
Math 314 Fall 2012 Final Review

Nov. 29, 2012 and Dec. 4, 2012

• Warning: This is not a complete list of materials covered by the exam. You still need to read the
notes, review homeworks, and work on practice problems.

1. Concepts

1.1. Continuity.

• Definition.

A function f(x):R� R is continuous at x0 if

1. limx� x0
f(x) exists;

2. f(x0)= limx� x0f(x).

Alternative formulation:

lim
h� 0

f(x0 + h)= f(x0). (1)

• Show continuity at a point x0.

◦ If there is (a, b) such that x0 ∈ (a, b) and f(x) on (a, b) is defined through combinations of
elementary functions: Continuity of sum, difference, product, ratio, composition, inverse.

◦ Otherwise: Definition. Possible methods of evaluating the limit limx� x0f(x) (besides easy
ones before the midterm)

− Squeeze Theorem.

Example 1. f(x)=

{

|x|1/2 sin (1/x) x� 0
0 x= 0

is continuous

Proof. When x � 0, |x|1/2, sin x, 1/x all continuous so f(x) continuous; At 0, use
Squeeze:

−|x|1/2 6 |x|1/2 sin (1/x)6 |x|1/2 (2)

So limx� 0f(x) =0 = f(0). �

− L’Hospital’s Rule.

Example 2. f(x)=

{

x lnx x > 0
0 x 6 0

is continuous at x0 = 0.

Proof. By L’Hospital,

lim
x� 0

x lnx = lim
x� 0

lnx

1/x
= lim

x� 0

1/x

−1/x2
= lim

x� 0
(−x)= 0= f(0). (3)

�

Note that we write x lnx as
ln x

1/x
instead of

x

1/ln x
because we want to get rid of ln x

after taking derivative.

− Taylor polynomial (equivalent to repeated application of L’Hospital’s rule).

Example 3. f(x)=

{

1− cos x

x2 x� 0

1/2 x= 0
is continuous at 0.
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Proof. We recall Taylor polynomial of 1− cos x:

1− cos x=
x2

2
− sin ξ

6
x3 (4)

with ξ between 0 and x. This gives, for x� 0,

∣

∣

∣

∣

f(x)− 1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

sin ξ

6
x

∣

∣

∣

∣

6
|x|
6
� 0 (5)

as x� 0. �

• Show discontinuity at a point x0.

◦ If f(x0) is known: Show limx� x0f(x)� f(x0); Or find xn� x0, xn� x0 but f(xn)� f(x0).

Example 4. Prove that f(x)=

{

x2− 5 x +4

x2− 3 x +2
x� 1

2 x= 1
is not continuous at 1.

Proof. We have

lim
x� 1

f(x)= lim
x� 1

(x− 4) (x− 1)

(x− 2) (x− 1)
= lim

x� 1

x− 4

x− 2
=3� 2. (6)

So f is not continuous at 1. �

◦ If f(x0) is not known: Find xn� x0, yn� x0, xn� x0, yn� x0 but

lim
n�∞

f(xn)� lim
n�∞

f(yn). (7)

Or show limx� x0+f(x)� limx� x0−f(x) if the limits are easy to calculate.

Example 5. Prove that f(x)=

{

1

x − 1
x� 1

c x= 1
cannot be continuous at 1 no matter what c is.

Proof. Take xn > 1, yn < 1, xn� 1, yn� 1. Clearly

lim
n�∞

1

xn − 1
=∞, lim

n�∞

1

yn − 1
=−∞. (8)

So f(x) cannot be continuous at 1. �

• Popular counterexamples.

Example 6. The Heaviside function H(x)=

{

1 x > 0
0 x 6 0

is continuous everywhere except at 0.

Example 7. f(x)=

{

sin (1/x) x� 0
0 x= 0

is continuous everywhere except at 0.

Note that the difference between the above two examples is that the left and right limits exist for
the Heaviside function but not for the second function. So although both are discontinuous at 0, the
former has much better behavior.

