MATH 314 FALL 2012 MIDTERM PRACTICE PROBLEMS SOLUTIONS

Ocrt. 19, 2012

e To best prepare for midterm, also review homework problems.

e To get most out of these problems, clearly write down (instead of mumble or think)
your complete answers (instead of a few lines of the main idea), in full sentences
(instead of formulas connected by arrows). And then compare with the solutions when
they are posted.

e If don’t know where to start, write down all definitions involved.

e If have no idea what to do, try proof by contradiction. Start by writing down the
assumption in logical statements.

e ‘“Justify” means: if true, provide a proof; if false, give a counterexample.

PRACTICE PROBLEMS

Problem 1. f(x): E+— R is Holder continuous if there are a >0 and M € R such that for every z,y € E,
|f(x) = f(y)| <M |z — y|* Write down the logical statement for “f(z) is not Holder continuous”.
Solution. f(x) is Holder continuous if

Ja>03IM eRVz,ye E  |f(x)— f(y)| <M |z —y|~ (1)
f(z) is not Holder continuous if
Va>0VMeR Jz,yc E [f(x)— f(y)|>M |z —y|* (2)
Note that x, y will change if a, M change.
Problem 2. Recall that f(x) is increasing if f(z1) > f(x2) whenever x1 > x5 Write down the logical
statement for “f(x) is not increasing”.
Solution. f(x) is increasing if
Vl‘l,xg T2 X —> f($1)>f($2) (3)
f(z) is not increasing if
E'Il, ) Not [SCl = T9g—> f(.fCl) = f(ZCQ)] (4)
This simplifies to (recall that Not (A= B) =Not [(Not A) or B] = A and (Not B))
a1, 2, ;1 222, fla1) < fla2). (5)

Problem 3. Let A, B, C be logical statements. Prove that [(A= B) and (B= C)| = (A= C).
Explain in English what this means.
Solution. We construct the truth table

C A—B B=—C (A= B)and (B=C(C) A= C [(A= B) and (B O))= A=0C)
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Therefore the statement is always true. It means if A implies B and B implies C, then A implies C'.

Problem 4. Let f: X+ Y be a function. Prove that f is one-to-one if and only if f(A\B)= f(A4)\ f(B)
for all subsets A, B of X.

Proof.

e “If”. Assume VA, B C X, f(
Then f(A\B) = {f(z1)}, f
f(x1) # f(w2).

e “Only if”. Assume f is one-to-one. We prove f(A\B) C f(A)\f(B) and f(A)\f(B)C f(A\B).

o f(A\B)C f(A)\f(B). Take any y € f(A\B). By definition there is 2 € A\ B such that
y=f(z). € A\B means z € A,z ¢ B.
Because z € A, y= f(z) € f(A); On the other hand, since f is one-to-one and x ¢ B,
= f(z) # f(2') for any z’ € B which means y ¢ f(B). Therefore y € f(A)\ f(B).

o f(A\f(B)C f(A\B). Take any y € f(A)\f(B). Then y € f(A),y ¢ f(B). As y e f(A)
there is x € A such that y = f(z). Since y ¢ f(B), x ¢ B. Therefore z € A\B and
consequently y= f(z) € f(A\B). O

A\B) = f(A)\f(B). For any x1 # x2, take A = {1, 22}, B = {x2}.
(A) = {f(x1), flz2)}, F(B) = {f(z2)}. As F(A\F(B) = {[f(z1)},

Problem 5. Suppose f: A— B and g: B— C are functions. Show that if both f and g are bijections,
then so is go f.
Proof. We need to show that

e go f is one-to-one. For any x1 # x4, since f is one-to-one, f(x1)+# f(z2). Now because g is one-
to-one, g(f(z1)) # g(f (x2)).

e go fis onto. Take any z € C. Since g is onto, there is y € B such that z= g(y). Now because f
is onto, there is « € A such that y= f(x). Thus z=g(f(x)). O

