Math 314 Fall 2012 Midterm Practice Problems Solutions

Ост. 19, 2012

- To best prepare for midterm, also review homework problems.
- To get most out of these problems, clearly write down (instead of mumble or think) your complete answers (instead of a few lines of the main idea), in full sentences (instead of formulas connected by arrows). And then compare with the solutions when they are posted.
- If don't know where to start, write down all definitions involved.
- If have no idea what to do, try proof by contradiction. Start by writing down the assumption in logical statements.
- "Justify" means: if true, provide a proof; if false, give a counterexample.

Practice Problems

Problem 1. $f(x): E \mapsto \mathbb{R}$ is Hölder continuous if there are $a>0$ and $M \in \mathbb{R}$ such that for every $x, y \in E$, $|f(x)-f(y)| \leqslant M|x-y|^{a}$. Write down the logical statement for " $f(x)$ is not Hölder continuous".
Solution. $f(x)$ is Hölder continuous if

$$
\begin{equation*}
\exists a>0 \exists M \in \mathbb{R} \forall x, y \in E \quad|f(x)-f(y)| \leqslant M|x-y|^{a} \tag{1}
\end{equation*}
$$

$f(x)$ is not Hölder continuous if

$$
\begin{equation*}
\forall a>0 \forall M \in \mathbb{R} \exists x, y \in E \quad|f(x)-f(y)|>M|x-y|^{a} \tag{2}
\end{equation*}
$$

Note that x, y will change if a, M change.
Problem 2. Recall that $f(x)$ is increasing if $f\left(x_{1}\right) \geqslant f\left(x_{2}\right)$ whenever $x_{1} \geqslant x_{2}$ Write down the logical statement for " $f(x)$ is not increasing".
Solution. $f(x)$ is increasing if

$$
\begin{equation*}
\forall x_{1}, x_{2} \quad x_{1} \geqslant x_{2} \Longrightarrow f\left(x_{1}\right) \geqslant f\left(x_{2}\right) \tag{3}
\end{equation*}
$$

$f(x)$ is not increasing if

$$
\begin{equation*}
\exists x_{1}, x_{2} \quad \operatorname{Not}\left[x_{1} \geqslant x_{2} \Longrightarrow f\left(x_{1}\right) \geqslant f\left(x_{2}\right)\right] . \tag{4}
\end{equation*}
$$

This simplifies to (recall that $\operatorname{Not}(A \Longrightarrow B)=\operatorname{Not}[(\operatorname{Not} A)$ or $B]=A$ and $(\operatorname{Not} B))$

$$
\begin{equation*}
\exists x_{1}, x_{2}, x_{1} \geqslant x_{2}, \quad f\left(x_{1}\right)<f\left(x_{2}\right) \tag{5}
\end{equation*}
$$

Problem 3. Let A, B, C be logical statements. Prove that $[(A \Longrightarrow B)$ and $(B \Longrightarrow C)] \Longrightarrow(A \Longrightarrow C)$. Explain in English what this means.
Solution. We construct the truth table

Therefore the statement is always true. It means if A implies B and B implies C, then A implies C.
Problem 4. Let $f: X \mapsto Y$ be a function. Prove that f is one-to-one if and only if $f(A \backslash B)=f(A) \backslash f(B)$ for all subsets A, B of X.

Proof.

- "If". Assume $\forall A, B \subseteq X, f(A \backslash B)=f(A) \backslash f(B)$. For any $x_{1} \neq x_{2}$, take $A=\left\{x_{1}, x_{2}\right\}, B=\left\{x_{2}\right\}$. Then $f(A \backslash B)=\left\{f\left(x_{1}\right)\right\}, f(A)=\left\{f\left(x_{1}\right), f\left(x_{2}\right)\right\}, f(B)=\left\{f\left(x_{2}\right)\right\}$. As $f(A) \backslash f(B)=\left\{f\left(x_{1}\right)\right\}$, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
- "Only if". Assume f is one-to-one. We prove $f(A \backslash B) \subseteq f(A) \backslash f(B)$ and $f(A) \backslash f(B) \subseteq f(A \backslash B)$.
- $\quad f(A \backslash B) \subseteq f(A) \backslash f(B)$. Take any $y \in f(A \backslash B)$. By definition there is $x \in A \backslash B$ such that $y=f(x) . x \in A \backslash B$ means $x \in A, x \notin B$.

Because $x \in A, y=f(x) \in f(A)$; On the other hand, since f is one-to-one and $x \notin B$, $y=f(x) \neq f\left(x^{\prime}\right)$ for any $x^{\prime} \in B$ which means $y \notin f(B)$. Therefore $y \in f(A) \backslash f(B)$.

- $\quad f(A) \backslash f(B) \subseteq f(A \backslash B)$. Take any $y \in f(A) \backslash f(B)$. Then $y \in f(A), y \notin f(B)$. As $y \in f(A)$ there is $x \in A$ such that $y=f(x)$. Since $y \notin f(B), x \notin B$. Therefore $x \in A \backslash B$ and consequently $y=f(x) \in f(A \backslash B)$.

Problem 5. Suppose $f: A \mapsto B$ and $g: B \mapsto C$ are functions. Show that if both f and g are bijections, then so is $g \circ f$.

Proof. We need to show that

- $g \circ f$ is one-to-one. For any $x_{1} \neq x_{2}$, since f is one-to-one, $f\left(x_{1}\right) \neq f\left(x_{2}\right)$. Now because g is one-to-one, $g\left(f\left(x_{1}\right)\right) \neq g\left(f\left(x_{2}\right)\right)$.
- $g \circ f$ is onto. Take any $z \in C$. Since g is onto, there is $y \in B$ such that $z=g(y)$. Now because f is onto, there is $x \in A$ such that $y=f(x)$. Thus $z=g(f(x))$.

Problem 6. Let

$$
\begin{equation*}
A=\left\{x \in \mathbb{R}:|\sin x| \leqslant \frac{1}{2}\right\} ; \quad B=\left\{x \in \mathbb{R}: x^{3}-x^{2}+x-1<0\right\} \tag{6}
\end{equation*}
$$

a) Represent $A, B, A \cup B, A \cap B$ using intervals.
b) Which of these four sets is/are open? Which is/are closed? Justify your answers.

