discouraged because traditionally a, b, c, x, y, z are elements while A, B, C, X, Y, Z are sets.
- Sets in \mathbb{R} :
 - Intervals: [a, b], (a, b), [a, b), (a, b].
 - Open sets: A set $A \subseteq \mathbb{R}$ is open if for every $x \in A$, there is an open interval $(a, b) \subseteq A$ such that $x \in (a, b)$. In logical statement:

$$\forall x \in A \ \exists (a,b) \text{ such that } x \in (a,b) \text{ and } (a,b) \subseteq A.$$
(3)

 $- A \subseteq \mathbb{R}$ not open:

$$\exists x_0 \in A \ \forall (a,b) \ [\text{Not} \ (x \in (a,b) \text{ and } (a,b) \subseteq A)] \tag{4}$$

which for practical purposes becomes:

$$\exists x_0 \in A \ \forall (a,b) \ni x \ (a,b) \not\subseteq A.$$
(5)

- Closed sets: A set $A \subseteq \mathbb{R}$ is closed if A^c is open.
- Important: Not open \iff closed; Not closed \iff open. For example $(0, 1] = \{x \in \mathbb{R} : 0 < x \leq 1\}$ is neither open nor closed. (Think: How to prove this?)
- Unions and intersections of open/closed sets.
- \circ sup and inf.
 - $A \subseteq \mathbb{R}$ nonempty. Then sup A and inf A exists (may be ∞, -∞). While max A, min A may not exist.

- To show $b = \sup A$, show
 - 1. b is an upper bound of $A: \forall a \in A, b \ge a$.
 - 2. If $\tilde{b} \in \mathbb{R}$ is an upper bound of A, then $b \leq \tilde{b}$.
 - To show $b = \inf A$, show
 - 1. *b* is an lower bound of $A: \forall a \in A, b \leq a$.
 - 2. If $\tilde{b} \in \mathbb{R}$ is an lower bound of A, then $b \ge \tilde{b}$.
- To show $b = \max A \pmod{a}$. show 1. b is an upper bound of A; 2. $b \in A$.
- If $\sup A \in A$, then max A exists and equals $\sup A$; On the other hand, if max A exists, then $\sup A = \max A$. Similar statement for $\inf A$ and $\min A$.

3. Functions

• $f: X \mapsto Y$: relation, domain, range.

Example 2. (Sequences and subsequences) A real sequence is a function $f: \mathbb{N} \to \mathbb{R}$. A subsequence is a composite function $g \circ f: \mathbb{N} \to \mathbb{R}$ with $f: \mathbb{N} \to \mathbb{N}$, $g: \mathbb{N} \to \mathbb{R}$.

- Image and pre-image:
 - $\circ \quad f: X \mapsto Y. \ A \subseteq X. \ \text{Image} \ f(A) := \{f(a): a \in A\} = \{b \in Y: \exists a \in A \ b = f(a)\}.$
 - $\circ \quad f: X \mapsto Y. \ B \subseteq Y. \ \text{Pre-image} \ f(B) := \{a \in X: f(a) \in B\}.$
- One-to-one, onto, bijection, inverse function.
 - \circ $f: X \mapsto Y$ is one-to-one: $x_1 \neq x_2 \Longrightarrow f(x_1) \neq f(x_2)$.
 - $\circ \quad f: X \mapsto Y \text{ is onto: } f(X) = Y.$
 - \circ $f: X \mapsto Y$ is a bijection: one-to-one and onto.
 - \circ g: $Y \mapsto X$ is an inverse function of f if both of the following hold:
 - 1. $\forall x \in X, g(f(x)) = x.$
 - 2. $\forall y \in Y, f(g(y)) = y.$
- Increasing, decreasing, monotone.
 - f(x) is increasing: $x_1 \ge x_2 \Longrightarrow f(x_1) \ge f(x_2)$. Strictly increasing: $x_1 > x_2 \Longrightarrow f(x_1) > f(x_2)$.
 - $\circ \quad f(x) \text{ is decreasing: } x_1 \geqslant x_2 \Longrightarrow f(x_1) \leqslant f(x_2). \text{ Strictly decreasing: } x_1 > x_2 \Longrightarrow f(x_1) < f(x_2).$
 - Monotone: Either increasing or decreasing.
- Set operations under functions: See homework.

