MATH 314 FALL 2012 FINAL PRACTICE

e You should also
o review homework problems.
o try the 2011 final (and you should feel most of its problems are easy).

e Most problems in the final will be at the “Basic” and “Intermediate” levels (First 36
problems).

Basic
Problem 1. Let
—1 r<—1
azx?+bx+c |z|<1l,2+0
flay={ T thete pI<LaE0. 1)
1 r>1

Find a,b,c € R such that f(z) is continuous at every z.

Solution. We know that —1,a 22+ bz + ¢, 0, 1 are all continuous functions, therefore for f(z) to be
continuous, we only need to make sure f(z) is continuous at 1,0, —1.

o At —1. We need

—1=a(-1)?+b(-1)+ce=a—b+c=—1; (2)

e At 1. We need
a+b+c=1; (3)

e At 0. We need
c=0 (4)

Putting all these together we have
a=0,b=1,c¢=0. (5)

Problem 2. Calculate the derivatives of the following functions.

file)= < 1H2)3; P)=Vito+a®  falw)=exp[rina) (6)

1— 22

Solution. We have

/ 12z (22 4+1)2 , 2zx+1 , 1
T)=—a———r r)=——— r)=e"""[Inx +1]. 7
o) =2 Bt fi@) = na 1] 7)
Problem 3. Calculate the following limits.
_ 2 T _ ,—T _ _
lim 1—cos“x . lim =€ 290; lim T arctanx' (8)

z—so00 SiN (1/.’[])

e—0/1+a2—1 e—0 x—sinz
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Solution.

We first check that
lim (1—cos?z)= lim (V1+z?—-1)=0 9)

z—0 z—0

so we should apply L’Hospital’s rule.

. 1—cos?z . 2cosxsine
lim =

- = im ———
t—0+4/1+4+22—1 t—0 x//1+ 2?2

2cosx sinz
= lim —— —/——. 10
r—0 \/1—|—5[;2 x ( )

. . 2cosx 2 . sinx . ) . N
Notice t.hat lim,_ .o Vel 2. We only need to find lim,__.¢ — Applying L’Hospital’s
rule again:

sinz cos
li = 1li =1. 11
s o 1 (11)
So finally we conclude
1—cos’z
lim ———=2. 12
c—0+/14+22—1 (12)
We first check that
lim (e*—e *—2z)= lim (z—sinz)=0 (13)
z—0 z—0
so L’Hospital’s rule can be applied:
. ef—e -2z . efte =2
lm ——— = lim —————
z—0 X —sinz z—0 1—cosx
. et—e"
= lim —————
z—0 sinx
— lim £ "o (14)

z—0 COST

We notice that

lim (7 —arctanz)= g, lim sin% =0. (15)

To decide whether the limit is oo or —oo, we notice sin (1/z) >0 for all = >1/7. Therefore

m—arctanr

A ) 1o

Problem 4. Calculate Taylor polynomial to degree 2 with Lagrange form of remainder.
f(x)=xsin (Inx); xp=1. (17)

Solution. We have

f(1)=0; (18)
f'(z)=sin(lnx)+cos(Inz)= f'(1)=1, (19)
f”(m):%cos(lnx)—%sin(lnx):>f”(1):1; (20)
P () = _cos(lnz)—sin(lnz) sin(Inz)+cos(lnx)  2cos(nz) . (21)

ZE2 x2 x2



Therefore the Taylor polynomial with Lagrange form of remainder is

zsin(Inz)=(z—1)+ (@ _2 D COS;?; 3 (z—1)3 (22)

where £ is between 1 and =x.

Problem 5. Let f(z) = 2 # — sin = defined on R. Prove that its inverse function g exists and is
differentiable. Then calculate ¢’(0), ¢g'(m — 1).