Solution.

a) $A=\cup_{n \in \mathbb{Z}}\left[n \pi-\frac{\pi}{6}, n \pi+\frac{\pi}{6}\right] ; B=\left\{x \in \mathbb{R}:(x-1)\left(x^{2}+1\right)<0\right\}=(-\infty, 1) . A \cup B=(-\infty$, 1) $\cup\left(\cup_{n \in \mathbb{N}}\left[n \pi-\frac{\pi}{6}, n \pi+\frac{\pi}{6}\right]\right) ; A \cap B=\cup_{n=0}^{\infty}\left[-n \pi-\frac{\pi}{6},-n \pi+\frac{\pi}{6}\right]$.
b)

- A is closed. Since $A^{c}=\cup_{n \in \mathbb{Z}}\left(n \pi+\frac{\pi}{6}, n \pi+\frac{5 \pi}{6}\right)$ is open (because it is union of open intervals).
- B is open since it is an open interval.
- $C=A \cup B$ is neither open nor closed.
- C is not open. Take $x_{0}=\frac{5 \pi}{6} \in C$. Then for any (a, b) such that $x_{0} \in(a, b)$, there is $c>0$ such that max $\{1, a\}<c<x_{0}$. For this c we have $c \notin A \cup B$. Consequently $(a, b) \nsubseteq A \cup B$.
- C is not closed. We have

$$
\begin{equation*}
(A \cup B)^{c}=\left[1, \frac{5 \pi}{6}\right) \cup\left(\cup_{n=1}^{\infty}\left(n \pi+\frac{\pi}{6}, n \pi+\frac{5 \pi}{6}\right)\right) . \tag{7}
\end{equation*}
$$

Now take $1 \in(A \cup B)^{c}$. For any $(a, b) \ni 1$, we have $a<\frac{1+a}{2}<1$ and therefore $\frac{1+a}{2} \in(a, b)$ but $\frac{1+a}{2} \notin(A \cup B)^{c}$. Consequently $(a, b) \nsubseteq(A \cup B)^{c}$.

- $D=A \cap B$ is closed. Since $D^{c}=\left(\cup_{n=0}^{\infty}\left(-n \pi-\frac{5 \pi}{6},-n \pi-\frac{\pi}{6}\right)\right) \cup\left(\frac{\pi}{6}, \infty\right)$ is union of open intervals and is therefore open.
Problem 7. Decide which of the following statements are true and which are false. Prove the true ones and provide a counterexample for the false ones.
a) If $\left\{x_{n}\right\}$ is Cauchy and $\left\{y_{n}\right\}$ is bounded, then $\left\{x_{n} y_{n}\right\}$ is Cauchy;
b) If $\left\{x_{n}\right\}$ is a sequence of real numbers that satisfies $x_{2^{k}}-x_{2^{k-1}} \longrightarrow 0$ as $k \longrightarrow \infty$ and $x_{n}=0$ for all $n \neq 2^{k}, k \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is Cauchy;
c) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\left\{x_{n} / y_{n}\right\}$ is Cauchy;
d) If $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are Cauchy, then $\left\{1 /\left(\left|x_{n}\right|+\left|y_{n}\right|\right)\right\}$ cannot converge to zero.

Solution.

a) False. Take $x_{n}=1$ and $y_{n}=(-1)^{n}$ for all $n \in \mathbb{N}$. Now take $\varepsilon_{0}=1$. For any $N \in \mathbb{N}$, take $n>N$. Then

$$
\begin{equation*}
\left|x_{n} y_{n}-x_{n+1} y_{n+1}\right|=2>\varepsilon_{0} . \tag{8}
\end{equation*}
$$

b) False. Take $x_{2^{k}}=1$ for all $k \in \mathbb{N}$. Clearly $x_{2^{k}}-x_{2^{k-1}} \longrightarrow 0$. Now take $\varepsilon_{0}=1$. For any $N \in \mathbb{N}$, take $n=2^{k}>N$. Then

$$
\begin{equation*}
\left|x_{n}-x_{n+1}\right|=1 \geqslant \varepsilon_{0} . \tag{9}
\end{equation*}
$$

c) False. Take $x_{n}=1$ and $y_{n}=1 / n$ for all $n \in \mathbb{N}$. We have $\left\{x_{n} / y_{n}\right\}=n$ is not Cauchy.
d) True. Assume the contrary, that is $1 /\left(\left|x_{n}\right|+\left|y_{n}\right|\right) \longrightarrow 0$ as $n \longrightarrow \infty$. As $\left\{x_{n}\right\},\left\{y_{n}\right\}$ are Cauchy, they are bounded. That is there are M_{1}, M_{2} such that

$$
\begin{equation*}
\left|x_{n}\right| \leqslant M_{1}, \quad\left|y_{n}\right| \leqslant M_{2} \tag{10}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
Now due to $1 /\left(\left|x_{n}\right|+\left|y_{n}\right|\right) \longrightarrow 0$, there is $N \in \mathbb{N}$ such that for all $n>N, 1 /\left(\left|x_{n}\right|+\left|y_{n}\right|\right)<$ $1 /\left(M_{1}+M_{2}+1\right) \Longrightarrow\left|x_{n}\right|+\left|y_{n}\right|>M_{1}+M_{2}+1$. Contradiction.
Problem 8. Prove that $x_{n}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is Cauchy.
Proof. For any $\varepsilon>0$, take $N \in \mathbb{N}$ such that $N>1 / \varepsilon$. Then for any $n, m>N$, we have (without loss of generality take $m>n$)
$\left|x_{n}-x_{m}\right|=\left|\frac{1}{(n+1)^{2}}+\cdots+\frac{1}{m^{2}}\right| \leqslant\left|\frac{1}{n(n+1)}+\cdots+\frac{1}{(m-1) m}\right|=\left\lvert\, \frac{1}{n}-\frac{1}{n+1}+\frac{1}{n+1}-\frac{1}{n+2}+\cdots+\right.$
$\frac{1}{m-1}-\frac{1}{m} \left\lvert\, \leqslant \frac{1}{n}<\frac{1}{N}<\varepsilon\right.$.

Problem 9. Prove that $x_{n}=\frac{(-1)^{n}(n-1)}{n+1}$ does not converge.
Proof. We have $x_{2 n}=\frac{n-1}{n+1}=1-\frac{2}{n+1} \longrightarrow 1$ and $x_{2 n+1}=-\frac{n-1}{n+1}=-1+\frac{2}{n+1} \longrightarrow-1$. Thus there are two subsequences converging to 1 and -1 respectively. Consequently $\left\{x_{n}\right\}$ does not converge.

