MATH 314 FALL 2012 MIDTERM PRACTICE PROBLEMS SOLUTIONS

Ост. 19, 2012

- To best prepare for midterm, also review homework problems.
- To get most out of these problems, *clearly write down* (instead of mumble or think) • your complete answers (instead of a few lines of the main idea), in full sentences (instead of formulas connected by arrows). And then compare with the solutions when they are posted.
- If don't know where to start, write down all definitions involved. •
- If have no idea what to do, try proof by contradiction. Start by writing down the assumption in logical statements.
- "Justify" means: if true, provide a proof; if false, give a counterexample.

PRACTICE PROBLEMS

Problem 1. $f(x): E \mapsto \mathbb{R}$ is Hölder continuous if there are a > 0 and $M \in \mathbb{R}$ such that for every $x, y \in E$, $|f(x) - f(y)| \leq M |x - y|^a$. Write down the logical statement for "f(x) is not Hölder continuous". **Solution.** f(x) is Hölder continuous if

$$\exists a > 0 \exists M \in \mathbb{R} \ \forall x, y \in E \qquad |f(x) - f(y)| \leq M \ |x - y|^a.$$

$$\tag{1}$$

f(x) is not Hölder continuous if

$$\forall a > 0 \ \forall M \in \mathbb{R} \ \exists x, y \in E \qquad |f(x) - f(y)| > M \ |x - y|^a.$$

$$\tag{2}$$

Note that x, y will change if a, M change.

Problem 2. Recall that f(x) is increasing if $f(x_1) \ge f(x_2)$ whenever $x_1 \ge x_2$ Write down the logical statement for "f(x) is not increasing".

Solution. f(x) is increasing if

$$\forall x_1, x_2 \qquad x_1 \geqslant x_2 \Longrightarrow f(x_1) \geqslant f(x_2). \tag{3}$$

f(x) is not increasing if

$$\exists x_1, x_2 \qquad \text{Not} \, [x_1 \geqslant x_2 \Longrightarrow f(x_1) \geqslant f(x_2)]. \tag{4}$$

This simplifies to (recall that Not $(A \Longrightarrow B) =$ Not [(Not A) or B] = A and (Not B))

$$\exists x_1, x_2, \ x_1 \ge x_2, \qquad f(x_1) < f(x_2). \tag{5}$$

Problem 3. Let A, B, C be logical statements. Prove that $[(A \Longrightarrow B) \text{ and } (B \Longrightarrow C)] \Longrightarrow (A \Longrightarrow C)$. Explain in English what this means. Solution. We construct the truth table

 $A \ B \ C \ A \Longrightarrow B \ B \Longrightarrow C \ (A \Longrightarrow B) \text{ and } (B \Longrightarrow C) \ A \Longrightarrow C \ [(A \Longrightarrow B) \text{ and } (B \Longrightarrow C)] \Longrightarrow (A \Longrightarrow C)$ TT T TTTTTT T FFFТ TFT F TFTFТ Т T F FFTFFTF T TTTTTТ F T FTFFTTF F TTTTTTTTF F FTTT

Therefore the statement is always true. It means if A implies B and B implies C, then A implies C.

Problem 4. Let $f: X \mapsto Y$ be a function. Prove that f is one-to-one if and only if $f(A \setminus B) = f(A) \setminus f(B)$ for all subsets A, B of X.

Proof.

- "If'. Assume $\forall A, B \subseteq X, f(A \setminus B) = f(A) \setminus f(B)$. For any $x_1 \neq x_2$, take $A = \{x_1, x_2\}, B = \{x_2\}$. Then $f(A \setminus B) = \{f(x_1)\}, f(A) = \{f(x_1), f(x_2)\}, f(B) = \{f(x_2)\}$. As $f(A) \setminus f(B) = \{f(x_1)\}, f(x_1) \neq f(x_2)$.
- "Only if". Assume f is one-to-one. We prove $f(A \setminus B) \subseteq f(A) \setminus f(B)$ and $f(A) \setminus f(B) \subseteq f(A \setminus B)$.
 - $f(A \setminus B) \subseteq f(A) \setminus f(B)$. Take any $y \in f(A \setminus B)$. By definition there is $x \in A \setminus B$ such that y = f(x). $x \in A \setminus B$ means $x \in A, x \notin B$. Because $x \in A, y = f(x) \in f(A)$; On the other hand, since f is one-to-one and $x \notin B$, $y = f(x) \neq f(x')$ for any $x' \in B$ which means $y \notin f(B)$. Therefore $y \in f(A) \setminus f(B)$.
 - $f(A) \setminus f(B) \subseteq f(A \setminus B)$. Take any $y \in f(A) \setminus f(B)$. Then $y \in f(A), y \notin f(B)$. As $y \in f(A)$ there is $x \in A$ such that y = f(x). Since $y \notin f(B), x \notin B$. Therefore $x \in A \setminus B$ and consequently $y = f(x) \in f(A \setminus B)$. □

Problem 5. Suppose $f: A \mapsto B$ and $g: B \mapsto C$ are functions. Show that if both f and g are bijections, then so is $g \circ f$.

Proof. We need to show that

- $g \circ f$ is one-to-one. For any $x_1 \neq x_2$, since f is one-to-one, $f(x_1) \neq f(x_2)$. Now because g is one-to-one, $g(f(x_1)) \neq g(f(x_2))$.
- $g \circ f$ is onto. Take any $z \in C$. Since g is onto, there is $y \in B$ such that z = g(y). Now because f is onto, there is $x \in A$ such that y = f(x). Thus z = g(f(x)).

Problem 6. Let

$$A = \left\{ x \in \mathbb{R} : |\sin x| \leq \frac{1}{2} \right\}; \qquad B = \{ x \in \mathbb{R} : x^3 - x^2 + x - 1 < 0 \}.$$
(6)

- a) Represent $A, B, A \cup B, A \cap B$ using intervals.
- b) Which of these four sets is/are open? Which is/are closed? Justify your answers.