Solution. We have f/(x)=2—cosz>1>0 so g exists and is differentiable. We have

9y =1/ ') =g (23)

— COS X

so all we need to do is to figure out 1, 22 such that f(z1) =0 and f(z2) =7 — 1. It’s easily seen that
x1=0,29=m/2. Therefore

gO)=1,  ¢r-1)=7. (24)

Problem 6. Which of the following functions is/are differentiable at o= 07 Justify your answers
Jz4+2 >0 _ 2sin+ r#0 _ 2 sin x#0
fe={ T3 TZ0 pe=d T R0 g s oA (25)
Solution.
e fi(z). Clearly fi(z) is not continuous at 0 so is not differentiable there.

o fo(x). We check

=sin—.
x—0 T

fo(@) = f2(0) _ . 1 (26)

As the limit limm_,osin% does not exist, fa(z) is not differentiable at xo=0.

e f3(x). We have

lim fa(@) = £5(0) lim xsinl:O (27)
z—0 z—0 z—0 x
so fs(x) is differentiable at xzo=0.
f(=z) — f(xo) vtz
Problem 7. Let f(z): R~ R be continuous and z € E. Define F(x):= z — g Y. Prove
c T =0

that f is differentiable at z¢ if and only if there is ¢ € R such that F'(x) is continuous for all z € R.

Proof. It is clear that F'(x) is continuous at all x# 9 no matter what c is.

e Ouly if. If f is differentiable at xg then by definition

lim F(z)= lim f@) = flzo) f'(z0) (28)

T— T T— T Tr — X
So if we set ¢= f'(x¢), F(x) is also continuous at x.

e If Since F(x) is continuous at xo, we have

c= lim F(z)= lim &)=/ (29)

rT—T0 rT—T0 Tr — T
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which by definition meansf is differentiable at z.

Problem 8. Calculate the following integrals:

2

€ dx : -z < 3
112/ oD 122/ e V¥dr; I3:/ z°Inzdr
. z(lnzx) 0 1

e [;. Change of variable: y =wu(xz) =Inz. Then we have

Solution.

2 2

e dx o ff 1 ,
h= [ i = [ (e v
/u(e2) 1d
B u(e) y4 Y

2
1
—d
/1y4y
1

= —y°f
s
24"

e . Change of variable: y=u(z) =+/z. We have

4 4
Igz/ e Vide = / e @y (z) (2u(z)) dz
0 0

e [I3. We integrate by parts:

e e .’II4 /
Ig,:/ lnzxdr = / Inx —> dx
1 1 4

Problem 9. Prove that the following improper integrals exist and calculate their values:

[eS) 1
le/ e 2% cos (3 ) dx; J3:/ (Inz)?dx
0 0

/1 dx
Ja= —_
1 V1—22

(30)

(33)



Solution.

Ji. Notice that e=2% cos (3 ) is continuous on [0, ¢] for every ¢ > 0 and is therefore integrable
there, we check

c c /
/ e ?%cos(3z)dx = / e_2m<lsin(3x)) dz
0 0 3

= e’zcésin (3¢)— 672'0%51n (3-0)

/ lsin (32) (e72%) dx
0 3

= le’QCsin(?)c)—l—2 e ?%sin (3z)dz
3 3/

= le‘2csin(3c)—2 e~ 2% (cos (3x)) dx
3 9/,

= % e 2¢ sin (3 ¢) — % |:626 cos 3 ¢) —e?%cos (3-0) +
2

/ e 2% cos (3 ) dx}
0

— l —2c o3 _2 —2c . z_é ¢ —2x
= 3¢ sin (3 ¢) 3¢ cos(3c)—|—9 9/0 e *%cos (3x)dx.  (35)
Thus
/0e2mcos(3x)dx_%[%e2Csin(3c)—%e2%03(30)—!—%}. (36)

Taking limit ¢ — oo we have
c

lim e 2% cos (3x) do=2 (37)
ey A 13

exists and is finite. So the improper integral exists,

/ e 2% cos (3 ) dx:l. (38)
A 13

Jo. Notice that ! = becomes unbounded at x =1 and x = —1. So we consider
xT

Vv1—
b
dx
— 39
[z V1—2z2 (39)
with —1 < a < b < 1. We apply change of variable x = sin y with y € (arcsin a, arcsin b). Then

dx = cos ydy and the integral becomes (note that for the above y we have cos y > 0)

arcsin b

cosydy

[ A=
a 1— 22 arcsin a Cos Yy

Now taking limits a — —1+4+,b— 1 — | we have

=arcsin b — arcsin a. (40)

b
dx
li li — | = 41
a;fimlbf}_/a r_le T (41)

exists and is finite. So

/1 dz .
1 V1—22
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e Js. As (Inz)? is continuous and thus integrable on [c, 1] for any c € (0, 1), we consider
1 1
/ (Inz)?dr = [x (lnx)2](1;—/ 2lnzdx