Problem 6. Let
A={x€]R:|sinx|<%}; B={reR:z’—2?+2—-1<0}. (6)

a) Represent A, B, AU B, AN B using intervals.
b) Which of these four sets is/are open? Which is/are closed? Justify your answers.
Solution.
a) A=Upez[nm— 6,nﬂ'—|—g} B={zecR: (17—1) (22 +1) <0} = (—00,1). AUB = (—o0,
DU(Unex[nm—f,nm+<]); ANB=UsLo[—nm— %, —nm+¢].
b)

e A is closed. Since A¢ = Unez(n T+ %, nmT+ 5%) is open (because it is union of open
intervals).

e B is open since it is an open interval.
e (' =AU B is neither open nor closed.

o (C is not open. Take xg= 5% € C. Then for any (a, b) such that zg € (a, b), there

is ¢> 0 such that max {1,a} < ¢ < zo. For this ¢ we have c¢ AU B. Consequently
(a,b)ZAU B.

o (C is not closed. We have

(AUB)CZ[L%”)LJ( ;’Lo_l(nw—l—%,nw—i—%)). (7)
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Now take 1 € (AU B)¢. For any (a, b) 3 1, we have a < HTG < 1 and therefore
1;“ € (a,b) but 1+a ¢ (AU B)°. Consequently (a,b)Z(AU B)-.

e D=ANDB is closed. Slnce De=(UpZo(—nm— 5%, —nT— %)) U (%, 00) is union of open
intervals and is therefore open.

Problem 7. Decide which of the following statements are true and which are false. Prove the true ones
and provide a counterexample for the false ones.

a) If {z,} is Cauchy and {y,} is bounded, then {z,y,} is Cauchy;

) If {z,} is a sequence of real numbers that satisfies xor — 2ox—1— 0 as k — oo and x, =0 for all
n+# 2k k€N, then {z,} is Cauchy;

c) If {z,} and {y,} are Cauchy and y,, # 0 for all n € N, then {z,/y,} is Cauchy;
) If {z,} and {y,} are Cauchy, then {1/(|z,|+|yn|)} cannot converge to zero.
Solution.
a) False. Take x, =1 and y, = (—1)" for all n € N. Now take eg=1. For any N €N, take n > N. Then
|0 Yn — Tnt1 Ynt1| =2 > eo. (8)
b) False. Take xor =1 for all k € N. Clearly xor — z9r—1— 0. Now take eg=1. For any N € N, take

n=2%> N. Then
|$n_$n+1|:1>50- (9)

¢) False. Take z, =1 and y, =1/n for all n € N. We have {z,,/y,} =n is not Cauchy.

d) True. Assume the contrary, that is 1/(|xn| + |yn|) — 0 as n — oco. As {x, }, {yn} are Cauchy,
they are bounded. That is there are M;, My such that

for all n € N.

Now due to 1/(|zn| + |yn|) — 0, there is N € N such that for all n > N, 1/(|z,| + |yn|) <
1/(My+ M2+ 1) = |zn| + |yn| > M1+ M2+ 1. Contradiction.

Problem 8. Prove that z, =3 "%

1.
n—1 7z 18 Cauchy.

Proof. For any € >0, take N € N such that N > 1/e. Then for any n,m > N, we have (without loss of
generality take m >n)

|f1: — |7 1 ;.‘...._F;fl_ 1 1 — 1 +. +
oo (n+1)2 S n(n+1) (m—1)m| |n n+1 n+l1 n+2
1 1 1 1
LS PP 11
m—1 m| n N (11)
O
Problem 9. Prove that z, = w does not converge.
Proof. We have xgn:Z—:: - n+1 ———land x9p+1= n;i=—1+%—>—1. Thus there are two
subsequences converging to 1 and —1 respectively. Consequently {z,} does not converge. O
_\\" . 2 e .
Problem 10. Let z,, =), _, \/W T for n € N. Does {x,} converge? Justify your answer.