Problem 10. Let $x_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k+1}+\sqrt{k}}$ for $n \in \mathbb{N}$. Does $\left\{x_{n}\right\}$ converge? Justify your answer.
Proof. We have

$$
\begin{equation*}
\frac{1}{\sqrt{k+1}+\sqrt{k}}=\frac{\sqrt{k+1}-\sqrt{k}}{(\sqrt{k+1}+\sqrt{k})(\sqrt{k+1}-\sqrt{k})}=\sqrt{k+1}-\sqrt{k} \tag{12}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
x_{n}=\sum_{k=1}^{n} \frac{1}{\sqrt{k+1}+\sqrt{k}}=\sum_{k=1}^{n}(\sqrt{k+1}-\sqrt{k})=\sqrt{n+1}-1 \tag{13}
\end{equation*}
$$

Take $\varepsilon_{0}=1$. For any $N \in \mathbb{N}$, take $n=N+1$ and $m=4 N+7$. We have

$$
\begin{equation*}
\left|x_{m}-x_{n}\right|=|\sqrt{m+1}-\sqrt{n+1}|=|\sqrt{4(N+2)}-\sqrt{N+2}|=\sqrt{N+2}>\varepsilon_{0} \tag{14}
\end{equation*}
$$

Thus $\left\{x_{n}\right\}$ is not Cauchy and therefore cannot converge.
Problem 11. Let w_{n} satisfy $\left|w_{n}\right| \leqslant n^{2}$. Determine whether the following sequences are converging or not. If converging find the limit.

$$
\begin{equation*}
x_{n}=\sqrt{n^{2}+3 n}-n-3 ; \quad y_{n}=\frac{e^{n}-1}{3^{n}-2^{n}} ; \quad z_{n}=\frac{w_{n}^{2}+4 w_{n}+5}{n^{4}+3 n} . \tag{15}
\end{equation*}
$$

You can use the fact that $r^{n} \longrightarrow 0$ as $n \longrightarrow \infty$ if $|r|<1$.

Solution.

- $\left\{x_{n}\right\}$. We have

$$
\begin{align*}
& x_{n}=\frac{\left[\sqrt{n^{2}+3 n}-(n+3)\right]\left[\sqrt{n^{2}+3 n}+(n+3)\right]}{\left[\sqrt{n^{2}+3 n}+(n+3)\right]}=\frac{-3 n-9}{\sqrt{n^{2}+3 n}+(n+3)} \\
& \frac{-3-9 / n}{\sqrt{1+3 / n}+(1+3 / n)} . \tag{16}
\end{align*}
$$

Since $9 / n \longrightarrow 0,3 / n \longrightarrow 0$, we have $-3-9 / n \longrightarrow-3, \sqrt{1+3 / n}+(1+3 / n) \longrightarrow 2$. Because $2 \neq 0$, we have $x_{n} \longrightarrow-3 / 2$.

- $\left\{y_{n}\right\}$. We have

$$
\begin{equation*}
y_{n}=\frac{e^{n}-1}{3^{n}-2^{n}}=\frac{(e / 3)^{n}-(1 / 3)^{n}}{1-(2 / 3)^{n}} \tag{17}
\end{equation*}
$$

Since $|e / 3|,|1 / 3|,|2 / 3|<1$, we have $(e / 3)^{n},(1 / 3)^{n},(2 / 3)^{n} \longrightarrow 0$ and consequently $y_{n} \longrightarrow \frac{0-0}{1-0}=1$.

- $\left\{z_{n}\right\}$. We have

$$
\begin{equation*}
z_{n}=\frac{\left(w_{n} / n^{2}\right)^{2}+4\left(w_{n} / n^{4}\right)+5 / n^{4}}{1+3 / n^{3}} \tag{18}
\end{equation*}
$$

As $\left|w_{n}\right| \leqslant n^{2}$, we have $\left|w_{n} / n^{4}\right| \leqslant 1 / n^{2} \longrightarrow 0$ due to Squeeze theorem. However $\left|w_{n} / n^{2}\right| \leqslant 1$ is only bounded.

In fact $\left\{z_{n}\right\}$ does not necessarily converge: Take $w_{n}=\left[\frac{1+(-1)^{n}}{2}\right] n^{2}$, we have $z_{2 n} \longrightarrow 4$ and $z_{2 n+1} \longrightarrow 0$.

Problem 12. Let $x_{0}=7$ and define x_{n} iteratively through

$$
\begin{equation*}
x_{n+1}=\frac{2 x_{n}}{3}-1 . \tag{19}
\end{equation*}
$$

Does $\lim _{n \rightarrow \infty} x_{n}$ exist? If it does, find the limit. Justify your answers.
Solution. Yes. We show that the sequence is Cauchy.
Subtracting $x_{n}=\frac{2 x_{n-1}}{3}-1$ from $x_{n+1}=\frac{2 x_{n}}{3}-1$ we have

$$
\begin{equation*}
x_{n+1}-x_{n}=\frac{2}{3}\left(x_{n}-x_{n-1}\right) \Longrightarrow\left|x_{n+1}-x_{n}\right|=\frac{2}{3}\left|x_{n}-x_{n-1}\right| \tag{20}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
\left|x_{n+1}-x_{n}\right|=\frac{2}{3}\left|x_{n}-x_{n-1}\right|=\left(\frac{2}{3}\right)^{2}\left|x_{n-1}-x_{n-2}\right|=\cdots=\left(\frac{2}{3}\right)^{n}\left|x_{1}-x_{0}\right| . \tag{21}
\end{equation*}
$$

Consequently for any $\varepsilon>0$, we can take $N \geqslant \log _{3 / 2}\left[\frac{3\left|x_{1}-x_{0}\right|}{\varepsilon}\right]$, then for $m>n>N$,

$$
\begin{align*}
\left|x_{m}-x_{n}\right| & \leqslant\left|x_{m}-x_{m-1}\right|+\cdots+\left|x_{n+1}-x_{n}\right| \\
& \leqslant\left[\left(\frac{2}{3}\right)^{m-1}+\cdots+\left(\frac{2}{3}\right)^{n}\right]\left|x_{1}-x_{0}\right| \\
& =\left(\frac{2}{3}\right)^{n}\left[1+\cdots+\left(\frac{2}{3}\right)^{m-n-1}\right]\left|x_{1}-x_{0}\right| \\
& =\left(\frac{2}{3}\right)^{n} \frac{1-\left(\frac{2}{3}\right)^{m-n}}{1-\frac{2}{3}}\left|x_{1}-x_{0}\right| \\
& \leqslant\left(\frac{2}{3}\right)^{n} 3\left|x_{1}-x_{0}\right| \\
& <\left(\frac{2}{3}\right)^{N} 3\left|x_{1}-x_{0}\right|<\varepsilon . \tag{22}
\end{align*}
$$

Thus $\left\{x_{n}\right\}$ is Cauchy.
To find the limit, take $n \longrightarrow \infty$ on both sides we reach

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} x_{n}=\frac{2}{3} \lim _{n \longrightarrow \infty} x_{n}-1 \Longrightarrow \lim _{n \longrightarrow \infty} x_{n}=-3 \tag{23}
\end{equation*}
$$

Problem 13. Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Prove:
a) $\left\{x_{n}\right\}$ is unbounded if and only if there is a subsequence $\left\{x_{n_{k}}\right\}$ satisfying $\left|x_{n_{k}}\right| \rightarrow \infty$.
b) $\left\{x_{n}\right\}$ is bounded if and only if $\exists M \in \mathbb{R}$ such that $\limsup _{n} \longrightarrow \infty x_{n} \leqslant M$ and $\liminf _{n \rightarrow \infty} x_{n} \geqslant-M$.