1
= —c(lnc)2—2{1ln1—clnc—/ d:v]
= —c(Inc)®+clnec+2(1—c). (43)
Thus

1

lim (Inz)?dr=2 (44)
c—0+ J¢o
exists and is finite, so

1
/0 (Inz)?dz=2. (45)

1 =0

240

Problem 10. Prove by definition that f(x)= { is integrable over [—1, 1] and find the value

of [1 fla)dz

Proof. Let P be any partition of [—1,1]. Then we have, since f(x) >0,

L(f,P):Z <me[mf ]f(x))($i—$i1)>0; (46)

Ti—1,T4

On the other hand, take P, = {xoz —1,x1= —1—|—%, v, Top_1=1 —%,xgn: 1}. We see that

1 i=n,n+1
[%811117)%]]”( z)= { 0 all otherd - (47)
Therefore
2n n+1 9
U =3 (s @) in) =3 )=t (48)
—1 xE xl 1,%4 i=n
By definition we have
U(f)gU(f,Pn)z%forauneN:>U(f)<o. (49)

This gives 0> U(f) > L(f) >0 which means U(f)=L(f)=0. So f(x) is integrable with fil flz)dr=
0. O

Problem 11. (USTC) Is the following calculation correct? Justify your answer.
T 0
dt
2 _ _
/0 COS JIdJI—/O m—o (50)
where the change of variable is t =tan x.

Solution. No. Since cos?z >% when z € (0,7/4) we have

0 /4 /4 1 T
/ cos’rdx > / cos?r dz > / —dz=<>0 (51)
0 0 o 2 8

so the calculation is not correct. The problem is u(x) =tanx is not differentiable over (0, 7).

Problem 12. Let F(z):= [ T2 ot 4t Caleulate F'(z) and F"(z).

sinxT



Solution. Let G(z):= [ e'dt. Then we have G'(x) =e®, and
242 0 242 sin
F(;v):/ etdt—i—/ etdt:/ etdt—/ etdt =G(2?+2) — G(sinz). (52)
0 sin x 0 0
This gives
F'(x)=G'(2242) (22 +2) — G'(sinz) (sinz) =2z e +2 — 507 cos . (53)

Taking derivative again we have
F"(z) = (422 +2) e T2 4 [sinz — (cos )?] €57, (54)

Problem 13. Prove the convergence/divergence of (can use convergence/divergence of > n® and }_ r™).

> 2"+ n > n%+n = n2+1
_— —_ —_— 55
; 3n+5n+4’ ; nd—4’ ; (n'/3+19)5 (55)
Proof.
e For all n>1 we have 2" > n. Therefore
2" 4 n 2.27 2\"
< =2(2) .
‘3"+5n+4‘\ 3n 2<3) (56)
As En 1 (%) converges, so does En 1 —3RT5+:+4
e When n>2 we have "7 >4. This gives
n2+n 2n?
no — n5/2 =4n (57)
n? +n

when n>2. As >°°7 . n=3 converges, so does >

n=1

n=1 n5—-4"

e Intuitively when n is large, we have

n2—|—1 n _2/3

=n 58
CREES TR (5%)
So we expect the series to diverge.
To justify, note that when n > 193, n'/3>19 and n2> 1. Therefore for such n we have
\/TL2+1 = V2TL2 :Q TL72/3| (59)
(nB19)°  (2nP)F 32 |
The divergence of 3°°° | n~2/% now implies the divergence of 3>-°° Vil O

1 (n1/3+ 19)5'

Problem 14. Prove that Y 7% converges and find its sum.

T

Proof. Since for all n €N we have n(n1+ 3 < % and > % converges, » >, ﬁ converges too.
To find the sum, we notice
n n n n+3 n+3
1 1 1 1 1 1
Sn—Zm—gz <E—m>—§lZE—Z ] [Z“ > ] (60)
k=1 k=1 k=1 k=4 k=n+1
Taking limit n — oo now gives S,, — — L g

18"
b2

Problem 15. Prove: If >°>° | aj, converges then 3°>7 | == converges. (Hint: a2;— >ab)
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Proof. It suffices to show the convergence of Zn 1 ’ . Since this is a non-negative series, all we need

to show is that it is bounded from above. Notice that

an 1 _1(, 1
n) <z — .
n |an|n\2<a"+n2> (61)
We know that > °7 | a7 and Y °7 | % are convergent, therefore
n . [ n ) n 1 1 oo ) 0o 1
Z’?‘ <3 Zak+;ﬁ1<§[2an+2ﬁlelfi. (62)
So >, |%"} is bounded above and thus converges. O