Proof. We have

1 N VE+1-Vk
TrTVE (v (v 1
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Therefore

_— mzz (VEFT—VE)=vnF1-1. (13)
k=1 k=1

Take eg=1. For any N € N, take n=N+1 and m=4 N + 7. We have

|Zm — &n| = |Vm+1—Vn+1|=|/4(N+2) —VN+2|=VN+2>e,. (14)

Thus {z,} is not Cauchy and therefore cannot converge. O

Problem 11. Let w, satisfy |w,| < n? Determine whether the following sequences are converging or
not. If converging find the limit.

n 2
3 ) _e"—=1 _ wp+4wp+5
O e T e T (15)

You can use the fact that 7 — 0 as n — o0 if |r| < 1.
Solution.

o {x,}. We have

[VR?2+3n—(n+3)][Vr?+3n+(n+3)] —3n—9
[Vn2+3n+(n+3)] B vVn2+3n+(n+3)

: (16)

Tn

-3-9/n
14+3/n+(14+3/n)

Since 9/n—0,3/n— 0, we have =3 —9/n— —3,1/1+3/n+ (14 3/n) — 2. Because 20,
we have x, — —3/2.

e {yn}. We have
-1 (e/3"—(1/3)"

In g T on T T 1 (2/3)" (1)

Since |e/3],]1/3|,]2/3| < 1, we have (e/3)™, (1/3)",(2/3)" — 0 and consequently 3, — ~—2 =1.

1-0
o {z,}. We have
(wn/n?)? + 4 (wn/n?) +5/n"

1+3/n3 (18)

Zn =

As |w,| <n?, we have |w,/n* <1/n?— 0 due to Squeeze theorem. However |w,,/n? <1 is only
bounded.

In fact {z,} does not necessarily converge: Take w, = [M

5 ] n?, we have 29, — 4 and

zon+1— 0.
Problem 12. Let z9g=7 and define z,, iteratively through

2Tn _ . (19)

Tn+1=

Does lim,, ooy, exist? If it does, find the limit. Justify your answers.
Solution. Yes. We show that the sequence is Cauchy.

Subtracting x,, = 201 1 from Tpp1= 2% — 1 we have
2 2
Tn+1— Inzg (In _-Infl) - |In+1 - mn| - § |In _$n71| (20)

This leads to

2 2\? 2\"
Iwn+1—xn|=§|wn—xn_1l=(§> Iwn_1—wn_z|=---=(§> |z1 — o). (21)
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Consequently for any € >0, we can take N >logs /s [M} then for m >n> N,

T — 20| < |2

2\ 1! 2\"
<§> +---+<§) ]|x1—xo|
n 2 m—-—n—1
[1+-~-+<—> ]|x1—xo|
3
1

N

A
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~

=2

w

)
=
|
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=l
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o™

N
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S~—

Thus {z,} is Cauchy.
To find the limit, take n — oo on both sides we reach

lim :z:n:2 lim z,—-1= lim z,=-3. (23)

n——~uoQo n——:o0 n——uoQo

Problem 13. Let {z,} be a sequence of real numbers. Prove:

2)
b)

{zy} is unbounded if and only if there is a subsequence {x,, } satisfying |z, | — cc.

{z,} is bounded if and only if IM € R such that limsup,, o2, < M and liminf,, o2, > —M.

Proof.

2)

Since {z,} is unbounded, there is n; € N such that |z,,| > 1. Now take no € IN such that
|Tny| 2 |Tn,| + 2. In general, take x,, such that

|| = |20y | + K- (24)

Thus we obtain a subsequence {z,, } such that |z,,| > k. Now for any M € R, take N € N such
that N > |M|. Then for all k> N, |z,,|>k >N >|M|. Therefore |z,,| — oo.

For the “if” part, we need to show for any M € R there is n € N such that |z, | > M. But this
follows directly from the existence of {x,,} satisfying |z,,| — oo, which by definition says: for
any M € R there is K € N such that for all k> K, |z,,,| > M.

Since {x,} is bounded, there is M € R such that |z,| <M for all n € N. This leads to

—M < inf zp <supzp <M (25)

k>n k>n
for all n € N. Taking n — oo we conclude limsup,— co®n < M and liminf,, oz, > —M thanks
to comparison theorem.