4. Limit

- A unified approach. $f(x) \longrightarrow L \in \mathbb{R} \cup \{\infty, -\infty\}$ as $x \longrightarrow a \in \mathbb{R} \cup \{\infty, -\infty\}$.
 - $\circ \longrightarrow a \in \mathbb{R}$. Distance to a can be arbitrarily small;
 - $\circ \longrightarrow \infty$. Eventually larger than any number;
 - $\circ \longrightarrow -\infty$. Eventually smaller than any number.
- Definitions of various convergence can be "assembled": $\lim_{x \to a} f(x) = L$ where a, L can both be extended real numbers. In the following red corresponds to red.

Example 3. Limit of sequence $\{x_n\}$. Recall that a sequence is a function $f: \mathbb{N} \to \mathbb{R}$. The only possibility is $n \to \infty$. Therefore $\lim_{n \to \infty} x_n = L$ is defined as

• $L \in \mathbb{R}$. $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n > N$, $|x_n - L| < \varepsilon$. Here $\forall \varepsilon > 0, ..., |x_n - L| < \varepsilon$ quantifies "f arbitrarily close to L" while $\exists N \in \mathbb{N}$ such that $\forall n > N$ quantifies "when n is arbitrarily large" (when n is arbitrarily "close" to ∞).

- $L = \infty$. $\forall M \in \mathbb{R}, \exists N \in \mathbb{N} \text{ such that } \forall n > N, x_n > M$.
- $L = -\infty$. $\forall M \in \mathbb{R}, \exists N \in \mathbb{N} \text{ such that } \forall n > N, x_n < M$.

Example 4. Limit of real function. $\lim_{x \to a} f(x) = L$ is defined as

- $\circ \quad a \in \mathbb{R}, L \in \mathbb{R}. \ \forall \varepsilon > 0, \ \exists \delta > 0 \text{ such that } \forall 0 < |x a| < \delta, \ |f(x) L| < \varepsilon.$
- $\circ \quad a \in \mathbb{R}, L = \infty. \ \forall M \in \mathbb{R}, \exists \delta > 0 \text{ such that } \forall 0 < |x a| < \delta, \ f(x) > M.$
- $\circ \quad a \in \mathbb{R}, L = -\infty. \ \forall M \in \mathbb{R}, \exists \delta > 0 \text{ such that } \forall 0 < |x a| < \delta, \ f(x) > M.$
- $\circ \quad a = \infty, \ L \in \mathbb{R}. \ \forall \varepsilon > 0, \ \exists M \in \mathbb{R} \text{ such that } \forall x > M, \ |f(x) L| < \varepsilon.$
- $a = -\infty, L = \infty$. $\forall M \in \mathbb{R}, \exists M' \in \mathbb{R}$ such that $\forall x < M', f(x) > M$. Note that M and M' are not the same number.

The definition for other cases can be designed similarly.

- To prove the existence of limit $\lim_{x \to a} f(x)$:
 - Use definition (when the limit is given or you can guess it).
 - Show it's Cauchy: Notice the similarity between red statements.
 - If f is a sequence $\{x_n\}$: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$, $\forall m, n > N$, $|x_m x_n| < \varepsilon$;
 - If f is a real function f(x):
 - $a \in \mathbb{R}$. $\forall \varepsilon > 0, \exists \delta > 0, \forall 0 < |x_1 a|, |x_2 a| < \delta, |f(x_1) f(x_2)| < \varepsilon$.
 - $a = \infty$. $\forall \varepsilon > 0$, $\exists M > 0$, $\forall x_1, x_2 > M$, $|f(x_1) f(x_2)| < \varepsilon$.
 - The idea of "Cauchy" is only meaningful when the limit is finite. (Try to define "Cauchy" for $x_n \longrightarrow \infty$ to see why)
 - Show it's monotone (increasing or decreasing). The following is true for both sequences and functions. (Think: How to prove?)
 - Increasing + bounded above \implies lim = $L \in \mathbb{R}$; Decreasing + bounded below \implies lim = $L \in \mathbb{R}$.
 - Increasing + not bounded above \implies $\lim = \infty$; Decreasing + not bounded below \implies $\lim = -\infty$.
- From functions to sequences and back:
 - $\lim_{x \longrightarrow a} f(x) = L \iff \text{for every sequence } x_n \longrightarrow a, \ f(x_n) \longrightarrow L \text{ as } n \longrightarrow \infty.$
 - This holds even if a, L are extended real numbers.
- Properties:
 - \circ At most one limit.
 - Arithmetic $+, -, \times, -$. Note that the limit of the denominator should not be zero.
 - Comparison and Squeeze.
 - Composite function and inverse function.
- Subsequences:
 - A subsequence of $\{x_n\}$ is a sequence $\{y_k\}$ such that $y_k = x_{n_k}$. Here n_k is a sequence of natural numbers, that is $n_k: \mathbb{N} \mapsto \mathbb{N}$.
 - Bolzano-Weierstrass: Any bounded sequence has at least one converging subsequence.
- liminf and limsup.
 - \circ Limits of inf and sup.