Example 8. The Dirichlet function f(x) =

{

1 x∈Q

0 x∈R\Q is not continuous anywhere.

1.2. Differentiability.

• Definition.
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f(x) is differentiable at x0 if

lim
x� x0

f(x)− f(x0)

x−x0
(9)

exists and is finite. This value is denoted f ′(x0).

Alternative formulation:

lim
h� 0

f(x0 + h)− f(x0)

h
= f ′(x0). (10)

• Show differentiability at a point x0.

◦ If there is (a, b) such that x0 ∈ (a, b) and f(x) on (a, b) is defined through combinations of
elementary functions: Differentiability of sum, difference, product, ratio, composition, inverse.

◦ Otherwise: Definition. Possible methods of evaluating the limit limx� x0

f(x)− f(x0)

x − x0
:

− Squeeze Theorem of Limits.

Example 9. f(x)=

{

|x|3/2 sin (1/x) x� 0
0 x= 0

is differentiable.

Proof. We see that

f(x) =











x3/2 sin (1/x) x > 0
0 x= 0

(−x)3/2 sin (1/x) x < 0

(11)

so it is differentiable at all x � 0 because x3/2, sin x, 1/x are differentiable there. At
x0 = 0 we have

0 6
f(x)− f(0)

x− 0
= |x|1/2 sin (1/x)6 |x|1/2 (12)

Application of Squeeze Theorem then gives limx� 0
f(x)− f(0)

x − 0
= 0 and differentiability

follows. �

− L’Hospital’s Rule.

Example 10. f(x)=

{

x2 lnx x > 0
0 x6 0

is differentiable.

Proof. Since x2, ln x are differentiable for x > 0 so does x2 ln x. On the other hand 0
is differentiable for x < 0. So f(x) is differentiable for x� 0. At 0 we have

lim
x� 0

f(x)− f(0)

x− 0
= lim

x� 0
x ln x= 0 (13)

(The limit is proved using L’Hospital in Example 2.) �

1.3. Integrability.

• Definition.

Partition P � Upper/Lower Riemann Sums U(f , P ), L(f , P )� Upper/Lower
Riemann Integrals

U(f) = inf
P

U(f , P ); L(f)= sup
P

L(f , P ). (14)

f is integrable if U(f)= L(f) or equivalently

inf
P

U(f , P )= sup
P

L(f , P ). (15)

When U(f)= L(f), the common value is denoted
∫

a

b
f(x) dx.
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Remark 11. Note that

◦ The definition only makes sense when f is bounded and a, b ∈R. Otherwise U(f), L(f) may
be extended real numbers. Therefore if f is unbounded or one of a, b is ±∞, f is by definition
not integrable, although we can still study its improper integrability.

• Prove integrability:

◦ If f is combination of simpler functions:

− Integrability of f + g, c f , f g.

− Composition: f integrable, g continuous� g ◦ f integrable.

◦ If f is continuous:

If f(x) is continuous on [a, b], then it is integrable on [a, b].

Note that f(x) continuous on (a, b) is not enough. For example f(x) =1/x on (0, 1).

◦ Definition.
Take an arbitrary P , calculate U(f , P ), L(f , P ), then calculate U(f), L(f). Compare.

Usually very difficult to do.

◦ “Cauchy” –

For each ε > 0, there exists a partition P of [a, b] such that

U(f , P )−L(f , P )< ε. (16)

Or equivalently,

Choose Pn appropriately so that U(f ,Pn),L(f , Pn) are easy to calculate and
U(f , Pn)−L(f , Pn)� 0.

The first thing to try is to take Pn =
{

x0 = a, x1 = a +
b − a

n
,	 , xn = b

}

.

Example 12. Let f(x): [a, b]� R be bounded and monotone, then f(x) is integrable.