Problem 16. Study the convergence/divergence of

Z 1+1/n (63)

Solution. It diverges because n'/™ < 2. To prove this statement, we only need to prove 2" > n for all
n € N. Use mathematical induction: The statement P(n)="2"> n”.

e P(1)is true. We have 2! >1.
e If P(n) is true, that is 2" >n, then we have

1/n <

ntl=92.2">2n>n+1 (64)
therefore P(n+1) is true.
Now we have
1 11
- >
IESYD R P (65)

1
n=1 ,(+1/n)"

Since 07 | — dlverges so does Y™
Problem 17. Prove that

> g (66
You can use the divergence of >~ | %
Proof. For all n>1 we have
1 11
>
2n+173n (67)
Therefore 7 | —=oc0o=3 ", 2n1+ T = 00. O

Problem 18. Consider Z:O:1 nr™. Identify the values of r € R such that it is convergent. Justify your
answer. You can use the fact that lim,_, .onr™=0 when |r| < 1.

Solution.
Apply ratio test, we have

lani1| _n+1

] |r| — |r| as n — co. (68)

Therefore the series converges for || < 1. On the other hand, when |r|>1 it is clear that lim,,_, .onr"=0
does not hold. Therefore the series is divergent for such 7.



INTERMEDIATE

Problem 19. Let f, g be continuous at xo € R. Then so are

F(z): =max{f(z), g(x)},  G(z):=min{f(z),g(z)}. (69)
Proof. Note that we have

F(.”L‘) zmax{f(x), g(x)} _ f(ac)—;—g(x) + |f($) 5 g($)| (70)
and

G(.”L‘) zmin{f(x), g(x)} _ f(ac);—g(x) _ |f($) 5 g($)| (71)

As f, g are continuous at xg, so are f(z);rg(m) and lf(z);g(z)‘. Consequently F', G are also continuous
at xo. O

Problem 20. Prove the following.
a) There is exactly one z € (0, 1) such that
zt/2er=1. (72)
b) There are infinitely many x € R satisfying
rsinz=1. (73)

Proof.

a) Since 2'/? and e® are both continuous on R, z'/? ¢® is also continuous on R. We try to use
intermediate value theorem. Denote f(x)=xz'/?¢*. Calculate

f0)=0,  f(1)=e=1€(f(0), f(1)). (74)

Thus there is £ € (0,1) such that f(§)=1.
To show that & is the only solution to the equation, we check that f(x) is strictly increasing:

f’(x)—(%x_l/2+xl/2)em>0 (75)

for all € (0,1). Thus f(x)>1 when x> ¢ and f(z) <1 when z <¢.

b) Since z,sinz are both continuous on R, f(z):==xsinz is also continuous on R. Now we check,
for every n € N,

fnm)=0<1,  f(nr+3)=nr+I>1. (76)

Thus the intermediate value theorem gives the existence of x,, € (n TN —|—%) satisfying f(x,)=1.
So there are infinitely many solutions to f(z)=1. a

Problem 21. Let f(z) be differentiable at xg with derivative f’(xo)=3. Calculate

i (3n2+2n—1)[f(xo+%>—f(xo)] (77)

Solution. Since f(x) is differentiable at xo, we have

2

nh;nm%[f(xo+%)—f<xo)} — f/(w0) =3. (78)

Therefore as n — oo.

(3n2+2n—1)[f<:vo+%) —f(:co)} = (6+%—%> {%2|;f<$0+%> —f(:vo)”

s 6 f'(z0) =18, (79)
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Problem 22. Let f, g be differentiable on (a,b) and continuous on [a,b]. Further assume f(a)= g(b),
f(b)=g(a). Prove that there is & € (a,b) such that f'(§)=—g'(¢).