For the “if” part, we need to show there is M’ € R such that for all n € N, |z, | < M'. By
definition, limsup,,_, .o, < M means there is N € N such that for all n > Ny, supg>np2x, <M +1.
In particular we have sup {xn,+1, N, 12, ...} <M + 1 which leads to

Vn > Ny, z, <M+ 1. (26)
Apply similar argument to liminf,, . .2, = —M, we obtain N, € N such that
Vn > Na, Tp=>—M —1. (27)
Now set N =max { N1, No}. We have (note that M > limsup x,, > liminf x,, > —M = M >0)
Vn> N, |xn| <M +1 (28)
Finally take
M'"=max {|z1], |z2|, ..., |[xn]|, M + 1}. (29)
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We have |z, | < M’ for all ne N. O

Problem 14. Let A be a nonempty subset of R. Let B=3 A:={3 z:2 € A}. Derive the relations between
sup B, inf B and sup A, inf A. Justify your answers. Note that you may need to discuss different cases
for ¢ and for sup A.

Solution. We prove sup B=3sup A. We only need to show:

1. 3sup A is an upper bound of B. For any b€ B, by definition there is a € A such that b=3a. By
definition of sup we have sup A>a=—=3supB>3a=0b.

2. 3sup A is the smallest upper bound of B. Let ¢ be an upper bound of B. There is ¢ > b for all
b € B. By definition of B we have ¢ >3 a for all a € A. Consequently ¢/3 > a for all a € A. By
definition of sup we have ¢/3 > sup A= ¢ >3sup A.

inf B=3inf A can be proved similarly.
Problem 15. Let x,=(—1)3"+ % forne N={1,2,...}. Let A:={x,:neN}={x1,29,...}.

a) Find max A,sup A, min A, inf A. Justify your answers.

b) Find limsup,,— o2y and liminf, ., oox,. Justify your answers.
Solution.

a)

e max A=5/4. To justify, we show
1. 5/4 € A. This is clear since 5/4 = xs.

2. 5/4>a for every a € A. Take any x, € A. If n=1, we have z1=-1+1=0<5/4.
If n>2 we have x, = (—1)3"+1/n2<1+1/4=5/4.

e Since max A exists, sup A=max A=5/4.

e min A does not exist. Assume the contrary. Let z,,=min A. But then we have

$n0+2:(_1)3( 0+2)+m<(—1)3 0+n—g:$n0 (30)
Contradiction.
o infA=-1. We show
1. —1 is a lower bound. We have
1
Ty = (_1)3n+F > (—1)3"> -1 (31)

for all n e N.

2. —1 is the largest lower bound. Let b be a lower bound that is b< (—1)3"+ % Thus
in particular, we have

1 1

<(—1)B3Ck+y L Y g L
b<(=1) Tarre T YT err? (32)
for all k€ N. Taking k£ — oo, by comparison theorem we have b << —1.
b) For any n € N, we have
sup:zzk_sup{(—l)g’lc—l—iQ:k:}n}gl—l—i2 (33)
k>n k n
because when k> n,
1 1
3k :
On the other hand, taking k=2n we have
(—1)3’€+i> 1= supzy > 1. (35)

2
k k>n
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Thus by comparison theorem

1<limsupz, = lim {supxk] < lim [1—1—%] =1. (36)
Therefore . T LEen T
limsup z, = 1. (37)
Similarly, for any n € N, we have e
—1< inf xkg—l—k%. (38)
k>n n

Taking limit n — oo and apply comparison theorem, we conclude

liminf z, =—1/ (39)

n——0Q

Problem 16. Let f(x) be a continuous function and let a € R. Prove that the pre-image f~1(a) is a
closed set.

Proof. If f~!(c) =@ then by definition it is open.
All we need to show is [f~!(a)]¢ is open. By definition

[fTHa)]*={z€R: f(z)=a}*={z€R: f(x)+#a}. (40)

Take any o€ {z €R: f(x)#a}. Set e=|f(xo) —a|. Then by the continuity of f there is 6 >0 such that
for all |x —xzo| <9, | f(x) — f(z0)| <e=|f(xo) —a|. This implies for all such z, f(z)=+a, or equivalently