Proof.

a) Since $\left\{x_{n}\right\}$ is unbounded, there is $n_{1} \in \mathbb{N}$ such that $\left|x_{n_{1}}\right| \geqslant 1$. Now take $n_{2} \in \mathbb{N}$ such that $\left|x_{n_{2}}\right| \geqslant\left|x_{n_{1}}\right|+2$. In general, take $x_{n_{k}}$ such that

$$
\begin{equation*}
\left|x_{n_{k}}\right| \geqslant\left|x_{n_{k-1}}\right|+k . \tag{24}
\end{equation*}
$$

Thus we obtain a subsequence $\left\{x_{n_{k}}\right\}$ such that $\left|x_{n_{k}}\right| \geqslant k$. Now for any $M \in \mathbb{R}$, take $N \in \mathbb{N}$ such that $N>|M|$. Then for all $k>N,\left|x_{n_{k}}\right| \geqslant k>N>|M|$. Therefore $\left|x_{n_{k}}\right| \longrightarrow \infty$.

For the "if" part, we need to show for any $M \in \mathbb{R}$ there is $n \in \mathbb{N}$ such that $\left|x_{n}\right|>M$. But this follows directly from the existence of $\left\{x_{n_{k}}\right\}$ satisfying $\left|x_{n_{k}}\right| \longrightarrow \infty$, which by definition says: for any $M \in \mathbb{R}$ there is $K \in \mathbb{N}$ such that for all $k>K,\left|x_{n_{k}}\right|>M$.
b) Since $\left\{x_{n}\right\}$ is bounded, there is $M \in \mathbb{R}$ such that $\left|x_{n}\right| \leqslant M$ for all $n \in \mathbb{N}$. This leads to

$$
\begin{equation*}
-M \leqslant \inf _{k \geqslant n} x_{k} \leqslant \sup _{k \geqslant n} x_{k} \leqslant M \tag{25}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Taking $n \longrightarrow \infty$ we conclude $\limsup _{n \longrightarrow \infty} x_{n} \leqslant M$ and $\liminf _{n \rightarrow \infty} x_{n} \geqslant-M$ thanks to comparison theorem.

For the "if" part, we need to show there is $M^{\prime} \in \mathbb{R}$ such that for all $n \in \mathbb{N},\left|x_{n}\right| \leqslant M^{\prime}$. By definition, $\limsup _{n \longrightarrow \infty} x_{n} \leqslant M$ means there is $N_{1} \in \mathbb{N}$ such that for all $n>N_{1}, \sup _{k \geqslant n} x_{n} \leqslant M+1$. In particular we have $\sup \left\{x_{N_{1}+1}, x_{N_{1}+2}, \ldots\right\} \leqslant M+1$ which leads to

$$
\begin{equation*}
\forall n>N_{1}, x_{n} \leqslant M+1 \tag{26}
\end{equation*}
$$

Apply similar argument to $\liminf _{n \longrightarrow \infty} x_{n} \geqslant-M$, we obtain $N_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n>N_{2}, \quad x_{n} \geqslant-M-1 . \tag{27}
\end{equation*}
$$

Now set $N=\max \left\{N_{1}, N_{2}\right\}$. We have (note that $M \geqslant \limsup x_{n} \geqslant \liminf x_{n} \geqslant-M \Longrightarrow M \geqslant 0$)

$$
\begin{equation*}
\forall n>N, \quad\left|x_{n}\right| \leqslant M+1 \tag{28}
\end{equation*}
$$

Finally take

$$
\begin{equation*}
M^{\prime}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N}\right|, M+1\right\} \tag{29}
\end{equation*}
$$

We have $\left|x_{n}\right| \leqslant M^{\prime}$ for all $n \in \mathbb{N}$.
Problem 14. Let A be a nonempty subset of \mathbb{R}. Let $B=3 A:=\{3 x: x \in A\}$. Derive the relations between $\sup B, \inf B$ and $\sup A, \inf A$. Justify your answers. Note that you may need to discuss different cases for c and for $\sup A$.
Solution. We prove $\sup B=3 \sup A$. We only need to show:

1. $3 \sup A$ is an upper bound of B. For any $b \in B$, by definition there is $a \in A$ such that $b=3 a$. By definition of sup we have $\sup A \geqslant a \Longrightarrow 3 \sup B \geqslant 3 a=b$.
2. $3 \sup A$ is the smallest upper bound of B. Let c be an upper bound of B. There is $c \geqslant b$ for all $b \in B$. By definition of B we have $c \geqslant 3 a$ for all $a \in A$. Consequently $c / 3 \geqslant a$ for all $a \in A$. By definition of \sup we have $c / 3 \geqslant \sup A \Longrightarrow c \geqslant 3 \sup A$.
$\inf B=3 \inf A$ can be proved similarly.
Problem 15. Let $x_{n}=(-1)^{3 n}+\frac{1}{n^{2}}$ for $n \in \mathbb{N}=\{1,2, \ldots\}$. Let $A:=\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{x_{1}, x_{2}, \ldots\right\}$.
a) Find $\max A, \sup A, \min A, \inf A$. Justify your answers.
b) Find $\limsup _{n \rightarrow \infty} x_{n}$ and $\liminf _{n \rightarrow \infty} x_{n}$. Justify your answers.

Solution.

a)

- $\max A=5 / 4$. To justify, we show

1. $5 / 4 \in A$. This is clear since $5 / 4=x_{2}$.
2. $5 / 4 \geqslant a$ for every $a \in A$. Take any $x_{n} \in A$. If $n=1$, we have $x_{1}=-1+1=0<5 / 4$. If $n \geqslant 2$ we have $x_{n}=(-1)^{3 n}+1 / n^{2} \leqslant 1+1 / 4=5 / 4$.

- \quad Since $\max A$ exists, $\sup A=\max A=5 / 4$.
- $\min A$ does not exist. Assume the contrary. Let $x_{n_{0}}=\min A$. But then we have

$$
\begin{equation*}
x_{n_{0}+2}=(-1)^{3\left(n_{0}+2\right)}+\frac{1}{\left(n_{0}+2\right)^{2}}<(-1)^{3 n_{0}}+\frac{1}{n_{0}^{2}}=x_{n_{0}} \tag{30}
\end{equation*}
$$

Contradiction.