Proof. Let h(z):= f(z)+ g(x). Then we have h(x) differentiable on (a,b) and continuous on [a, b], and

furthermore

h(a)= f(a) + g(a) = f(a)+ f(b) = g(b) + f(b) = h(b). (80)
Applying the mean value theorem we have: there is £ € (a, b) such that h'(¢) = 0. But this is exactly
f'€)=—49'(¢). O

Problem 23. Prove the following inequalities
a) [cosz —cosy| < |z —y| for all z,y € R;
b) |arctanz —arctan y| < |z — y| for all z, y € R;

) “lcmi<l g<b<a.
a b b

Proof.
a) By mean value theorem
|cos & —cos y| =|(sin &) (z — y)| = |sin {] |z — y[ < [x —y]. (81)

b) By mean value theorem

1 1
— = — = | — —_ < —_ .
|arctan 2z — arctan y| ‘1+£2 (x y)' '1+§2 |z —y| < |z —y] (82)
¢) By mean value theorem
a 1
lng—lna—lnb—z(a—b). (83)
Since b< £ <a and a —b >0, we have
a—b _a—-b a-—>b
—< G <3 (84)
]
Problem 24.
a) Let a€(0,1). Prove that
lim [(n+1)*—n%=0. (85)
You can use (7%)' =az®" L
b) Prove that
lim [sin ((n+1)"/%) —sin (n/?)]=0. (86)
Proof.
a) Applying Mean Value Theorem to f(z)=x® we have
a 1

0<(n+1)—n*=a&* L(n+1)—n]= (87)

glfa < nlfa

where the last inequality follows from &€ € (n,n+ 1) and 1 — a > 0. Now take n — oo, Squeeze
Theorem gives

lim [(n+1)*—n%=0. (88)

b) By Mean Value Theorem we have
sin ((n+1)'/3) —sin (n'/?) =cos (&) [(n+1)1/2 — n!/?] (89)
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where & € (n!/3, (n+ 1)1/3). This gives
|sin ((n + 1)!/3) —sin (nl/?’)’ <(n+1)Y3 /3, (90)
Thanks to a) we have lim, o [ (n+ 13— nl/ﬂ =0. Application of Squeeze Theorem to
—[(n+1)'3 —n'3] <sin ((n+1)"/3) —sin (n'/?) < (n+1)/3 —n!/3 (91)
gives the desired result. O

Problem 25. (USTC) Let f be differentiable on R, f(0) =0 and f’(x) is strictly increasing. Prove
that @ is strictly increasing on (0, 00).

Proof. We calculate

(f(x) )’_ f'a) e~ flx) (92)

x

Now notice that by the mean value theorem,

f(x) _ f(z)— f(0) = f'(¢) (93)

x x—0

for some £ € (0,x). As f'(x) is strictly increasing, f'(£) < f/(x) therefore

f@) =z (&) <z f'(x) (94)
thanks to > 0.
This gives
<f(x)>/:fl(x)x_f(x)>0 (95)
x x?
for all z € (0,00). So @ is strictly increasing on (0, 00). O

Problem 26. Let f(z) be differentiable on (—o0,0) and (0,00). Assume that

lim f'(z)=A, lim f'(x)=B. (96)

rz—0— r— 0+

Prove that if A+ B then f(x) is not differentiable at x =0.

Proof. First notice that if f(z) is not continuous at = 0 then it is not differentiable there. In the
following we assume f(z) is continuous at x =0.

Take one sequence z,, < 0, z,, — 0 and another sequence y, > 0, y, — 0. Then by Mean Value
Theorem (note that we can apply MVT because now f(z) is continuous on the closed intervals [z, 0]
and [0, y,]) there are &, € (z,,,0) and 7, € (0, y,) such that

f(xn)_f(o)_ ’ . f(yn)_f(o)_ ’

As x,, yn, — 0, application of Squeeze Theorem gives &,,, n, — 0. Therefore

Jim HE IO iy )= ak B tim )= tim L0 S0) (98)
which means
L f@) = F(0) )

z—0 z—0

does not exist and therefore f(z) is not differentiable at 0. O
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Problem 27. Let a>1. Assume f(x) satisfies | f(z) — f(y)| < |z — y|* for all z, y € R. Prove that f is
constant.

Proof. We show that f(x) is differentiable and f’(x) =0. Take any xo € R, we have

gt e @) = S0l @) = S0 ) = fnl] 00)
= |x — 0] S ox—xzy |z — 20 = ’

Since a > 1, lim, ., |z — 29|~ 1=0. Application of Squeeze Theorem gives

fim L& =F@) o e —o, (101)
r—T( T — X0
Therefore f'(z)=0 for all z € R and f(z) is a constant. O

Problem 28. (USTC) Let f, g be differentiable on [a,00), and | f'(x)| < ¢'(x) for all z € [a,0). Prove
that

|f(x) = fla)| < g(x) — g(a) (102)

for all > a. (Hint: Cauchy’s generalized mean value theorem.)