Solution.

a)
$$A = \bigcup_{n \in \mathbb{Z}} \left[n \pi - \frac{\pi}{6}, n \pi + \frac{\pi}{6} \right]; B = \left\{ x \in \mathbb{R} : (x - 1) (x^2 + 1) < 0 \right\} = (-\infty, 1). A \cup B = (-\infty, 1) \cup \left(\bigcup_{n \in \mathbb{N}} \left[n \pi - \frac{\pi}{6}, n \pi + \frac{\pi}{6} \right] \right); A \cap B = \bigcup_{n=0}^{\infty} \left[-n \pi - \frac{\pi}{6}, -n \pi + \frac{\pi}{6} \right].$$

b)

- A is closed. Since $A^c = \bigcup_{n \in \mathbb{Z}} \left(n \pi + \frac{\pi}{6}, n \pi + \frac{5\pi}{6} \right)$ is open (because it is union of open intervals).
- *B* is open since it is an open interval.
- $C = A \cup B$ is neither open nor closed.
 - *C* is not open. Take $x_0 = \frac{5\pi}{6} \in C$. Then for any (a, b) such that $x_0 \in (a, b)$, there is c > 0 such that max $\{1, a\} < c < x_0$. For this *c* we have $c \notin A \cup B$. Consequently $(a, b) \notin A \cup B$.
 - \circ *C* is not closed. We have

$$(A \cup B)^{c} = \left[1, \frac{5\pi}{6}\right] \cup \left(\bigcup_{n=1}^{\infty} \left(n\pi + \frac{\pi}{6}, n\pi + \frac{5\pi}{6}\right)\right).$$
(7)

Now take $1 \in (A \cup B)^c$. For any $(a, b) \ni 1$, we have $a < \frac{1+a}{2} < 1$ and therefore $\frac{1+a}{2} \in (a, b)$ but $\frac{1+a}{2} \notin (A \cup B)^c$. Consequently $(a, b) \not\subseteq (A \cup B)^c$.

• $D = A \cap B$ is closed. Since $D^c = \left(\bigcup_{n=0}^{\infty} \left(-n \pi - \frac{5\pi}{6}, -n \pi - \frac{\pi}{6}\right)\right) \cup \left(\frac{\pi}{6}, \infty\right)$ is union of open intervals and is therefore open.

Problem 7. Decide which of the following statements are true and which are false. Prove the true ones and provide a counterexample for the false ones.

- a) If $\{x_n\}$ is Cauchy and $\{y_n\}$ is bounded, then $\{x_n y_n\}$ is Cauchy;
- b) If $\{x_n\}$ is a sequence of real numbers that satisfies $x_{2^k} x_{2^{k-1}} \longrightarrow 0$ as $k \longrightarrow \infty$ and $x_n = 0$ for all $n \neq 2^k$, $k \in \mathbb{N}$, then $\{x_n\}$ is Cauchy;
- c) If $\{x_n\}$ and $\{y_n\}$ are Cauchy and $y_n \neq 0$ for all $n \in \mathbb{N}$, then $\{x_n/y_n\}$ is Cauchy;
- d) If $\{x_n\}$ and $\{y_n\}$ are Cauchy, then $\{1/(|x_n| + |y_n|)\}$ cannot converge to zero.

Solution.

a) False. Take $x_n = 1$ and $y_n = (-1)^n$ for all $n \in \mathbb{N}$. Now take $\varepsilon_0 = 1$. For any $N \in \mathbb{N}$, take n > N. Then

$$|x_n y_n - x_{n+1} y_{n+1}| = 2 > \varepsilon_0.$$
(8)

b) False. Take $x_{2^k} = 1$ for all $k \in \mathbb{N}$. Clearly $x_{2^k} - x_{2^{k-1}} \longrightarrow 0$. Now take $\varepsilon_0 = 1$. For any $N \in \mathbb{N}$, take $n = 2^k > N$. Then

$$|x_n - x_{n+1}| = 1 \ge \varepsilon_0. \tag{9}$$

- c) False. Take $x_n = 1$ and $y_n = 1/n$ for all $n \in \mathbb{N}$. We have $\{x_n/y_n\} = n$ is not Cauchy.
- d) True. Assume the contrary, that is $1/(|x_n| + |y_n|) \longrightarrow 0$ as $n \longrightarrow \infty$. As $\{x_n\}, \{y_n\}$ are Cauchy, they are bounded. That is there are M_1, M_2 such that

$$|x_n| \leqslant M_1, \qquad |y_n| \leqslant M_2 \tag{10}$$

for all $n \in \mathbb{N}$.

Now due to $1/(|x_n| + |y_n|) \longrightarrow 0$, there is $N \in \mathbb{N}$ such that for all n > N, $1/(|x_n| + |y_n|) < 1/(M_1 + M_2 + 1) \Longrightarrow |x_n| + |y_n| > M_1 + M_2 + 1$. Contradiction.

Problem 8. Prove that $x_n = \sum_{n=1}^{\infty} \frac{1}{n^2}$ is Cauchy.

Proof. For any $\varepsilon > 0$, take $N \in \mathbb{N}$ such that $N > 1/\varepsilon$. Then for any n, m > N, we have (without loss of generality take m > n)

$$|x_n - x_m| = \left|\frac{1}{(n+1)^2} + \dots + \frac{1}{m^2}\right| \le \left|\frac{1}{n(n+1)} + \dots + \frac{1}{(m-1)m}\right| = \left|\frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{1}{m-1} - \frac{1}{m}\right| \le \frac{1}{n} < \frac{1}{N} < \varepsilon.$$

$$(11)$$

Problem 9. Prove that $x_n = \frac{(-1)^n (n-1)}{n+1}$ does not converge.

Proof. We have $x_{2n} = \frac{n-1}{n+1} = 1 - \frac{2}{n+1} \longrightarrow 1$ and $x_{2n+1} = -\frac{n-1}{n+1} = -1 + \frac{2}{n+1} \longrightarrow -1$. Thus there are two subsequences converging to 1 and -1 respectively. Consequently $\{x_n\}$ does not converge.