(xo— 68,70+ 6) C{zr €R: f(x) #a}. Therefore [f~1(a)]¢ is open. O
Problem 17. Find the limits of
hm L0 rE6 g VIFo ol 256 (41)
z—s3 z2—-9 z—0 x ’ m—»ooy/$6—|—3;p—7'
Indicate clearly what property you are using at each step.
Solution.
e First we simplify
2?2=5x+6 (r-2)(x—3) x-—2 (42)
22—-9  (z-3)(z+3) x+3°
Since polynomials are continuous everywhere, we have
r—2—3-2=1, z+3—3+3=6. (43)
Since 6 # 0 the limit exists and equals 1/6.
e First simplify
Vitrz—1_ (Vitz-1)(Vi+z+1) x _ 1 (44)
r z(Vi+z+1) r(Vitz+1) Vitz+1
We know that /x is a continuous function for x > 0, therefore
. 1 limg 01 1
lim = =_. 45
e—0yIT+x+1 lim, o(V1+x+1) 2 (45)
The last step is because limy/1+z +1=20.
e We have
3 -2 -3
z°+5x+6  1+5x7“+6x 1—1—0—1—021 (46)

= —
Vab+3zx -7 V1+3x7>—-T7x3 1-0
Problem 18. Find and prove the limit

lim (Va?+2z+z). (47)

Xr—r—00
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Proof. We have

7(\/$2+2$+$)(\/$2+2$—$) 2z

2
Va4 2z 4= = = — —1.
Vi2+2x —x Vat4+2r—z  —\/1+2/z—1

Problem 19. Let f(z):(0,2)— R be defined as

x2—1
flx)=9 22—32+2 I#l-

c r=1
Find all ¢ € R which makes f(z) continuous at x=1. Justify your answer.

Proof. First we simplify
-1 (x—1)(z+1) z+1

22=3z+2 (z—2)(z—-1) =z-2

Therefore
lim f(xz)=-2.
r—>1
Consequently ¢=—2 is the only value that makes f(x) continuous at x =0.

(48)

Problem 20. Let f:IR+— R be a real function. Prove that f(z) — 0 if and only if | f(z)] — 0. Is it

true that f(x) — L+£0 if and only if |f(x)] — |L|? Justify your answer.

Proof.
o f(x)—0=|f(x)]—0.

For any € >0, since f(z) — 0 there is § >0 such that for all |z — zo| <d, | f(x) — 0| <e. But

this is just the definition of | f(z)| — 0 as  — xo.

e [f@)]—0= f(z)—0.

For any & > 0, since |f(x)] — 0 there is § > 0 such that for all |z — xo| <9, | | f(z)] — 0| <e.

Thus [ f(z) = 0] =[] f(2)| - 0] <e.
o f(zr)— L+0=|f(x)]—|L]| is true.

For any e > 0, since f(z) — L, there is § > 0 such that for all |x — zo| <4, |f(z) — L| <e.

Since || f(z)| — |L|| < | f(xz) — L|, we conclude that | f(z)| — |L|.

x>0

o |f(z)|— |L|= f(x) — L is false. A counterexample is f(a:)—{ 1_1 <0

Then | f(z)|=1

a constant function, therefore | f(z)| — 1 as  — 0. But lim, o f(z) does not exist, because if

we take {z,}= %, then x, — 0 but f(x,)=(—1)" does not converge.

HARDER PROBLEMS

e Problems at this level may or may not appear in the midterm.

O

e The solutions for these problems are sketchy. You are discouraged to read the solution

before having seriously worked on the problems.

Problem 21. Let A,,:= (1,1—1—%), Bn::[l,l—i—%], Cn::[l,l—i—%), D, .= (1,1—}—%} for every n € N.
a) Represent U%ozlAnv m?zO:IAm U?LO:IBm m%olen U?zozlcnv m?zozlcn U%olenv ﬂ%olen USing

intervals.
b) Among these eight sets, which is/are open? Which is/are closed? Justify your answers.

Solution. (1,4),9,[1,4],{1}=]1,1],[1,4),{1}=[1,1], (1, 4], @.
UA,, NA,,ND, are open, NA,,UB,,NB,,NC,,ND, are closed.
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Problem 22. Let {z,} be a sequence such that the subsequences {2y}, {z2n+1}, {Z3n} are convergent.
Show that {z,} is convergent.

Proof. Let v2,,— a, 22, 11— b. First we show that a=b. Assume otherwise. Then we have z3(2x)— a,
T3(2k+1) — b, but this contradicts the condition that x3, is convergent. Therefore a =b.