- $\inf A=-1$. We show

1. -1 is a lower bound. We have

$$
\begin{equation*}
x_{n}=(-1)^{3 n}+\frac{1}{n^{2}} \geqslant(-1)^{3 n} \geqslant-1 \tag{31}
\end{equation*}
$$

for all $n \in \mathbb{N}$.
2. -1 is the largest lower bound. Let b be a lower bound that is $b \leqslant(-1)^{3 n}+\frac{1}{n^{2}}$. Thus in particular, we have

$$
\begin{equation*}
b \leqslant(-1)^{3(2 k+1)}+\frac{1}{(2 k+1)^{2}}=-1+\frac{1}{(2 k+1)^{2}} \tag{32}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Taking $k \longrightarrow \infty$, by comparison theorem we have $b \leqslant-1$.
b) For any $n \in \mathbb{N}$, we have
because when $k \geqslant n$,

$$
\begin{equation*}
\sup _{k \geqslant n} x_{k}=\sup \left\{(-1)^{3 k}+\frac{1}{k^{2}}: k \geqslant n\right\} \leqslant 1+\frac{1}{n^{2}} \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{3 k} \leqslant 1, \quad \frac{1}{k^{2}} \leqslant \frac{1}{n^{2}} \tag{34}
\end{equation*}
$$

On the other hand, taking $k=2 n$ we have

$$
\begin{equation*}
(-1)^{3 k}+\frac{1}{k^{2}} \geqslant 1 \Longrightarrow \sup _{k \geqslant n} x_{k} \geqslant 1 \tag{35}
\end{equation*}
$$

Thus by comparison theorem

$$
\begin{equation*}
1 \leqslant \limsup _{n \longrightarrow \infty} x_{n}=\lim _{n \longrightarrow \infty}\left[\sup _{k \geqslant n} x_{k}\right] \leqslant \lim _{n \longrightarrow \infty}\left[1+\frac{1}{n^{2}}\right]=1 . \tag{36}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty} x_{n}=1 \tag{37}
\end{equation*}
$$

Similarly, for any $n \in \mathbb{N}$, we have

$$
\begin{equation*}
-1 \leqslant \inf _{k \geqslant n} x_{k} \leqslant-1+\frac{1}{n^{2}} . \tag{38}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$ and apply comparison theorem, we conclude

$$
\begin{equation*}
\liminf _{n \longrightarrow \infty} x_{n}=-1 / \tag{39}
\end{equation*}
$$

Problem 16. Let $f(x)$ be a continuous function and let $a \in \mathbb{R}$. Prove that the pre-image $f^{-1}(a)$ is a closed set.

Proof. If $f^{-1}(c)=\varnothing$ then by definition it is open.
All we need to show is $\left[f^{-1}(a)\right]^{c}$ is open. By definition

$$
\begin{equation*}
\left[f^{-1}(a)\right]^{c}=\{x \in \mathbb{R}: f(x)=a\}^{c}=\{x \in \mathbb{R}: f(x) \neq a\} . \tag{40}
\end{equation*}
$$

Take any $x_{0} \in\{x \in \mathbb{R}: f(x) \neq a\}$. Set $\varepsilon=\left|f\left(x_{0}\right)-a\right|$. Then by the continuity of f there is $\delta>0$ such that for all $\left|x-x_{0}\right|<\delta,\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon=\left|f\left(x_{0}\right)-a\right|$. This implies for all such $x, f(x) \neq a$, or equivalently $\left(x_{0}-\delta, x_{0}+\delta\right) \subseteq\{x \in \mathbb{R}: f(x) \neq a\}$. Therefore $\left[f^{-1}(a)\right]^{c}$ is open.

Problem 17. Find the limits of

$$
\begin{equation*}
\lim _{x \longrightarrow 3} \frac{x^{2}-5 x+6}{x^{2}-9} ; \quad \lim _{x \longrightarrow 0} \frac{\sqrt{1+x}-1}{x} ; \quad \lim _{x \longrightarrow \infty} \frac{x^{3}+5 x+6}{\sqrt{x^{6}+3 x}-7} \tag{41}
\end{equation*}
$$

Indicate clearly what property you are using at each step.

Solution.

- First we simplify

$$
\begin{equation*}
\frac{x^{2}-5 x+6}{x^{2}-9}=\frac{(x-2)(x-3)}{(x-3)(x+3)}=\frac{x-2}{x+3} . \tag{42}
\end{equation*}
$$

Since polynomials are continuous everywhere, we have

$$
\begin{equation*}
x-2 \longrightarrow 3-2=1, \quad x+3 \longrightarrow 3+3=6 \tag{43}
\end{equation*}
$$

Since $6 \neq 0$ the limit exists and equals $1 / 6$.

- First simplify

$$
\begin{equation*}
\frac{\sqrt{1+x}-1}{x}=\frac{(\sqrt{1+x}-1)(\sqrt{1+x}+1)}{x(\sqrt{1+x}+1)}=\frac{x}{x(\sqrt{1+x}+1)}=\frac{1}{\sqrt{1+x}+1} . \tag{44}
\end{equation*}
$$

We know that \sqrt{x} is a continuous function for $x \geqslant 0$, therefore

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{1}{\sqrt{1+x}+1}=\frac{\lim _{x \rightarrow 0} 1}{\lim _{x \longrightarrow 0}(\sqrt{1+x}+1)}=\frac{1}{2} \tag{45}
\end{equation*}
$$

The last step is because $\lim \sqrt{1+x}+1=2 \neq 0$.

- We have

$$
\begin{equation*}
\frac{x^{3}+5 x+6}{\sqrt{x^{6}+3 x}-7}=\frac{1+5 x^{-2}+6 x^{-3}}{\sqrt{1+3 x^{-5}}-7 x^{-3}} \longrightarrow \frac{1+0+0}{1-0}=1 . \tag{46}
\end{equation*}
$$

Problem 18. Find and prove the limit

$$
\begin{equation*}
\lim _{x \longrightarrow-\infty}\left(\sqrt{x^{2}+2 x}+x\right) \tag{47}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\sqrt{x^{2}+2 x}+x=\frac{\left(\sqrt{x^{2}+2 x}+x\right)\left(\sqrt{x^{2}+2 x}-x\right)}{\sqrt{x^{2}+2 x}-x}=\frac{2 x}{\sqrt{x^{2}+2 x}-x}=\frac{2}{-\sqrt{1+2 / x}-1} \longrightarrow-1 . \tag{48}
\end{equation*}
$$

Problem 19. Let $f(x):(0,2) \mapsto \mathbb{R}$ be defined as

$$
f(x)= \begin{cases}\frac{x^{2}-1}{x^{2}-3 x+2} & x \neq 1 \tag{49}\\ c & x=1\end{cases}
$$

Find all $c \in \mathbb{R}$ which makes $f(x)$ continuous at $x=1$. Justify your answer.
Proof. First we simplify

Therefore

$$
\begin{equation*}
\frac{x^{2}-1}{x^{2}-3 x+2}=\frac{(x-1)(x+1)}{(x-2)(x-1)}=\frac{x+1}{x-2} . \tag{50}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \longrightarrow 1} f(x)=-2 \tag{51}
\end{equation*}
$$

Consequently $c=-2$ is the only value that makes $f(x)$ continuous at $x=0$.
Problem 20. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be a real function. Prove that $f(x) \longrightarrow 0$ if and only if $|f(x)| \longrightarrow 0$. Is it true that $f(x) \longrightarrow L \neq 0$ if and only if $|f(x)| \longrightarrow|L|$? Justify your answer.