Problem 10. Let $x_n = \sum_{k=1}^n \frac{1}{\sqrt{k+1} + \sqrt{k}}$ for $n \in \mathbb{N}$. Does $\{x_n\}$ converge? Justify your answer.

Proof. We have

$$\frac{1}{\sqrt{k+1} + \sqrt{k}} = \frac{\sqrt{k+1} - \sqrt{k}}{\left(\sqrt{k+1} + \sqrt{k}\right)\left(\sqrt{k+1} - \sqrt{k}\right)} = \sqrt{k+1} - \sqrt{k}.$$
(12)

Therefore

$$x_n = \sum_{k=1}^n \frac{1}{\sqrt{k+1} + \sqrt{k}} = \sum_{k=1}^n \left(\sqrt{k+1} - \sqrt{k}\right) = \sqrt{n+1} - 1.$$
(13)

Take $\varepsilon_0 = 1$. For any $N \in \mathbb{N}$, take n = N + 1 and m = 4N + 7. We have

$$|x_m - x_n| = |\sqrt{m+1} - \sqrt{n+1}| = |\sqrt{4(N+2)} - \sqrt{N+2}| = \sqrt{N+2} > \varepsilon_0.$$
(14)

Thus $\{x_n\}$ is not Cauchy and therefore cannot converge.

Problem 11. Let w_n satisfy $|w_n| \leq n^2$. Determine whether the following sequences are converging or not. If converging find the limit.

$$x_n = \sqrt{n^2 + 3n} - n - 3; \qquad y_n = \frac{e^n - 1}{3^n - 2^n}; \qquad z_n = \frac{w_n^2 + 4w_n + 5}{n^4 + 3n}.$$
(15)

You can use the fact that $r^n \longrightarrow 0$ as $n \longrightarrow \infty$ if |r| < 1. Solution.

• $\{x_n\}$. We have

$$x_n = \frac{\left[\sqrt{n^2 + 3n} - (n+3)\right] \left[\sqrt{n^2 + 3n} + (n+3)\right]}{\left[\sqrt{n^2 + 3n} + (n+3)\right]} = \frac{-3n - 9}{\sqrt{n^2 + 3n} + (n+3)} = \frac{-3 - 9/n}{\sqrt{1 + 3/n} + (1 + 3/n)}.$$
(16)

Since $9/n \longrightarrow 0, 3/n \longrightarrow 0$, we have $-3 - 9/n \longrightarrow -3, \sqrt{1 + 3/n} + (1 + 3/n) \longrightarrow 2$. Because $2 \neq 0$, we have $x_n \longrightarrow -3/2$.

• $\{y_n\}$. We have

$$y_n = \frac{e^n - 1}{3^n - 2^n} = \frac{(e/3)^n - (1/3)^n}{1 - (2/3)^n}.$$
(17)

Since |e/3|, |1/3|, |2/3| < 1, we have $(e/3)^n, (1/3)^n, (2/3)^n \longrightarrow 0$ and consequently $y_n \longrightarrow \frac{0-0}{1-0} = 1$.

• $\{z_n\}$. We have

$$z_n = \frac{(w_n/n^2)^2 + 4(w_n/n^4) + 5/n^4}{1 + 3/n^3}.$$
(18)

As $|w_n| \leq n^2$, we have $|w_n/n^4| \leq 1/n^2 \longrightarrow 0$ due to Squeeze theorem. However $|w_n/n^2| \leq 1$ is only bounded.

In fact $\{z_n\}$ does not necessarily converge: Take $w_n = \left[\frac{1+(-1)^n}{2}\right]n^2$, we have $z_{2n} \longrightarrow 4$ and $z_{2n+1} \longrightarrow 0$.

Problem 12. Let $x_0 = 7$ and define x_n iteratively through

$$x_{n+1} = \frac{2x_n}{3} - 1. \tag{19}$$

Does $\lim_{n\to\infty} x_n$ exist? If it does, find the limit. Justify your answers.

Solution. Yes. We show that the sequence is Cauchy.

Subtracting $x_n = \frac{2x_{n-1}}{3} - 1$ from $x_{n+1} = \frac{2x_n}{3} - 1$ we have

$$x_{n+1} - x_n = \frac{2}{3} \left(x_n - x_{n-1} \right) \Longrightarrow |x_{n+1} - x_n| = \frac{2}{3} \left| x_n - x_{n-1} \right|$$
(20)

This leads to

$$|x_{n+1} - x_n| = \frac{2}{3} |x_n - x_{n-1}| = \left(\frac{2}{3}\right)^2 |x_{n-1} - x_{n-2}| = \dots = \left(\frac{2}{3}\right)^n |x_1 - x_0|.$$
(21)

Consequently for any $\varepsilon > 0$, we can take $N \ge \log_{3/2} \left[\frac{3 |x_1 - x_0|}{\varepsilon} \right]$, then for m > n > N,

$$\begin{aligned} |x_{m} - x_{n}| &\leq |x_{m} - x_{m-1}| + \dots + |x_{n+1} - x_{n}| \\ &\leq \left[\left(\frac{2}{3}\right)^{m-1} + \dots + \left(\frac{2}{3}\right)^{n} \right] |x_{1} - x_{0}| \\ &= \left(\frac{2}{3}\right)^{n} \left[1 + \dots + \left(\frac{2}{3}\right)^{m-n-1} \right] |x_{1} - x_{0}| \\ &= \left(\frac{2}{3}\right)^{n} \frac{1 - \left(\frac{2}{3}\right)^{m-n}}{1 - \frac{2}{3}} |x_{1} - x_{0}| \\ &\leq \left(\frac{2}{3}\right)^{n} 3 |x_{1} - x_{0}| \\ &\leq \left(\frac{2}{3}\right)^{N} 3 |x_{1} - x_{0}| < \varepsilon. \end{aligned}$$

$$(22)$$

Thus $\{x_n\}$ is Cauchy.