Now we prove 2, — a. For any £ >0, there are N7, N> € N such that for all n> Ny, |z, —a| <e; For all
n> Na, |xon+1—al<e. Now take N =max {2 N1,2 No+1}. Then for every n> N. we have |z, —a|<e. O

Problem 23. Let f(z) satisfy: Ve > 0 36 > 0 Va1, z2 satisfying z1, 22 € (0 — J, zo + )\{zo},
| f(x1) — f(x2)] <e. Prove that limy_, 4, f(z) exists.

Proof. Take any x,, — x¢ with x,, # xo. Then there is N € N such that for all n > N, z,, € (zo — J,
20+ 0)\{zo}. Thus we see that for every x,,— xq, f(z,) is Cauchy. All we need to show is that lim f(z,,)
is the same for all {z,}.

Assume the contrary. Then there is x,, — xo, yn — %o such that f(x,) — a, f(yn) — b#a. Now
consider the new sequence {f(z,)} U{f(yn)}. This new sequence has two subsequences converging to
different limits and thus cannot be Cauchy. Contradiction. O

Problem 24. Let £ CR be nonempty. For every xz € R, its distance to F is defined as
d(z):= inf |z —y]. (52)
yeE

a) Prove that d(z) is a continuous function.

b) Prove that inf can be replaced by min if and only if F is closed.

Proof.
a) Fix any xg€ R. Take z,, € F such that

|x—xn|—>;gg|x—y|, n — 00. (53)

For any ¢ > 0, take § =e. Then we have, for any |z —x0| <,
d(x) = |zo — | < |2 — 2pn| — |20 — 0| < |z — 20| < 4. (54)

Taking limit n — oo, we reach

d(z) —d(xo) < 9. (55)
Now repeat the above argument with z, x¢ switched, we obtain
d(zg) — d(z) < 0. (56)
Therefore
|d(x) — d(zo)| <d=¢. (57)

e “If". Assume F is closed. For any x € R, take z,, € E such that |x — z,| — d(z). As |z — x|
is convergent, it is bounded, that is there is M € R such that |z — z,| < M for all n € N.
Consequently |z, | <|z|+ M for all n € N. By Bolzano-Weierstrass, there is a subsequence
Tn, — EE€R. As E is closed, £ € E. Then we have d(z) =lim |z — x,,|=|z — |

e “Only if”. Assume the contrary, that is F is not closed. Then E° is not open. Consequently
there is g € E°€ such that for every n € N, (wo — %, To + %)SZEC, in other words there is
xyn, € E such that |z, — x| < % Consequently d(zo) =0. Now since minye g |20 — y| exists,
ther is yo € E such that |xg— yo| =0= xo=yo € E. Contradiction. a

Problem 25. Let f(z):R+— R be a real function. Define f*(x)=1lim,__csupjz—yj<1/nf(y), [~ (z) =
limy, . ooinfj, _ y|<1/nf(y). Prove that f is continuous at x¢ if and only if fT(xo) = f~(xo) = f(z0).
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Proof.

e “If”. Assume f is continuous. Then for every ¢ > 0, there is § > 0 such that for all |z — zo| < 9,
|f(x) = f(xo)] <e. Thus for all n>1/§, we have

flxzo)—e< inf  f(y)<  sup  f(y) < flxo) +e. (58)
lze—y[<1/n lz—y|<1/n

Taking limit and apply comparison theorem, we conclude
f(@o) —e < f(20) < fH(20) < f (o) +e (59)
As this is true for all £ >0, we conclude f*(zo)= f"(z0) = f(x0).

e “Only if”. For any ¢ > 0, since f*(xo) = f(xo), there is Ny € N such that for all n > Ny,
SUP|z—ao|<1/nf () < f(x0) + €, that is f(x) < f(xo) + € for all [z —x0| < 1/n. Similarly, there is
Ny € N such that for all n> No, f(z)> f(xo) —e€ for all |z — zo| <1/n.

Now take 5:min{ﬁ,ﬁ}. Then for all |x — x0| <J, we have f(zo) —e< f(z) < f(zo)+€

which means | f(z) — f(zo)|<e. O

Problem 26. Let f(z): R+— R be a real function. Prove that f is continuous if and only if for every
open set A C R, the pre-image f~1(A) is open.