Proof. Take Pn=
{

a,a+
b − a

n
,	 , b

}

and show U(f ,Pn)−L(f ,Pn)� 0. The key observation

is
∑

i=1
n [sup[xi−1,xi]f − inf[xi−1,xi]f ] = |f(b)− f(a)|. �

1.4. Improper integrability.

• Definition:














f integrable on every [c, d]⊂ [a, b]

lim
c→a+

(

lim
d→b−

∫

c

d

f(x) dx

)

exists and is finite















⇒
∫

a

b

f(x) dx= lim
c→a+

(

lim
d→b−

∫

c

d

f(x) dx

)

(17)

• Prove improper integrability/Calculate improper integrals:

1. Identify for what [c, d]⊆ [a, b] is f(x) integrable. If one can take c=a or d= b, then the double
limit can be simplified to a single limit.

2. (If prove) Show existence and finiteness of the limit: We use limc� b

∫

a

c
f(x) dx as example

here.

a) If f(x) > 0 or 60 for all x, the integrals
∫

a

c
f(x) dx is monotone as a function of c,

therefore it suffices to show boundedness (above if >0, below if 60); Usually it is shown
through finding another function g which is improperly integrable on (a, b) and satisfies

∫

a

c

f(x) dx6 (> if showing bounded below)

∫

a

c

g(x) dx. (18)
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b) General case, show
∫

a

c
f(x) dx is Cauchy (see Midterm Review).

3. (If calculate) Calculate
∫

c

d
f(x) dx and take appropriate limit(s).

Example 13. Show that
1

1+ x4/3
is improperly integrable over (0,∞).

Proof. Since
1

1+ x4/3
is continuous on [0, c] for all c, we only need to show the existence and finiteness

of the limit

lim
c�∞

∫

0

c dx

1 + x4/3
. (19)

Notice that
1

1+ x4/3
> 0, all we need to show is

∫

0

c dx

1 + x4/3
is bounded above. For any c 6 1 we have

∫

0

c dx

1+ x4/3
6

∫

0

1 dx

1+ x4/3
6

∫

0

1

dx= 1; (20)

On the other hand for c > 1, we have

∫

0

c dx

1+ x4/3
=

∫

0

1 dx

1+ x4/3
+

∫

1

c dx

1 + x4/3
<

∫

0

1

dx +

∫

1

∞ dx

x4/3
= 4. (21)

Therefore the limit exists and is finite and
1

1+ x4/3
is improperly integrable over (0,∞). �

1.5. Infinite series.

• Convergence:
∑

n=1

∞

an converges�{

Sn =
∑

k=1

n

an

}

converges. (22)

• Divergence to ±∞:
∑

n=1

∞

an =∞(−∞)� lim
n�∞

Sn =∞(−∞). (23)

• Show convergence:

◦ an > 0 (60): Find upper bound (lower bound);

◦ General case:

− If the limit is known or the formula for Sn is easy to obtain: Definition.

− Otherwise:

• Cauchy:

∑

n=1

∞

an converges�{

∀ε > 0, ∃N ∈N, ∀m, n > N ,

∣

∣

∣

∣

∣

∑

k=n+1

m

an

∣

∣

∣

∣

∣

< ε

}

(24)

• Dominance:

Find
∑

n=1

∞

bn convergent andN0∈N and c > 0, c bn > |an| for all n >N0. (25)

• Show divergence to ±∞: Definition.

• Show divergence (including divergence to ±∞):

◦ an > 0 (60): Show unboundedness.

◦ General case:

− Show an�0;

− Find bn such that an > |bn| for all n > N0∈N and
∑

n=1
∞

bn does not converge.

Nov. 29, 2012 and Dec. 4, 2012 5



− Definition: Show limn�∞Sn does not exist where Sn =
∑

k=1
n

ak.

2. Theorems

2.1. Continuity.

• Intermediate Value Theorem:

Let f(x) be continuous on the closed interval [a, b]. Then for every s ∈ [f(a), f(b)]
(or [f(b), f(a)] if f(b)6 f(a)), there is ξ ∈ [a, b] such that f(ξ)= s.

Note that f(x) must be continuous at the end points a, b.