To find the limit, take $n \longrightarrow \infty$ on both sides we reach

$$\lim_{n \to \infty} x_n = \frac{2}{3} \lim_{n \to \infty} x_n - 1 \Longrightarrow \lim_{n \to \infty} x_n = -3.$$
(23)

Problem 13. Let $\{x_n\}$ be a sequence of real numbers. Prove:

- a) $\{x_n\}$ is unbounded if and only if there is a subsequence $\{x_{n_k}\}$ satisfying $|x_{n_k}| \to \infty$.
- b) $\{x_n\}$ is bounded if and only if $\exists M \in \mathbb{R}$ such that $\limsup_{n \longrightarrow \infty} x_n \leqslant M$ and $\liminf_{n \to \infty} x_n \geqslant -M$.

Proof.

a) Since $\{x_n\}$ is unbounded, there is $n_1 \in \mathbb{N}$ such that $|x_{n_1}| \ge 1$. Now take $n_2 \in \mathbb{N}$ such that $|x_{n_2}| \ge |x_{n_1}| + 2$. In general, take x_{n_k} such that

$$|x_{n_k}| \geqslant |x_{n_{k-1}}| + k. \tag{24}$$

Thus we obtain a subsequence $\{x_{n_k}\}$ such that $|x_{n_k}| \ge k$. Now for any $M \in \mathbb{R}$, take $N \in \mathbb{N}$ such that N > |M|. Then for all k > N, $|x_{n_k}| \ge k > N > |M|$. Therefore $|x_{n_k}| \longrightarrow \infty$.

For the "if' part, we need to show for any $M \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that $|x_n| > M$. But this follows directly from the existence of $\{x_{n_k}\}$ satisfying $|x_{n_k}| \longrightarrow \infty$, which by definition says: for any $M \in \mathbb{R}$ there is $K \in \mathbb{N}$ such that for all k > K, $|x_{n_k}| > M$.

b) Since $\{x_n\}$ is bounded, there is $M \in \mathbb{R}$ such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. This leads to

$$-M \leqslant \inf_{k \ge n} x_k \leqslant \sup_{k \ge n} x_k \leqslant M \tag{25}$$

for all $n \in \mathbb{N}$. Taking $n \longrightarrow \infty$ we conclude $\limsup_{n \longrightarrow \infty} x_n \leq M$ and $\liminf_{n \to \infty} x_n \geq -M$ thanks to comparison theorem.

For the "if" part, we need to show there is $M' \in \mathbb{R}$ such that for all $n \in \mathbb{N}$, $|x_n| \leq M'$. By definition, $\limsup_{n \longrightarrow \infty} x_n \leq M$ means there is $N_1 \in \mathbb{N}$ such that for all $n > N_1$, $\sup_{k \geq n} x_n \leq M + 1$. In particular we have $\sup \{x_{N_1+1}, x_{N_1+2}, \ldots\} \leq M + 1$ which leads to

$$\forall n > N_1, x_n \leqslant M + 1. \tag{26}$$

Apply similar argument to $\liminf_{n \to \infty} x_n \ge -M$, we obtain $N_2 \in \mathbb{N}$ such that

$$\forall n > N_2, \qquad x_n \geqslant -M - 1. \tag{27}$$

Now set $N = \max\{N_1, N_2\}$. We have (note that $M \ge \limsup x_n \ge \liminf x_n \ge -M \Longrightarrow M \ge 0$)

$$\forall n > N, \qquad |x_n| \leqslant M + 1 \tag{28}$$

Finally take

$$M' = \max\{|x_1|, |x_2|, \dots, |x_N|, M+1\}.$$
(29)

We have $|x_n| \leq M'$ for all $n \in \mathbb{N}$.

Problem 14. Let *A* be a nonempty subset of \mathbb{R} . Let B = 3 $A := \{3 : x \in A\}$. Derive the relations between $\sup B$, $\inf B$ and $\sup A$, $\inf A$. Justify your answers. Note that you may need to discuss different cases for *c* and for $\sup A$.

Solution. We prove $\sup B = 3 \sup A$. We only need to show:

- 1. $3 \sup A$ is an upper bound of B. For any $b \in B$, by definition there is $a \in A$ such that b = 3a. By definition of sup we have $\sup A \ge a \Longrightarrow 3 \sup B \ge 3a = b$.
- 2. $3 \sup A$ is the smallest upper bound of B. Let c be an upper bound of B. There is $c \ge b$ for all $b \in B$. By definition of B we have $c \ge 3 a$ for all $a \in A$. Consequently $c/3 \ge a$ for all $a \in A$. By definition of sup we have $c/3 \ge \sup A \Longrightarrow c \ge 3 \sup A$.

 $\inf B = 3 \inf A$ can be proved similarly.

Problem 15. Let $x_n = (-1)^{3n} + \frac{1}{n^2}$ for $n \in \mathbb{N} = \{1, 2, ...\}$. Let $A := \{x_n : n \in \mathbb{N}\} = \{x_1, x_2, ...\}$.

- a) Find $\max A$, $\sup A$, $\min A$, $\inf A$. Justify your answers.
- b) Find $\limsup_{n\to\infty} x_n$ and $\liminf_{n\to\infty} x_n$. Justify your answers.

Solution.

a)

- $\max A = 5/4$. To justify, we show
 - 1. $5/4 \in A$. This is clear since $5/4 = x_2$.
 - 2. $5/4 \ge a$ for every $a \in A$. Take any $x_n \in A$. If n = 1, we have $x_1 = -1 + 1 = 0 < 5/4$. If $n \ge 2$ we have $x_n = (-1)^{3n} + 1/n^2 \le 1 + 1/4 = 5/4$.
- Since max A exists, $\sup A = \max A = 5/4$.
- min A does not exist. Assume the contrary. Let $x_{n_0} = \min A$. But then we have

$$x_{n_0+2} = (-1)^{3(n_0+2)} + \frac{1}{(n_0+2)^2} < (-1)^{3n_0} + \frac{1}{n_0^2} = x_{n_0}$$
(30)

Contradiction.