Proof.

e “If”. For any ¢ > 0, the set (f(z9) — &, f(xo) + €) is open. Therefore its preimage {z € R:
|f(x) — f(zo)| < €} is open. Consequently there is (a, b) such that zg € (a, b) C {z € R:
|f(x) = f(zo)| <e}. Take 6 =min{zo—a,b— zo}, we see that |z — x| <0 =>|f(x) — f(z0)| <e.

e “Only if". Assume f is continuous. Let A be open. For any xo € f~!(A), there is € > 0 such
that (f(zo) — e, f(zo) + &) C A. As f is continuous, there is § > 0 such that |z — 2o| < d =
|f(xz)— f(zo)| <e, in other words f((zo—d,2z0+9)) C (f(z0) —¢, f(zo) +¢€) C A. Consequently
(ro— 08,70+ 6) C f1(A). Therefore f~1(A) is open. O

Problem 27. Let f(z): R— R be a real function satisfying f(z) >0 for all z € R. Prove that for every
closed interval [a,b] with a,b€ R, there is § >0 such that f(z) > for all z € [a, b]. Is the claim still true
if one or both of a,b is infinity?

Proof. Forgot to put in the problem that f(x) is continuous! When a, b are finite, we know that
m=mingc(q,5 (). As f(2)>0, m>0. If m=0, then there is 20 € [a,b] such that f(20)=0 contradiction.
Therefore m > 0. Take § =m/2.

If one or both a,b is infinity, then the claim does not hold anymore. For example, if b= oo, consider
f(z)=e"7 If a=—o0, consider f(z)=e". O

Problem 28. (Cesaro average) Let {z,} be a real sequence. Set y,, = (1 +--- + x,)/n. Show that if
T, — a € R, then y, — a € R. What about the converse, that is does y, — a guarantees x,, — a?

Proof. Because z,, — a € R, there is M € R such that |z,,| < M for all n € N. For any ¢ > 0, since
X, — a, there is N1 € R such that for all n > Ny, |2, —a| <e/2. Now take N >max {w, Nl},

€
for every n > N, we have

(x1—a)+ (z2—a)+ -+ (xp—a)
n
[z1—al+ w2 —al+- +|en—a]

|yn —al

<
n
[z1i—alt+--Flen—al | Jenvpi—al+-Flza—a
< +
= n n
< Nl(M+|CL|)+(n—N1)6/2
c En n
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The converse is false. For example, take x, = (—1)". Then y, — 0. O

Problem 29. Let x,, >0 for all n € N. Show that

liminf 221 < liminf (20)Y™ < limsup (,)*/" < limsup Intl (61)
n—oo In n—-> 00 n—s 00 n—oo In
Use this to prove that if lim% exists, so does lim (x,,)'/". What about the converse?
Proof. The middle inequality is obvious.
e The left inequality liminf,, __, oo 22+ < liminf, ., o (:En)l/". For any m >n, we can write
1/m m—n
()™ = /™ (—%H'"—xm ) >z ( inf —xk“) " (62)
T Tm—1 k>n Tk

1/m . Tl )\ . Thi1
Asz,/"— 1 and (1nfk>n ” n —infy>, 2, A8 m—— 00, we have

liminf (xm)l/m > liminf [le/m ( inf 2Ll >"} = lim x,lz/m ( inf 2Ll >" =
m—s 00 m—s 00 k>n Tk m— 0o k>n Tl
inf Lkt (63)
k>n Xk
Now take limit n — oo, we conclude
Hminf (2,,)Y/™ > liminf 2252, (64)
m—s 00 n—oo Ip
e The right inequality is proved similarly, using
1/m m—n
() U = 1/ (@l‘_m) <o/ up ZEr1 )5 (65)
Tn Tm—1 k>n Lk

instead of (62).

If hm% exists, then liminf % = limsup % Application of the squeeze theorem gives lim (z,,)/™

n n

exists.
The converse is false. For example take x, =2+ (—1)". Then lim a:,lz/n: 1 but liminf% =1/3 while
limsup % =3. " O