Proof. Since |a| =max (a,—a) for any a € R, it suffices to prove

f(@) = f(a) <g(x) — g(a) and (= f)(z) = (= f)(a) < g(x) — g(a). (103)
It is clear that ¢’(z) >0 so g(z) is increasing. Therefore if f(x)= f(a), we have
|f(z) = fla)| =0 < g(x) — g(a). (104)

Thus in the following we only consider those x such that f(z)+ f(a). This implies g(x) > g(a).
Applying generalized mean value theorem to f and g we have

f(@) = fla) _ £ (105)

g(x)—gla) g'(€)

for some & € (a,z). As f(z)+# f(a), f'(§)#0 which means ¢'(§) #£0.
Since | /()| < g'(€) we have £(€)/'(€) <1 50

f(i[:) — f(a) Recall that g(z)—g(a)>0

a0 =gl <!

f() = fla) < g(x) — g(a). (106)

On the other hand, applying the same theorem to — f and g gives

S <1 — (1)~ f(@) < 9(0) - 9@ (107)

Combining the two inequalities we reach
|f(x) = fla)| < g(z) — g(a) (108)
as required. O

Problem 29. Let f be continuous and g be integrable on [a, b]. Further assume that g(z) doesn’t
change sign in [a,b]. Prove that there is £ € [a, b] such that

b

/ f(@) g(x) dz = £(€) / o(x) da. (109)

a

Does the conclusion still hold if we drop “g(x) doesn’t change sign in [a, b]"?

Proof. First notice that we only need to prove for the case g(z) > 0 since the case g(x) < 0 can be
immediately obtained through the former case by considering —g(z).
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Next we notice that if f: g(x) dx =0, then ’f: f(z) g(x) dx’ < f: |f(x)] g(x)de< A f: g(x)dx=0

where A=max{, | f(x)| € R whose existence follows from the continuity of f on [a,b]. Therefore in this
case

b b
0= [ s atwyde=£6) [ gla)da=0 (110)
holds for any £ € [a, b]. ¢ ¢
Now we assume f: g(z)dx >0. As f(z) is continuous on [a, b] there are &1, &2 € [a, b] such that

f(&) < fx) < f(&) (111)

for all z €[a,b]. As g(z) >0, we have

f(&) g(x) < f(x) 9(z) < f(&2) g(x) (112)

which leads to
b

b b
f(&) / g(z) dz < / F(2) g(x) de < (&) / o(z) d. (113)

a

that is
b
o S (@) g(x)da
fley < L SO IO i) (114)
fa g(z)dzx
Application of the Intermediate Value Theorem now gives the existence of £ € [a, b] satisfying
b
f(8) Lo @ 9] de (115)
f: g(z)dx

which is what we need to prove.
If g changes sign the conclusion does not hold anymore. For example take g(z)=sinz, f(z)=1 and
a=0,b=2m. O

Problem 30. Prove the following inequalities:
a) fol e~ da > flz e da;
b) 07r/2 Si%d$>f0ﬂ'/2 Si;]jil) dz;

Proof.

a) We do a change of variable: y =12 — 1 for the second integral:

2 1 1
/ e dac:/ e*(“l)zdy:/ e~ @D’ qg. (116)
1 0 0

Now for z € (0,1) we have

—12> —(z+1)2= e " > @tD)? (117)

1 1
/ e’zzdx>/ e+ 4y (118)
0 0

b) We show that for = € (0, g), 0< Sizm < 1. The first inequality is obvious. To show the second, we
calculate

which gives

as desired.