- $\inf A = -1$. We show
 - 1. -1 is a lower bound. We have

$$x_n = (-1)^{3n} + \frac{1}{n^2} \ge (-1)^{3n} \ge -1 \tag{31}$$

for all $n \in \mathbb{N}$.

2. -1 is the largest lower bound. Let b be a lower bound that is $b \leq (-1)^{3n} + \frac{1}{n^2}$. Thus in particular, we have

$$b \leq (-1)^{3(2k+1)} + \frac{1}{(2k+1)^2} = -1 + \frac{1}{(2k+1)^2}$$
(32)

for all $k \in \mathbb{N}$. Taking $k \longrightarrow \infty$, by comparison theorem we have $b \leq -1$.

b) For any $n \in \mathbb{N}$, we have

$$\sup_{k \ge n} x_k = \sup\left\{ (-1)^{3k} + \frac{1}{k^2} : k \ge n \right\} \le 1 + \frac{1}{n^2}$$
(33)

because when $k \ge n$,

$$(-1)^{3k} \leqslant 1, \qquad \frac{1}{k^2} \leqslant \frac{1}{n^2};$$
 (34)

On the other hand, taking k = 2 n we have

$$(-1)^{3k} + \frac{1}{k^2} \ge 1 \Longrightarrow \sup_{k \ge n} x_k \ge 1.$$
(35)

Thus by comparison theorem

$$1 \leq \limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left[\sup_{k \geq n} x_k \right] \leq \lim_{n \to \infty} \left[1 + \frac{1}{n^2} \right] = 1.$$
(36)

Therefore

$$\limsup_{n \longrightarrow \infty} x_n = 1. \tag{37}$$

Similarly, for any $n \in \mathbb{N}$, we have

$$-1 \leqslant \inf_{k \geqslant n} x_k \leqslant -1 + \frac{1}{n^2}.$$
(38)

Taking limit $n \longrightarrow \infty$ and apply comparison theorem, we conclude

$$\liminf_{n \to \infty} x_n = -1/\tag{39}$$

Problem 16. Let f(x) be a continuous function and let $a \in \mathbb{R}$. Prove that the pre-image $f^{-1}(a)$ is a closed set.

Proof. If $f^{-1}(c) = \emptyset$ then by definition it is open.

All we need to show is $[f^{-1}(a)]^c$ is open. By definition

$$[f^{-1}(a)]^{c} = \{x \in \mathbb{R}: f(x) = a\}^{c} = \{x \in \mathbb{R}: f(x) \neq a\}.$$
(40)

Take any $x_0 \in \{x \in \mathbb{R}: f(x) \neq a\}$. Set $\varepsilon = |f(x_0) - a|$. Then by the continuity of f there is $\delta > 0$ such that for all $|x - x_0| < \delta$, $|f(x) - f(x_0)| < \varepsilon = |f(x_0) - a|$. This implies for all such x, $f(x) \neq a$, or equivalently $(x_0 - \delta, x_0 + \delta) \subseteq \{x \in \mathbb{R}: f(x) \neq a\}$. Therefore $[f^{-1}(a)]^c$ is open. \Box

Problem 17. Find the limits of

$$\lim_{x \to 3} \frac{x^2 - 5x + 6}{x^2 - 9}; \qquad \lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x}; \qquad \lim_{x \to \infty} \frac{x^3 + 5x + 6}{\sqrt{x^6 + 3x} - 7}.$$
 (41)

Indicate clearly what property you are using at each step. **Solution.**

• First we simplify

$$\frac{x^2 - 5x + 6}{x^2 - 9} = \frac{(x - 2)(x - 3)}{(x - 3)(x + 3)} = \frac{x - 2}{x + 3}.$$
(42)

Since polynomials are continuous everywhere, we have

$$x - 2 \longrightarrow 3 - 2 = 1, \qquad x + 3 \longrightarrow 3 + 3 = 6. \tag{43}$$

Since $6 \neq 0$ the limit exists and equals 1/6.

• First simplify

$$\frac{\sqrt{1+x}-1}{x} = \frac{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}{x(\sqrt{1+x}+1)} = \frac{x}{x(\sqrt{1+x}+1)} = \frac{1}{\sqrt{1+x}+1}.$$
(44)

We know that \sqrt{x} is a continuous function for $x \ge 0$, therefore

$$\lim_{x \to 0} \frac{1}{\sqrt{1+x}+1} = \frac{\lim_{x \to 0} 1}{\lim_{x \to 0} (\sqrt{1+x}+1)} = \frac{1}{2}.$$
(45)

The last step is because $\lim \sqrt{1+x} + 1 = 2 \neq 0$.

• We have

$$\frac{x^3 + 5x + 6}{\sqrt{x^6 + 3x} - 7} = \frac{1 + 5x^{-2} + 6x^{-3}}{\sqrt{1 + 3x^{-5}} - 7x^{-3}} \longrightarrow \frac{1 + 0 + 0}{1 - 0} = 1.$$
(46)

Problem 18. Find and prove the limit

$$\lim_{x \longrightarrow -\infty} \left(\sqrt{x^2 + 2x} + x\right). \tag{47}$$

Proof. We have

$$\sqrt{x^2 + 2x} + x = \frac{\left(\sqrt{x^2 + 2x} + x\right)\left(\sqrt{x^2 + 2x} - x\right)}{\sqrt{x^2 + 2x} - x} = \frac{2x}{\sqrt{x^2 + 2x} - x} = \frac{2}{-\sqrt{1 + 2/x} - 1} \longrightarrow -1.$$
(48)

Problem 19. Let $f(x): (0,2) \mapsto \mathbb{R}$ be defined as

$$f(x) = \begin{cases} \frac{x^2 - 1}{x^2 - 3x + 2} & x \neq 1\\ c & x = 1 \end{cases}.$$
(49)

Find all $c \in \mathbb{R}$ which makes f(x) continuous at x = 1. Justify your answer.