Example 14. Prove that f(x)= x3 + 2 x− 10=0 has exactly one solution in R.

Proof. First we show that it has at least one solution using intermediate value theorem. To do this
we need to find a, b ∈R such that f(a), f(b) take different signs. It is easy to see that this can be
done by taking |x| large. For example take a=−10, b = 10.

To show that this is the only solution, we show f(x) is strictly increasing by showing f ′(x) > 0.
Calculate f ′(x)= 3 x2 + 2> 2 > 0. �

• Boundedness, Maximum, Minimum.

Let f(x) be continuous on [a, b] for a, b∈R. Then there are xmax, xmin∈ [a, b] such
that

f(xmax)> f(x), f(xmin)6 f(x) ∀x∈ [a, b]. (26)

Of course this gives the boundedness of f :

f(x)∈ [f(xmin), f(xmax)]. (27)

2.2. Calculation of derivatives.

• Arithmetics.

(f + g)′= f ′+ g ′; (c f)′= c f ′; (f g)′= f ′ g + f g ′;

(

f

g

)′

=
f ′ g − g ′ f

g2
. (28)

To remember the last one, use (x−1)′=−x−2.

• Chain Rule.

g(f(x))′= g ′(f(x)) f ′(x). (29)

Note that g ′(f(x)) means take the function g ′(x) and evaluate it at the point f(x).

• Inverse Function. If g is the inverse of f , then

g ′(y)=
1

f ′(x)
=

1

f ′(g(y))
. (30)

The tricky issue here is how to obtain a formula for f ′(g(y)).

Example 15. Let f(x)=ex+x−cosx. Prove that it has an inverse function g which is differentiable.
Calculate g ′(0).
Solution. We have

f ′(x)= ex + 1+ sinx > ex > 0 (31)

for all x∈R so f is strictly increasing and thus have an inverse function g. Since f is differentiable
with f ′> 0, g is differentiable. To calculate g ′(0) we write

g ′(0)=
1

f ′(x)
(32)
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where x is such that f(x)= 0. Clearly x =0 so

g ′(0) =
1

e0 +1 + sin 0
=

1

2
. (33)

2.3. Understanding functions through derivatives.

• f is differentiable at x0 then it is continuous at x0.

• Monotonicity, maximum, minimum.

We have

f ′(x)> (6)0 � increasing (decreasing); (34)

f ′(x)> (<) 0 � strictly increasing (decreasing); (35)

f ′(x) =0 � constant; (36)

f(x0) is local maximum/minimum
f ′(x0) exists

} � f ′(x0) =0. (37)

Example 16. Find all local maximizers of f(x)= x3− 3 x+ 7.
Solution. Since f(x) is differentiable, its maximizer(s) solve f ′(x)= 0 which is

3 x2− 3 = 0. (38)

Therefore possible candidates are x = 1, −1. Now we study the sign of f ′(x) in (−∞, −1), (−1, 1),
(1, ∞). We see that f ′(x) is positive, negative, positive respectively. This means f(x) is increasing
when x<−1, decreasing when x∈ (−1, 1) and increasing when x> 1. Therefore −1 is the maximizer
and 1 is the minimizer.

• Mean Value Theorem and Cauchy’s Extended Mean Value Theorem.

(Mean Value Theorem) Let f be continuous on [a, b] and differentiable on
(a, b). Then there is a point ξ ∈ (a, b) such that

f ′(ξ)=
f(b)− f(a)

b− a
. (39)

(Cauchy’s Extended Mean Value Theorem) Let f , g be continuous over [a, b]
and differentiable over (a, b). Then there is ξ ∈ (a, b) such that

f(a)− f(b)

g(a)− g(b)
=

f ′(ξ)

g ′(ξ)
. (40)

The Extended Mean Value Theorem is very powerful when g(x) is chosen cleverly.