(119)

. ’ .
sinz \'  zcosz—sinz
x 2 '

Now let f(z)=xcosz —sinz and notice that

F(0)=0,  f'(x)=—xsinz <0 for all z€ (o,g) (120)



14

MaTH 314 FALL 2012 FINAL PRACTICE

therefore
flx)<0 (121)
for all © >0. Consequently f(x) is strictly decreasing which means
xcosz —sinz = f(z) < f(0)=0. (122)
Therefore
iy ! iy
(SH; a ) <0= SH; L is strictly decreasing. (123)
As lim,__,9 Sizz =1, this means
Sl% <1 (124)
for x € (0, %)
From this we have
sinz _ sin’z T
which gives
/2 s /2 i 2
/ wdx>/ L da (126)
0 z 0 €z

Problem 31. (USTC) Prove

27 2m -
/ [/ %ntdt]dxzo. (127)
0 x

(Hint: Set u(z) = fjﬂ Si?t dt then integrate by parts)

Proof. Set
27 :
u(x)z/ Sl—ntdt, v(z)==x (128)

= u(2m) v(27r)—u(0)v(0)—/0 ) v(z)u'(z)dz

27 .
- 0—0—/ x(—smx)dx
0 X

then we have

= 0.
|
Problem 32. Let f be continuous on R. Let a,b€R,a <b. Then
b
lim / wdx: £0) = f(a). (129)

Proof. Let F(z) be an antiderivative of f. Since f(x) is continuous on the closed interval [a, b] it is
integrable. We have

b
/ f(@)dz= F(b) — F(a) (130)
On the other hand, ¢
b b+h
/ f(a:—l—h)da::/ fy)dy=F(b+h)— F(a+h). (131)
a a+h
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Thus
b —
lim / fEFN = 5@ _ i L(p+h) = F) — (Fla+ h) — F(a))]
h—0 J, h —>Oh
= F'(b)— F'(a)
= f(b)—f(a) (132)
Thanks to FTC Version 2. O
Problem 33. (USTC) Let f be integrable. Prove that
/ x f(sinz) / f(sinz) (133)
0
(Hint: Change of variable: t=7 — x.)
Proof. Do the change of variable as in the hint, we have
Tm . 0 T . Tm .
/0 (5 - :v) f(sinz) dgc—/Tr (t - 5) f(sint) (—1)dt = —/0 (5 - t) f(sint)dt (134)
That is
i (I—,T) f(sinz)de=— i (E—x) f(sinz)dz (135)
0o \2 Jo \2
so
/ (g—x) f(sinz)dx =0 (136)
0
O

Problem 34. Apply Ratio/Root tests to determine the convergence/divergence of the following series

(You need to decide which one is more convenient to use).

ZQL a+1/m7 Y (n

You can use the fact (1+

1/n)™ — e, and the Stirling’s formula

n!

lim —=1
n—oo /27 (n/e)"
without proof.
Solution.
e We apply root test:
|an|1/”=%(1 +1/n)".
As limy,— o0 5 L(141/n)"=%, we have
a0, =51
so the series diverges.
e We apply ratio test:
ntll _ (4 1) o).

|an|
This leads to
lim r=0

(4 lal={ 0

)a™; Z(Z—)x

oo x£0°

(137)

(138)

(139)

(140)

(141)

(142)
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Since the limit exists, we have

|an+1]

o =0<1 whenz=0;  liminflH — o 51 when x+0. (143)

y
Hmsup e Tan]

n——o0
So the series converges for z =0 but diverges for all  # 0.
e We apply ratio test:

I o 1 I 2 I 2 (144)

|an] (n+1)ntln—  (1+1/n)» e

The ratio test then gives convergence when |z| < e and divergence when |z| > e. When |z| =,

we have
|an] :%e" = (nﬁ)n (145)
and Stirling’s formula gives
lim %l g (146)

This means a,——0 so the series diverges.
Summarizing, the series converges when |z| < e and diverges when |z| > e.

Problem 35. a, >0, Zflozl an converges. Prove that fo:l /Qn, Grny1 converges. On the other hand,
if a,, furthermore is decreasing, then Zflozl \/Qn Gp+1 CONVErges =—> fo:l a, converges. Any example
of if a,, is not decreasing then not true? (Take a, =0 for all n even)

Proof. First we note that

o0 o0
Z ay converges < Z (41 CONVETges. (147)
n=1 n=1

since
n—1

Z ar=aj+ Z Af41- (148)
k=1 k=1

o If > | a, converges, so does > | an41 and then 77 | (an + any1). The convergence of

> 1 V/GnGny1 then follows from
RV Ap Qp 41 <

e If a, is decreasing, we have a, > any1 = any1 < /apapt+1. Thus the convergence of
>0 1 /GnGny1 implies the convergence of Y- | a,41 and then that of Y0 | ay.