Proof. First we simplify

$$\frac{x^2 - 1}{x^2 - 3x + 2} = \frac{(x - 1)(x + 1)}{(x - 2)(x - 1)} = \frac{x + 1}{x - 2}.$$
(50)

Therefore

$$\lim_{x \longrightarrow 1} f(x) = -2. \tag{51}$$

Consequently c = -2 is the only value that makes f(x) continuous at x = 0.

Problem 20. Let $f: \mathbb{R} \to \mathbb{R}$ be a real function. Prove that $f(x) \to 0$ if and only if $|f(x)| \to 0$. Is it true that $f(x) \to L \neq 0$ if and only if $|f(x)| \to |L|$? Justify your answer.

Proof.

- $f(x) \longrightarrow 0 \Longrightarrow |f(x)| \longrightarrow 0$. For any $\varepsilon > 0$, since $f(x) \longrightarrow 0$ there is $\delta > 0$ such that for all $|x - x_0| < \delta$, $|f(x) - 0| < \varepsilon$. But this is just the definition of $|f(x)| \longrightarrow 0$ as $x \longrightarrow x_0$.
- $|f(x)| \longrightarrow 0 \Longrightarrow f(x) \longrightarrow 0$. For any $\varepsilon > 0$, since $|f(x)| \longrightarrow 0$ there is $\delta > 0$ such that for all $|x - x_0| < \delta$, $||f(x)| - 0| < \varepsilon$. Thus $|f(x) - 0| = ||f(x)| - 0| < \varepsilon$.
- $f(x) \longrightarrow L \neq 0 \Longrightarrow |f(x)| \longrightarrow |L|$ is true. For any $\varepsilon > 0$, since $f(x) \longrightarrow L$, there is $\delta > 0$ such that for all $|x - x_0| < \delta$, $|f(x) - L| < \varepsilon$. Since $||f(x)| - |L|| \le |f(x) - L|$, we conclude that $|f(x)| \longrightarrow |L|$.
- $|f(x)| \longrightarrow |L| \Longrightarrow f(x) \longrightarrow L$ is false. A counterexample is $f(x) = \begin{cases} 1 & x > 0 \\ -1 & x \leq 0 \end{cases}$. Then |f(x)| = 1 a constant function, therefore $|f(x)| \longrightarrow 1$ as $x \longrightarrow 0$. But $\lim_{x \longrightarrow 0} f(x)$ does not exist, because if we take $\{x_n\} = \frac{(-1)^n}{n}$, then $x_n \longrightarrow 0$ but $f(x_n) = (-1)^n$ does not converge.

HARDER PROBLEMS

- Problems at this level may or may not appear in the midterm.
- The solutions for these problems are sketchy. You are discouraged to read the solution before having seriously worked on the problems.

Problem 21. Let $A_n := (1, 1 + \frac{3}{n^2}), B_n := [1, 1 + \frac{3}{n^2}], C_n := [1, 1 + \frac{3}{n^2}), D_n := (1, 1 + \frac{3}{n^2}]$ for every $n \in \mathbb{N}$.

- a) Represent $\cup_{n=1}^{\infty}A_n$, $\cap_{n=1}^{\infty}A_n$, $\cup_{n=1}^{\infty}B_n$, $\cap_{n=1}^{\infty}B_n$ $\cup_{n=1}^{\infty}C_n$, $\cap_{n=1}^{\infty}C_n$ $\cup_{n=1}^{\infty}D_n$, $\cap_{n=1}^{\infty}D_n$ using intervals.
- b) Among these eight sets, which is/are open? Which is/are closed? Justify your answers.

Solution. $(1,4), \emptyset, [1,4], \{1\} = [1,1], [1,4), \{1\} = [1,1], (1,4], \emptyset.$ $\cup A_n, \cap A_n, \cap D_n \text{ are open, } \cap A_n, \cup B_n, \cap B_n, \cap C_n, \cap D_n \text{ are closed.}$ **Problem 22.** Let $\{x_n\}$ be a sequence such that the subsequences $\{x_{2n}\}, \{x_{2n+1}\}, \{x_{3n}\}$ are convergent. Show that $\{x_n\}$ is convergent.

Proof. Let $x_{2n} \longrightarrow a, x_{2n+1} \longrightarrow b$. First we show that a = b. Assume otherwise. Then we have $x_{3(2k)} \longrightarrow a, x_{3(2k+1)} \longrightarrow b$, but this contradicts the condition that x_{3n} is convergent. Therefore a = b.

Now we prove $x_n \longrightarrow a$. For any $\varepsilon > 0$, there are $N_1, N_2 \in \mathbb{N}$ such that for all $n > N_1$, $|x_{2n} - a| < \varepsilon$; For all $n > N_2$, $|x_{2n+1} - a| < \varepsilon$. Now take $N = \max\{2 N_1, 2 N_2 + 1\}$. Then for every n > N. we have $|x_n - a| < \varepsilon$. \Box

Problem 23. Let f(x) satisfy: $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2$ satisfying $x_1, x_2 \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}, |f(x_1) - f(x_2)| < \varepsilon$. Prove that $\lim_{x \to x_0} f(x)$ exists.

Proof. Take any $x_n \longrightarrow x_0$ with $x_n \neq x_0$. Then there is $N \in \mathbb{N}$ such that for all n > N, $x_n \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$. Thus we see that for every $x_n \longrightarrow x_0$, $f(x_n)$ is Cauchy. All we need to show is that $\lim f(x_n)$ is the same for all $\{x_n\}$.

Assume the contrary. Then there is $x_n \longrightarrow x_0$, $y_n \longrightarrow x_0$ such that $f(x_n) \longrightarrow a$, $f(y_n) \longrightarrow b \neq a$. Now consider the new sequence $\{f(x_n)\} \cup \{f(y_n)\}$. This new sequence has two subsequences converging to different limits and thus cannot be Cauchy. Contradiction.