Example 17. Prove that if f ′′(x) exists at x =x0, then

lim
h� 0

f(x0 + h)+ f(x0−h)− 2 f(x0)

h2
= f ′′(x0). (41)

Proof. Take F (h) 6 f(x0 + h) + f(x0 − h), G(h) = h2 and apply Cauchy’s Extended Mean Value
Theorem:

f(x0 +h)+ f(x0− h)− 2 f(x0)

h2
=

F (h)−F (0)

G(h)−G(0)
=

F ′(ξ)

G′(ξ)
=

f ′(x0 + ξ)− f ′(x0− ξ)

2 ξ
(42)

where ξ ∈ (0, h). Taking limit h� 0 we have ξ� 0 and

f ′(x0 + ξ)− f ′(x0− ξ)

2 ξ
� f ′′(x0) (43)

as we have shown in Homework 5 Problem 1. �
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• L’Hospital’s Rule. x0∈R∪{∞,−∞}.






f , g differentiable on (a, x0)∪ (x0, b)
limx� x0f(x)

limx� x0
g(x)

undetermined:
0

0
,
±∞
±∞







� lim
x� x0

f(x)

g(x)
= lim

x� x0

f ′(x)

g ′(x)
(44)

if the latter exists.

Example 18. Usually there may be more than one way to write a function into a ratio. Choose the
one that gets simpler after differentiation. For example, if we study limx�∞x e−x2

we should write

x e−x2
=

x

ex2 (45)

but not

x e−x2
=

e−x2

1/x
. (46)

• Taylor polynomial with Lagrange form of remainder.

Let f be such that f (k)(x) exists on (a, b) for k = 0, 	 , n + 1. Then f(x) can be
written as a the sum of a polynomial and a remainder term:

f(x)= Tn(x)+ Rn(x) (47)

where its Taylor polynomial of degree n reads

Tn(x)= f(x0)+ f ′(x0) (x− x0)+
 +
f (n)(x0)

n!
(x− x0)n (48)

and its Lagrange form of remainder reads

Rn(x) =
f (n+1)(ξ)

(n + 1)!
(x−x0)

n+1 (49)

where ξ is between x, x0.
Note that both Tn(x) changes if x0 changes, while Rn(x) changes if either x0 or x

changes since ξ = ξ(x, x0).

Example 19. Calculate Taylor polynomial of f(x) = arctan x at x0 = 0 to degree 2 with Lagrange
form of remainder.
Solution. We need f(0), f ′(0), f ′′(0), f ′′′(ξ).

f(x)= arctanx � f(0)= 0. (50)

f ′(x)=
1

1 +x2
� f ′(0)=1. (51)

f ′′(x)=
−2x

(1+ x2)2
� f ′′(0)= 0. (52)

f ′′′(x)=
−2 (1+ x2)2− (−2 x) (4 x) (1 +x2)

(1 +x2)4
=

−2+ 6x2

(1 + x2)3
� f ′′′(ξ)=

−2+ 6 ξ2

(1 + ξ2)3
. (53)

Therefore

T2(x)=x, R2(x) =
−2 +6 ξ2

6 (1+ ξ2)3
x3. (54)

and

arctan x= x+
−2+ 6 ξ2

6 (1 + ξ2)3
x3 (55)

for some ξ between 0 and x.

2.4. Integrability.

• f is integrable on [a, b]� f is integrable on [a, c] and [c, b] for every c∈ (a, b). Also true for improper
integrals.
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• f is integrable then so is |f |. Note that this is not true for improper integrals.