Proof.

- $f(x) \longrightarrow 0 \Longrightarrow|f(x)| \longrightarrow 0$.

For any $\varepsilon>0$, since $f(x) \longrightarrow 0$ there is $\delta>0$ such that for all $\left|x-x_{0}\right|<\delta,|f(x)-0|<\varepsilon$. But this is just the definition of $|f(x)| \longrightarrow 0$ as $x \longrightarrow x_{0}$.

- $|f(x)| \longrightarrow 0 \Longrightarrow f(x) \longrightarrow 0$.

For any $\varepsilon>0$, since $|f(x)| \longrightarrow 0$ there is $\delta>0$ such that for all $\left|x-x_{0}\right|<\delta,||f(x)|-0|<\varepsilon$. Thus $|f(x)-0|=||f(x)|-0|<\varepsilon$.

- $\quad f(x) \longrightarrow L \neq 0 \Longrightarrow|f(x)| \longrightarrow|L|$ is true.

For any $\varepsilon>0$, since $f(x) \longrightarrow L$, there is $\delta>0$ such that for all $\left|x-x_{0}\right|<\delta,|f(x)-L|<\varepsilon$. Since $||f(x)|-|L|| \leqslant|f(x)-L|$, we conclude that $|f(x)| \longrightarrow|L|$.

- $|f(x)| \longrightarrow|L| \Longrightarrow f(x) \longrightarrow L$ is false. A counterexample is $f(x)=\left\{\begin{array}{ll}1 & x>0 \\ -1 & x \leqslant 0\end{array}\right.$. Then $|f(x)|=1$ a constant function, therefore $|f(x)| \longrightarrow 1$ as $x \longrightarrow 0$. But $\lim _{x \longrightarrow 0} f(x)$ does not exist, because if we take $\left\{x_{n}\right\}=\frac{(-1)^{n}}{n}$, then $x_{n} \longrightarrow 0$ but $f\left(x_{n}\right)=(-1)^{n}$ does not converge.

Harder Problems

- Problems at this level may or may not appear in the midterm.
- The solutions for these problems are sketchy. You are discouraged to read the solution before having seriously worked on the problems.

Problem 21. Let $A_{n}:=\left(1,1+\frac{3}{n^{2}}\right), B_{n}:=\left[1,1+\frac{3}{n^{2}}\right], C_{n}:=\left[1,1+\frac{3}{n^{2}}\right), D_{n}:=\left(1,1+\frac{3}{n^{2}}\right]$ for every $n \in \mathbb{N}$.
a) Represent $\cup_{n=1}^{\infty} A_{n}, \cap_{n=1}^{\infty} A_{n}, \cup_{n=1}^{\infty} B_{n}, \cap_{n=1}^{\infty} B_{n} \cup_{n=1}^{\infty} C_{n}, \cap_{n=1}^{\infty} C_{n} \cup_{n=1}^{\infty} D_{n}, \cap_{n=1}^{\infty} D_{n}$ using intervals.
b) Among these eight sets, which is/are open? Which is/are closed? Justify your answers.

Solution. $(1,4), \varnothing,[1,4],\{1\}=[1,1],[1,4),\{1\}=[1,1],(1,4], \varnothing$.
$\cup A_{n}, \cap A_{n}, \cap D_{n}$ are open, $\cap A_{n}, \cup B_{n}, \cap B_{n}, \cap C_{n}, \cap D_{n}$ are closed.

Problem 22. Let $\left\{x_{n}\right\}$ be a sequence such that the subsequences $\left\{x_{2 n}\right\},\left\{x_{2 n+1}\right\},\left\{x_{3 n}\right\}$ are convergent. Show that $\left\{x_{n}\right\}$ is convergent.

Proof. Let $x_{2 n} \longrightarrow a, x_{2 n+1} \longrightarrow b$. First we show that $a=b$. Assume otherwise. Then we have $x_{3(2 k)} \longrightarrow a$, $x_{3(2 k+1)} \longrightarrow b$, but this contradicts the condition that $x_{3 n}$ is convergent. Therefore $a=b$.

Now we prove $x_{n} \longrightarrow a$. For any $\varepsilon>0$, there are $N_{1}, N_{2} \in \mathbb{N}$ such that for all $n>N_{1},\left|x_{2 n}-a\right|<\varepsilon$; For all $n>N_{2},\left|x_{2 n+1}-a\right|<\varepsilon$. Now take $N=\max \left\{2 N_{1}, 2 N_{2}+1\right\}$. Then for every $n>N$. we have $\left|x_{n}-a\right|<\varepsilon$.

Problem 23. Let $f(x)$ satisfy: $\forall \varepsilon>0 \exists \delta>0 \forall x_{1}, x_{2}$ satisfying $x_{1}, x_{2} \in\left(x_{0}-\delta, x_{0}+\delta\right) \backslash\left\{x_{0}\right\}$, $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon$. Prove that $\lim _{x \rightarrow x_{0}} f(x)$ exists.

Proof. Take any $x_{n} \longrightarrow x_{0}$ with $x_{n} \neq x_{0}$. Then there is $N \in \mathbb{N}$ such that for all $n>N, x_{n} \in\left(x_{0}-\delta\right.$, $\left.x_{0}+\delta\right) \backslash\left\{x_{0}\right\}$. Thus we see that for every $x_{n} \longrightarrow x_{0}, f\left(x_{n}\right)$ is Cauchy. All we need to show is that $\lim f\left(x_{n}\right)$ is the same for all $\left\{x_{n}\right\}$.

Assume the contrary. Then there is $x_{n} \longrightarrow x_{0}, y_{n} \longrightarrow x_{0}$ such that $f\left(x_{n}\right) \longrightarrow a, f\left(y_{n}\right) \longrightarrow b \neq a$. Now consider the new sequence $\left\{f\left(x_{n}\right)\right\} \cup\left\{f\left(y_{n}\right)\right\}$. This new sequence has two subsequences converging to different limits and thus cannot be Cauchy. Contradiction.