Problem 24. Let $E \subseteq \mathbb{R}$ be nonempty. For every $x \in \mathbb{R}$, its distance to E is defined as

$$d(x) := \inf_{y \in E} |x - y|.$$
(52)

- a) Prove that d(x) is a continuous function.
- b) Prove that inf can be replaced by min if and only if E is closed.

Proof.

a) Fix any $x_0 \in \mathbb{R}$. Take $x_n \in E$ such that

$$|x - x_n| \longrightarrow \inf_{y \in E} |x - y|, \qquad n \longrightarrow \infty.$$
 (53)

For any $\varepsilon > 0$, take $\delta = \varepsilon$. Then we have, for any $|x - x_0| < \delta$,

$$d(x) - |x_0 - x_n| \le |x - x_n| - |x_0 - x_n| \le |x - x_0| < \delta.$$
(54)

Taking limit $n \longrightarrow \infty$, we reach

$$d(x) - d(x_0) < \delta. \tag{55}$$

Now repeat the above argument with x, x_0 switched, we obtain

$$d(x_0) - d(x) < \delta. \tag{56}$$

Therefore

$$|d(x) - d(x_0)| < \delta = \varepsilon.$$
(57)

b)

- "If'. Assume E is closed. For any $x \in \mathbb{R}$, take $x_n \in E$ such that $|x x_n| \longrightarrow d(x)$. As $|x x_n|$ is convergent, it is bounded, that is there is $M \in \mathbb{R}$ such that $|x x_n| \leq M$ for all $n \in \mathbb{N}$. Consequently $|x_n| \leq |x| + M$ for all $n \in \mathbb{N}$. By Bolzano-Weierstrass, there is a subsequence $x_{n_k} \longrightarrow \xi \in \mathbb{R}$. As E is closed, $\xi \in E$. Then we have $d(x) = \lim |x x_{n_k}| = |x \xi|$.
- "Only if". Assume the contrary, that is E is not closed. Then E^c is not open. Consequently there is $x_0 \in E^c$ such that for every $n \in \mathbb{N}$, $\left(x_0 \frac{1}{n}, x_0 + \frac{1}{n}\right) \not\subseteq E^c$, in other words there is $x_n \in E$ such that $|x_n x_0| < \frac{1}{n}$. Consequently $d(x_0) = 0$. Now since $\min_{y \in E} |x_0 y|$ exists, there is $y_0 \in E$ such that $|x_0 y_0| = 0 \Longrightarrow x_0 = y_0 \in E$. Contradiction.

Problem 25. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be a real function. Define $f^+(x) = \lim_{n \to \infty} \sup_{|x-y| < 1/n} f(y)$, $f^-(x) = \lim_{n \to \infty} \inf_{|x-y| < 1/n} f(y)$. Prove that f is continuous at x_0 if and only if $f^+(x_0) = f^-(x_0) = f(x_0)$.

Proof.

• "If'. Assume f is continuous. Then for every $\varepsilon > 0$, there is $\delta > 0$ such that for all $|x - x_0| < \delta$, $|f(x) - f(x_0)| < \varepsilon$. Thus for all $n > 1/\delta$, we have

$$f(x_0) - \varepsilon \leqslant \inf_{|x-y| < 1/n} f(y) \leqslant \sup_{|x-y| < 1/n} f(y) \leqslant f(x_0) + \varepsilon.$$

$$(58)$$

Taking limit and apply comparison theorem, we conclude

$$f(x_0) - \varepsilon \leqslant f^-(x_0) \leqslant f^+(x_0) \leqslant f(x_0) + \varepsilon.$$
(59)

As this is true for all $\varepsilon > 0$, we conclude $f^+(x_0) = f^-(x_0) = f(x_0)$.

• "Only if". For any $\varepsilon > 0$, since $f^+(x_0) = f(x_0)$, there is $N_1 \in \mathbb{N}$ such that for all $n > N_1$, $\sup_{|x-x_0| < 1/n} f(x) < f(x_0) + \varepsilon$, that is $f(x) < f(x_0) + \varepsilon$ for all $|x-x_0| < 1/n$. Similarly, there is $N_2 \in \mathbb{N}$ such that for all $n > N_2$, $f(x) > f(x_0) - \varepsilon$ for all $|x-x_0| < 1/n$.

Now take $\delta = \min\left\{\frac{1}{N_1+1}, \frac{1}{N_2+1}\right\}$. Then for all $|x-x_0| < \delta$, we have $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$ which means $|f(x) - f(x_0)| < \varepsilon$.

Problem 26. Let $f(x): \mathbb{R} \to \mathbb{R}$ be a real function. Prove that f is continuous if and only if for every open set $A \subseteq \mathbb{R}$, the pre-image $f^{-1}(A)$ is open.

Proof.

- "If'. For any $\varepsilon > 0$, the set $(f(x_0) \varepsilon, f(x_0) + \varepsilon)$ is open. Therefore its preimage $\{x \in \mathbb{R}: |f(x) f(x_0)| < \varepsilon\}$ is open. Consequently there is (a, b) such that $x_0 \in (a, b) \subset \{x \in \mathbb{R}: |f(x) f(x_0)| < \varepsilon\}$. Take $\delta = \min\{x_0 a, b x_0\}$, we see that $|x x_0| < \delta \Longrightarrow |f(x) f(x_0)| < \varepsilon$.
- "Only if". Assume f is continuous. Let A be open. For any $x_0 \in f^{-1}(A)$, there is $\varepsilon > 0$ such that $(f(x_0) \varepsilon, f(x_0) + \varepsilon) \subseteq A$. As f is continuous, there is $\delta > 0$ such that $|x x_0| < \delta \Longrightarrow$ $|f(x) - f(x_0)| < \varepsilon$, in other words $f((x_0 - \delta, x_0 + \delta)) \subseteq (f(x_0) - \varepsilon, f(x_0) + \varepsilon) \subseteq A$. Consequently $(x_0 - \delta, x_0 + \delta) \subseteq f^{-1}(A)$. Therefore $f^{-1}(A)$ is open.