2.5. Manipulation of integrals.

• Useful relations:

f 6 g� ∫

a

b

f(x) dx6

∫

a

b

g(x) dx. (56)

∣

∣

∣

∣

∣

∫

a

b

f dx

∣

∣

∣

∣

∣

6

∫

a

b

|f | dx. (57)

∫

a

b

f(x) dx =−
∫

b

a

f(x) dx. (58)

• Fundamental Theorem of Calculus Version 1:






f integrable on [a, b]
F antiderivative on (a, b)

F continuous on [a, b]







� ∫

a

b

f(x) dx = F (b)−F (a) (59)

• Fundamental Theorem of Calculus Version 2:

f integrable on [a, b] � G(x)6 ∫

a

x

f(t) dt continuous on [a, b] (60)

{

f integrable on [a, b]
f continuous at x0∈ (a, b)

}� G′(x0)= f(x0). (61)

The most important thing to keep in mind is

G(x)6 ∫

a

x

f(t) dt� ∫

a

h(x)

f(t) dt =G(h(x)). (62)

2.6. Infinite Series.

• ∑

n=1
∞ |an| converges� ∑

n=1
∞

an converges.

• Tests for non-negative series:

◦ Ratio test:

limsup
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< 1� converge; liminf
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

> 1� diverge (63)

◦ Root test:

limsup
n�∞

|an|1/n < 1� converge; liminf
n�∞

|an|1/n > 1� diverge. (64)

Example 20. Study the convergence/divergence of
∑

n=1
∞ xn

n
for x∈R.

Solution. We apply the ratio test:

|an+1|
|an|

=
n |x|
n +1
� |x|. (65)

Therefore the series converges when |x|< 1 and diverges when |x|> 1. At |x|= 1,

◦ x= 1: In this case the series is
∑

n=1
∞ 1

n
and we know it diverges;

◦ x=−1: In this case the series is
∑

n=1
∞ (−1)n

n
and we know it converges.

Summarizing, the series converges when −16 x < 1 and diverges elsewhere.

Remark 21. Note that in general, the “tests” are only useful when an’s are explicitly given. For
questions dealing with general an, one should try dominance ((25)) or Cauchy/definition (in that
order).
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• Useful facts:

◦ Geometric series.

∑

n=1

∞

rn−1 =















1

1− r
|r |< 1

∞ r > 1
does not exist r 6−1

. (66)

◦ Harmonic series and generalizations.

∑

n=1

∞

n−a

{

converges a > 1
=∞ a 6 1

. (67)

◦ Alternating series. an > 0, an decreasing, an� 0. Then

∑

n=1

∞

(−1)n an (68)

converges. In particular
∑

n=1
∞ (−1)n+1

n
converges.

3. Tricks

3.1. The d operator.

• A more efficient way of writing down integration by parts and change of variables.

For a single variable function f(x) we simply have

df = f ′(x) dx (69)

thus

d(cosx)= (−sinx) dx; d(arctanx)=
dx

1 +x2
(70)

etc.
The integration by parts formula now becomes

∫

a

b

u dv = u(b) v(b)− u(a) v(a)−
∫

a

b

v du. (71)

And the change of variables formula now can be written in a form that is often more natural:
∫

a

b

f(x) dx�x=u(y)
∫

c

d

f(u(y)) du(y) =

∫

c

d

f(u(y))u′(y) dy. (72)

where c, d are such that u(c) = a, u(d)= b.

Example 22. Calculate
∫

1

e
x lnx dx.

We have
∫

1

e

x lnxdx =

∫

1

e

lnx d

(

x2

2

)

=

[

x2

2
lnx

]

1

e

−
∫

1

e x2

2
d(lnx)

=
e2

2
−
∫

1

e x

2
dx

=
e2

2
− e2

4
+

1

4
=

e2 +1

4
. (73)

Example 23. Calculate
∫

1

4 1 + x
√√

x
√ dx (74)
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Solution. It’s natural to set x= y2. Then we have
∫

1

4 1 + x
√√

x
√ dx =

∫

1

2 1 + y
√

y
d(y2)

= 2

∫

1

2

1 + y
√

dy

=
4

3
(1+ y)3/2N y=1

y=2

=
4

3

[

33/2− 23/2
]

.