Problem 24. Let $E \subseteq \mathbb{R}$ be nonempty. For every $x \in \mathbb{R}$, its distance to E is defined as

$$
\begin{equation*}
d(x):=\inf _{y \in E}|x-y| . \tag{52}
\end{equation*}
$$

a) Prove that $d(x)$ is a continuous function.
b) Prove that inf can be replaced by min if and only if E is closed.

Proof.

a) Fix any $x_{0} \in \mathbb{R}$. Take $x_{n} \in E$ such that

$$
\begin{equation*}
\left|x-x_{n}\right| \longrightarrow \inf _{y \in E}|x-y|, \quad n \longrightarrow \infty . \tag{53}
\end{equation*}
$$

For any $\varepsilon>0$, take $\delta=\varepsilon$. Then we have, for any $\left|x-x_{0}\right|<\delta$,

$$
\begin{equation*}
d(x)-\left|x_{0}-x_{n}\right| \leqslant\left|x-x_{n}\right|-\left|x_{0}-x_{n}\right| \leqslant\left|x-x_{0}\right|<\delta \tag{54}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$, we reach

$$
\begin{equation*}
d(x)-d\left(x_{0}\right)<\delta \tag{55}
\end{equation*}
$$

Now repeat the above argument with x, x_{0} switched, we obtain

$$
\begin{equation*}
d\left(x_{0}\right)-d(x)<\delta . \tag{56}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left|d(x)-d\left(x_{0}\right)\right|<\delta=\varepsilon \tag{57}
\end{equation*}
$$

b)

- "If". Assume E is closed. For any $x \in \mathbb{R}$, take $x_{n} \in E$ such that $\left|x-x_{n}\right| \longrightarrow d(x)$. As $\left|x-x_{n}\right|$ is convergent, it is bounded, that is there is $M \in \mathbb{R}$ such that $\left|x-x_{n}\right| \leqslant M$ for all $n \in \mathbb{N}$. Consequently $\left|x_{n}\right| \leqslant|x|+M$ for all $n \in \mathbb{N}$. By Bolzano-Weierstrass, there is a subsequence $x_{n_{k}} \longrightarrow \xi \in \mathbb{R}$. As E is closed, $\xi \in E$. Then we have $d(x)=\lim \left|x-x_{n_{k}}\right|=|x-\xi|$.
- "Only if". Assume the contrary, that is E is not closed. Then E^{c} is not open. Consequently there is $x_{0} \in E^{c}$ such that for every $n \in \mathbb{N},\left(x_{0}-\frac{1}{n}, x_{0}+\frac{1}{n}\right) \nsubseteq E^{c}$, in other words there is $x_{n} \in E$ such that $\left|x_{n}-x_{0}\right|<\frac{1}{n}$. Consequently $d\left(x_{0}\right)=0$. Now since $\min _{y \in E}\left|x_{0}-y\right|$ exists, ther is $y_{0} \in E$ such that $\left|x_{0}-y_{0}\right|=0 \Longrightarrow x_{0}=y_{0} \in E$. Contradiction.

Problem 25. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be a real function. Define $f^{+}(x)=\lim _{n \longrightarrow \infty} \sup _{|x-y|<1 / n} f(y), f^{-}(x)=$ $\lim _{n \longrightarrow \infty} \inf _{|x-y|<1 / n} f(y)$. Prove that f is continuous at x_{0} if and only if $f^{+}\left(x_{0}\right)=f^{-}\left(x_{0}\right)=f\left(x_{0}\right)$.

Proof.

- "If". Assume f is continuous. Then for every $\varepsilon>0$, there is $\delta>0$ such that for all $\left|x-x_{0}\right|<\delta$, $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$. Thus for all $n>1 / \delta$, we have

$$
\begin{equation*}
f\left(x_{0}\right)-\varepsilon \leqslant \inf _{|x-y|<1 / n} f(y) \leqslant \sup _{|x-y|<1 / n} f(y) \leqslant f\left(x_{0}\right)+\varepsilon \tag{58}
\end{equation*}
$$

Taking limit and apply comparison theorem, we conclude

$$
\begin{equation*}
f\left(x_{0}\right)-\varepsilon \leqslant f^{-}\left(x_{0}\right) \leqslant f^{+}\left(x_{0}\right) \leqslant f\left(x_{0}\right)+\varepsilon . \tag{59}
\end{equation*}
$$

As this is true for all $\varepsilon>0$, we conclude $f^{+}\left(x_{0}\right)=f^{-}\left(x_{0}\right)=f\left(x_{0}\right)$.

- "Only if". For any $\varepsilon>0$, since $f^{+}\left(x_{0}\right)=f\left(x_{0}\right)$, there is $N_{1} \in \mathbb{N}$ such that for all $n>N_{1}$, $\sup _{\left|x-x_{0}\right|<1 / n} f(x)<f\left(x_{0}\right)+\varepsilon$, that is $f(x)<f\left(x_{0}\right)+\varepsilon$ for all $\left|x-x_{0}\right|<1 / n$. Similarly, there is $N_{2} \in \mathbb{N}$ such that for all $n>N_{2}, f(x)>f\left(x_{0}\right)-\varepsilon$ for all $\left|x-x_{0}\right|<1 / n$.

Now take $\delta=\min \left\{\frac{1}{N_{1}+1}, \frac{1}{N_{2}+1}\right\}$. Then for all $\left|x-x_{0}\right|<\delta$, we have $f\left(x_{0}\right)-\varepsilon<f(x)<f\left(x_{0}\right)+\varepsilon$ which means $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.

Problem 26. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be a real function. Prove that f is continuous if and only if for every open set $A \subseteq \mathbb{R}$, the pre-image $f^{-1}(A)$ is open.

Proof.

- "If". For any $\varepsilon>0$, the set $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right)$ is open. Therefore its preimage $\{x \in \mathbb{R}$: $\left.\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}$ is open. Consequently there is (a, b) such that $x_{0} \in(a, b) \subset\{x \in \mathbb{R}$: $\left.\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon\right\}$. Take $\delta=\min \left\{x_{0}-a, b-x_{0}\right\}$, we see that $\left|x-x_{0}\right|<\delta \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$.
- "Only if". Assume f is continuous. Let A be open. For any $x_{0} \in f^{-1}(A)$, there is $\varepsilon>0$ such that $\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right) \subseteq A$. As f is continuous, there is $\delta>0$ such that $\left|x-x_{0}\right|<\delta \Longrightarrow$ $\left|f(x)-f\left(x_{0}\right)\right|<\varepsilon$, in other words $f\left(\left(x_{0}-\delta, x_{0}+\delta\right)\right) \subseteq\left(f\left(x_{0}\right)-\varepsilon, f\left(x_{0}\right)+\varepsilon\right) \subseteq A$. Consequently $\left(x_{0}-\delta, x_{0}+\delta\right) \subseteq f^{-1}(A)$. Therefore $f^{-1}(A)$ is open.
Problem 27. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be a real function satisfying $f(x)>0$ for all $x \in \mathbb{R}$. Prove that for every closed interval $[a, b]$ with $a, b \in \mathbb{R}$, there is $\delta>0$ such that $f(x)>\delta$ for all $x \in[a, b]$. Is the claim still true if one or both of a, b is infinity?