Problem 27. Let $f(x): \mathbb{R} \to \mathbb{R}$ be a real function satisfying f(x) > 0 for all $x \in \mathbb{R}$. Prove that for every closed interval [a, b] with $a, b \in \mathbb{R}$, there is $\delta > 0$ such that $f(x) > \delta$ for all $x \in [a, b]$. Is the claim still true if one or both of a, b is infinity?

Proof. Forgot to put in the problem that f(x) is continuous! When a, b are finite, we know that $m = \min_{x \in [a,b]} f(x)$. As $f(x) > 0, m \ge 0$. If m = 0, then there is $x_0 \in [a,b]$ such that $f(x_0) = 0$ contradiction. Therefore m > 0. Take $\delta = m/2$.

If one or both a, b is infinity, then the claim does not hold anymore. For example, if $b = \infty$, consider $f(x) = e^{-x}$. If $a = -\infty$, consider $f(x) = e^x$.

Problem 28. (Cesaro average) Let $\{x_n\}$ be a real sequence. Set $y_n = (x_1 + \dots + x_n)/n$. Show that if $x_n \longrightarrow a \in \mathbb{R}$, then $y_n \longrightarrow a \in \mathbb{R}$. What about the converse, that is does $y_n \longrightarrow a$ guarantees $x_n \longrightarrow a$?

Proof. Because $x_n \longrightarrow a \in \mathbb{R}$, there is $M \in \mathbb{R}$ such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. For any $\varepsilon > 0$, since $x_n \longrightarrow a$, there is $N_1 \in \mathbb{R}$ such that for all $n > N_1$, $|x_n - a| < \varepsilon/2$. Now take $N > \max\left\{\frac{2N_1(M + |a|)}{\varepsilon}, N_1\right\}$, for every n > N, we have

$$|y_{n}-a| = \left| \frac{(x_{1}-a) + (x_{2}-a) + \dots + (x_{n}-a)}{n} \right|$$

$$\leq \frac{|x_{1}-a| + |x_{2}-a| + \dots + |x_{n}-a|}{n}$$

$$\leq \frac{|x_{1}-a| + \dots + |x_{N_{1}}-a|}{n} + \frac{|x_{N_{1}+1}-a| + \dots + |x_{n}-a|}{n}$$

$$\leq \frac{N_{1}(M+|a|)}{n} + \frac{(n-N_{1})\varepsilon/2}{n}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
(60)

The converse is false. For example, take $x_n = (-1)^n$. Then $y_n \longrightarrow 0$.

Problem 29. Let $x_n > 0$ for all $n \in \mathbb{N}$. Show that

$$\liminf_{n \to \infty} \frac{x_{n+1}}{x_n} \leqslant \liminf_{n \to \infty} (x_n)^{1/n} \leqslant \limsup_{n \to \infty} (x_n)^{1/n} \leqslant \limsup_{n \to \infty} \frac{x_{n+1}}{x_n}.$$
 (61)

Use this to prove that if $\lim \frac{x_{n+1}}{x_n}$ exists, so does $\lim (x_n)^{1/n}$. What about the converse?

Proof. The middle inequality is obvious.

The left inequality $\liminf_{n \to \infty} \frac{x_{n+1}}{x_n} \leq \liminf_{n \to \infty} (x_n)^{1/n}$. For any m > n, we can write •

$$(x_m)^{1/m} = x_n^{1/m} \left(\frac{x_{n+1}}{x_n} \cdots \frac{x_m}{x_{m-1}}\right)^{1/m} \ge x_n^{1/m} \left(\inf_{k \ge n} \frac{x_{k+1}}{x_k}\right)^{\frac{m-n}{n}}.$$
(62)

As $x_n^{1/m} \longrightarrow 1$ and $\left(\inf_{k \ge n} \frac{x_{k+1}}{x_k}\right)^{\frac{m-n}{n}} \longrightarrow \inf_{k \ge n} \frac{x_{k+1}}{x_k}$ as $m \longrightarrow \infty$, we have $m \rightarrow m - n$

$$\liminf_{m \to \infty} (x_m)^{1/m} \ge \liminf_{m \to \infty} \left[x_n^{1/m} \left(\inf_{k \ge n} \frac{x_{k+1}}{x_k} \right)^{-n} \right] = \lim_{m \to \infty} x_n^{1/m} \left(\inf_{k \ge n} \frac{x_{k+1}}{x_k} \right)^{-n} = \inf_{k \ge n} \frac{x_{k+1}}{x_k}.$$
(63)

Now take limit $n \longrightarrow \infty$, we conclude

$$\liminf_{m \to \infty} (x_m)^{1/m} \ge \liminf_{n \to \infty} \frac{x_{n+1}}{x_n}.$$
(64)

The right inequality is proved similarly, using •

$$(x_m)^{1/m} = x_n^{1/m} \left(\frac{x_{n+1}}{x_n} \cdots \frac{x_m}{x_{m-1}}\right)^{1/m} \leqslant x_n^{1/m} \left(\sup_{k \ge n} \frac{x_{k+1}}{x_k}\right)^{\frac{m-n}{n}}$$
(65)

instead of (62).

If $\lim \frac{x_{n+1}}{x_n}$ exists, then $\liminf \frac{x_{n+1}}{x_n} = \limsup \frac{x_{n+1}}{x_n}$. Application of the squeeze theorem gives $\lim (x_n)^{1/n}$ exists.

The converse is false. For example take $x_n = 2 \pm (-1)^n$. Then $\lim x_n^{1/n} = 1$ but $\liminf \frac{x_{n+1}}{x_n} = 1/3$ while $\limsup \frac{x_{n+1}}{x_n} = 3$.