Definition: 0

$$\limsup_{n \to \infty} x_n = \limsup_{n \to \infty} \sup_{k \ge n} x_k = \lim_{n \to \infty} \sup \{x_n, x_{n+1}, \dots\}.$$
 (6)

$$\liminf_{n \to \infty} x_n = \liminf_{n \to \infty} \inf_{k \ge n} x_k = \lim_{n \to \infty} \inf_{k \ge n} \{x_n, x_{n+1}, \dots\}.$$
(7)

In other words, we define a new sequence by

$$y_1 = \sup \{x_1, x_2, x_3, \dots\}$$
(8)

$$y_{2} = \sup \{x_{2}, x_{3}, x_{4}, ...\}$$

$$(9)$$

$$\vdots \qquad \vdots$$

$$y_n = \sup \{x_n, x_{n+1}, x_{n+2}, \dots\}$$
(10)

and then define

$$\limsup_{n \longrightarrow \infty} x_n = \lim_{n \longrightarrow \infty} y_n. \tag{11}$$

Understanding: 0

$$\limsup_{n \to \infty} x_n = \max \left\{ a \in \mathbb{R} : \exists \text{subsequence } x_{n_k} \longrightarrow a \right\};$$
(12)

$$\liminf_{n \to \infty} x_n = \min \{ a \in \mathbb{R} : \exists \text{subsequence } x_{n_k} \longrightarrow a \}.$$
(13)

- How to calculate: Evaluating exactly $\sup_{k \ge n} x_k$ could be hard. There are two ways to overcome: 0
 - Use Squeeze theorem: _

Instead of evaluating $\sup_{k \ge n} x_n$ exactly, find an upper bound and an lower bound

$$w_n \leqslant \sup \left\{ x_n, \dots \right\} \leqslant z_n \tag{14}$$

and try to show $\lim w_n = \lim z_n$. Note that the requirement for z_n is $z_n \ge x_k$ for all $k \ge n$ while the requirement for w_n is $w_n \leq x_k$ for some $k \geq n$.

Example 5. Consider $x_n = (-1)^n + e^{-n^2}$. We have

$$1 \leq \sup_{k \geq n} \left[(-1)^k + e^{-k^2} \right] \leq 1 + e^{-n^2}.$$
 (15)

Taking limit $n \longrightarrow \infty$ we conclude

$$\limsup x_n = 1. \tag{16}$$

- Use limsup is the largest limit of convergent subsequences. To take this approach we need to first guess $\limsup_{n \to \infty} x_n = 1$. Then show
 - 1. There is a subsequence converging to 1. Take $n_k = 2 k$ then $x_{n_k} = 1 + e^{-4k^2} \longrightarrow 1$.
 - 2. For every convergent subsequence $x_{n_k} \longrightarrow a, a \leqslant 1$. We do this through comparison theorem:

$$x_{n_k} = (-1)^{n_k} + e^{-n_k^2} \leqslant 1 + e^{-k^2} \Longrightarrow a = \lim_{k \to \infty} x_{n_k} \leqslant \lim_{k \to \infty} \left(1 + e^{-k^2}\right) = 1.$$
(17)

5. Continuous Functions

- Continuous at $x_0: f(x_0) = \lim_{x \to x_0} f(x).$
- Continuous: A function is "continuous" (without "at x_0 ") if it is continuous at every point in its domain. •

Example 6. $e^x \colon \mathbb{R} \to \mathbb{R}$ is continuous; $\ln x \colon (0, \infty) \to \mathbb{R}$ is continuous.

Continuity under $+, -, \times, -$, composition and inverse. •