Proof. Forgot to put in the problem that $f(x)$ is continuous! When a, b are finite, we know that $m=\min _{x \in[a, b]} f(x)$. As $f(x)>0, m \geqslant 0$. If $m=0$, then there is $x_{0} \in[a, b]$ such that $f\left(x_{0}\right)=0$ contradiction. Therefore $m>0$. Take $\delta=m / 2$.

If one or both a, b is infinity, then the claim does not hold anymore. For example, if $b=\infty$, consider $f(x)=e^{-x}$. If $a=-\infty$, consider $f(x)=e^{x}$.

Problem 28. (Cesaro average) Let $\left\{x_{n}\right\}$ be a real sequence. Set $y_{n}=\left(x_{1}+\cdots+x_{n}\right) / n$. Show that if $x_{n} \longrightarrow a \in \mathbb{R}$, then $y_{n} \longrightarrow a \in \mathbb{R}$. What about the converse, that is does $y_{n} \longrightarrow a$ guarantees $x_{n} \longrightarrow a$?

Proof. Because $x_{n} \longrightarrow a \in \mathbb{R}$, there is $M \in \mathbb{R}$ such that $\left|x_{n}\right| \leqslant M$ for all $n \in \mathbb{N}$. For any $\varepsilon>0$, since $x_{n} \longrightarrow a$, there is $N_{1} \in \mathbb{R}$ such that for all $n>N_{1},\left|x_{n}-a\right|<\varepsilon / 2$. Now take $N>\max \left\{\frac{2 N_{1}(M+|a|)}{\varepsilon}, N_{1}\right\}$, for every $n>N$, we have

$$
\begin{align*}
\left|y_{n}-a\right| & =\left|\frac{\left(x_{1}-a\right)+\left(x_{2}-a\right)+\cdots+\left(x_{n}-a\right)}{n}\right| \\
& \leqslant \frac{\left|x_{1}-a\right|+\left|x_{2}-a\right|+\cdots+\left|x_{n}-a\right|}{n} \\
& \leqslant \frac{\left|x_{1}-a\right|+\cdots+\left|x_{N_{1}}-a\right|}{n}+\frac{\left|x_{N_{1}+1}-a\right|+\cdots+\left|x_{n}-a\right|}{n} \\
& \leqslant \frac{N_{1}(M+|a|)}{n}+\frac{\left(n-N_{1}\right) \varepsilon / 2}{n} \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . \tag{60}
\end{align*}
$$

The converse is false. For example, take $x_{n}=(-1)^{n}$. Then $y_{n} \longrightarrow 0$.
Problem 29. Let $x_{n}>0$ for all $n \in \mathbb{N}$. Show that

$$
\begin{equation*}
\liminf _{n \longrightarrow \infty} \frac{x_{n+1}}{x_{n}} \leqslant \liminf _{n \longrightarrow \infty}\left(x_{n}\right)^{1 / n} \leqslant \limsup _{n \longrightarrow \infty}\left(x_{n}\right)^{1 / n} \leqslant \limsup _{n \longrightarrow \infty} \frac{x_{n+1}}{x_{n}} . \tag{61}
\end{equation*}
$$

Use this to prove that if $\lim \frac{x_{n+1}}{x_{n}}$ exists, so does $\lim \left(x_{n}\right)^{1 / n}$. What about the converse?
Proof. The middle inequality is obvious.

- The left inequality $\liminf _{n \longrightarrow \infty} \frac{x_{n+1}}{x_{n}} \leqslant \liminf _{n \longrightarrow \infty}\left(x_{n}\right)^{1 / n}$. For any $m>n$, we can write

$$
\begin{equation*}
\left(x_{m}\right)^{1 / m}=x_{n}^{1 / m}\left(\frac{x_{n+1}}{x_{n}} \cdots \frac{x_{m}}{x_{m-1}}\right)^{1 / m} \geqslant x_{n}^{1 / m}\left(\inf _{k \geqslant n} \frac{x_{k+1}}{x_{k}}\right)^{\frac{m-n}{n}} . \tag{62}
\end{equation*}
$$

As $x_{n}^{1 / m} \longrightarrow 1$ and $\left(\inf _{k \geqslant n} \frac{x_{k+1}}{x_{k}}\right)^{\frac{m-n}{n}} \longrightarrow \inf _{k \geqslant n} \frac{x_{k+1}}{x_{k}}$ as $m \longrightarrow \infty$, we have
$\liminf _{m \longrightarrow \infty}\left(x_{m}\right)^{1 / m} \geqslant \liminf _{m \longrightarrow \infty}\left[x_{n}^{1 / m}\left(\inf _{k \geqslant n} \frac{x_{k+1}}{x_{k}}\right)^{\frac{m-n}{n}}\right]=\lim _{m \rightarrow \infty} x_{n}^{1 / m}\left(\inf _{k \geqslant n} \frac{x_{k+1}}{x_{k}}\right)^{\frac{m-n}{n}}=$ $\inf _{k \geqslant n} \frac{x_{k+1}}{x_{k}}$.

Now take limit $n \longrightarrow \infty$, we conclude

$$
\begin{equation*}
\liminf _{m \longrightarrow \infty}\left(x_{m}\right)^{1 / m} \geqslant \liminf _{n \longrightarrow \infty} \frac{x_{n+1}}{x_{n}} . \tag{64}
\end{equation*}
$$

- The right inequality is proved similarly, using

$$
\begin{equation*}
\left(x_{m}\right)^{1 / m}=x_{n}^{1 / m}\left(\frac{x_{n+1}}{x_{n}} \cdots \frac{x_{m}}{x_{m-1}}\right)^{1 / m} \leqslant x_{n}^{1 / m}\left(\sup _{k \geqslant n} \frac{x_{k+1}}{x_{k}}\right)^{\frac{m-n}{n}} \tag{65}
\end{equation*}
$$

instead of (62).
If $\lim \frac{x_{n+1}}{x_{n}}$ exists, then $\liminf \frac{x_{n+1}}{x_{n}}=\limsup \frac{x_{n+1}}{x_{n}}$. Application of the squeeze theorem gives $\lim \left(x_{n}\right)^{1 / n}$ exists.

The converse is false. For example take $x_{n}=2 \pm(-1)^{n}$. Then $\lim x_{n}^{1 / n}=1$ but $\liminf \frac{x_{n+1}}{x_{n}}=1 / 3$ while $\limsup \frac{x_{n+1}}{x_{n}}=3$.