Example 24. Calculate
∫

0

1 e− x
√

2 x
√ dx (75)

Solution. Again it’s natural to set x= u(y)= y2. This gives
∫

0

1 e− x
√

2 x
√ dx =

∫

0

1 e−y

2 y
d(y2)

=

∫

0

1

e−y dy

= 1− e−1. (76)

3.2. Abel’s summation formula.

Example 25. Let an be such that limn�∞n an exists and is finite,
∑

n=1
∞

n (an − an−1) converges. Prove
that

∑

n=1
∞

an converges.

Proof. We show that
∑

n=1
∞

an is Cauchy. For any m > n we have

∑

k=n+1

m

ak =
∑

k=n+1

m

[k − (k − 1)] ak

=
∑

k=n+1

m

k ak −
∑

k=n+1

m

(k − 1) ak

=
∑

k=n+1

m

k ak −
∑

k=n

m−1

k ak+1

= m am −nan+1 +
∑

k=n+1

m−1

k (ak − ak+1). (77)

Note that if n an converges to s ∈R, so does n an+1 =
n +1

n
[(n + 1) an+1]. Now for any ε > 0, take N1, N2,

N3∈N such that for all n > N1, |n an − s|<ε/3; For all n > N2, |n an+1− s|< ε/3; For all m > n >N3,
∣

∣

∣

∣

∣

∑

k=n+1

m−1

k (ak − ak+1)

∣

∣

∣

∣

∣

<ε/3. (78)

Take N =max {N1, N2, N3}. Now for all m > n >N , we have
∣

∣

∣

∣

∣

m am −n an+1 +
∑

k=n+1

m−1

k (ak − ak+1)

∣

∣

∣

∣

∣

6 |(m am − s)− (n an+1− s)|

+

∣

∣

∣

∣

∣

∑

k=n+1

m−1

k (ak − ak+1)

∣

∣

∣

∣

∣

6 |m am− s|+ |n an+1− s|+
∣

∣

∣

∣

∣

∑

k=n+1

m−1

k (ak − ak+1)

∣

∣

∣

∣

∣

< ε. (79)
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Therefore
∑

n=1
∞

an is Cauchy and the proof ends. �

Example 26. Let α > 0. Then
∑

n=1
∞

an converges� ∑

n=1
∞

n−α an converges.

Proof. Since
∑

n=1
∞

an converges, we have Sn =
∑

k=1
n

an converges (by definition) and therefore bounded.

Let M be such that |Sn|6 M for all n∈N. Now write

∑

k=n+1

m

k−α ak =
∑

k=n+1

m

k−α (Sk −Sk−1)

=
∑

k=n+1

m

k−α Sk −
∑

k=n+1

m

k−α Sk−1�l=k−1 in 2nd sum ∑

k=n+1

m

k−α Sk −
∑

l=n

m−1

(l +1)−α Sl

=
∑

k=n+1

m

k−α Sk −
∑

k=n

m−1

(k + 1)−α Sk

= m−α Sm +
∑

k=n+1

m−1

[k−α − (k + 1)−α] Sk − (n +1)−α Sn. (80)

Therefore
∣

∣

∣

∣

∣

∑

k=n+1

m

k−α ak

∣

∣

∣

∣

∣

6 2 (n + 1)−α M. (81)

Now it’s easy to show that
∑

n=1
∞

n−α an is Cauchy and thus converges. �

Remark 27. In fact this is a special case of Problem 5 a) of HW7.

3.3. Telescoping.

Example 28. (USTC) an > 0. Recall Sn =
∑

k=1
n

an. Then
∑

n=1
∞ an

Sn
2 converges.

Proof. Write (for n > 2)
an

Sn
2 =

Sn−Sn−1

Sn
2 <

Sn −Sn−1

Sn−1 Sn

=
1

Sn−1
− 1

Sn

. (82)

This gives
∑

k=1

n
ak

Sk
2 <

1

a1
+
∑

k=2

n [

1

Sk−1
− 1

Sk

]

=
2

a1
− 1

Sn

<
2

a1
. (83)

Since
an

Sn
2 > 0, this upper bound implies convergence. �

3.4. Construction of counterexamples.

Example 29. HW4 Problem 4 a).
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