If a, is not decreasing then E;’;l /On Gnt1 cODvVErges =£- Ezozl an converges. For example take

~J 0 neven
an_{lnodd' =

(Gn+ ani1). (149)

| =

Problem 36. Let a, > 0. Prove that > >" | a, converges then "> a2 converges. Is the converse true?
Justify your answer.

Proof. Since E;’;l a, converges, lim,,_, a, =0. Thus there is NV € N such that for all n > N, a, < 1.
Now for these n we have

laZ| = a2 < an. (150)

o0 . oo
Therefore the convergence of """ | ay, gllves the convergence of 3~ ™ | ap.
The converse is not true. Take a,, = - O
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ADVANCED

Problem 37. A function f(z): E+— R is called “uniformly continuous” if for any € > 0, there is 6 >0
such that for all z, y € E satisfying |z — y| <9, | f(z) — f(y)| <e.

a) Prove that if f is uniformly continuous, then it is continuous.

b) Give an example of a continuous function that is not uniformly continuous. Justify your answer.

)
¢) If f: E— R is continuous with F a bounded closed set, then f is uniformly continuous.
)

d) Prove that if f is continuous on [a,b], then it is integrable on [a, b].

Proof.
a) This is obvious.

b) f(z)=1/x defined for  >0. Take e =1. Then for any § >0 we can take n € N such that n>d§ 1.
Then we have’%——’<6 but |f(1/n)— f(1/(n+1))|=1>c¢.

¢) Assume the contrary. Then there is g9 > 0 such that for all n € N, there are z,, y, such that

(o0 —yn| <1/n,  [f(zn) = f(ya)| = co- (151)

Applying Bolzano-Weierstrass, there is a subsequence x,,, — £ € [a,b]. As |z, — yn| — 0, we have
Yn, — € t00. But then |limy_, o0 f(2n,) — limg . o0 f(yn,)| = €0, contradicting the continuity of

I
d) From c¢) we know that f is uniformly continuous. Now for any € > 0, take § such that for all

lz—yl <4, |f(z) = f(y)|<e/(b—a).
Now take any partition P ={xo=a, 21, ..., 2, =0} with |z; —z;_1|<d for all i=1,2,...,n
Then we have

S

n

U(f,P)— fP:Z (sup f —inf f) (z; — 2;-1)

=1 =1

—x;_1) =€ (152)

Therefore f is integrable. g

Problem 38. Let f(x) be continuous over R, and satisfies f(x+y)= f(z)+ f(y) for all z,y € R. Prove
that there is ¢ € R such that f(z)=a=.

Proof. First
fF(0+0)=f(0) + f(0)= f(0)=0; (153)

Now let a= f(1). Clearly f(n)=na. Next consider any rational number ¢ = % Then we have

na=f(n)=f(mq)=m f(q)= f(g)=aq. (154)

Finally for any = € R\@), there is ¢, — x. Since f(z) is continuous we have
fl@)= lim f(gn)= lim ag.=az. (155)
Thus ends the proof. O

Problem 39. (USTC) Let f(x) be differentiable. Assume that there are a <b such that f(a)= f(b) =0,
f'(a) f'(b) > 0. Prove that there is € € (a,b) such that f(¢) =

Proof. There are two cases, f'(a) >0, f'(b) >0 and f’(a) <0, f'(b) <0. Considering — f instead of f
would turn any one case into the other, so we only consider the first case here.
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Since f'(a) >0,
L T (@

r—ra r—a

> 0. (156)

Thus there is 21 € (a, GTH) such that f(z1) > 0; On the other hand, since f’(b) >0

b F@) = F0)

r—b T—0b

>0 (157)

which means there is x5 € (aT—H), b) such that f(z2) <0.
Now f(x) is differentiable on (a, b) so is continuous on (a, b). Application of Intermediate Value

Theorem gives the existence of & € (x1,x2) C (a,b) satisfying f(&)=0. O

Problem 40. Let f(x) be continuous on (a, b). Assume there is 2o € (a, b) such that f"’(xg) exists.
Prove that there are constants A, B, C, D such that

fi A @o+h) + Bf(xo) +Cflro—h)+D f(xo—2h)
h—s0 h3

= J"(x0) (158)

and find their values. (Hint: L’Hospital)

Proof. First notice that if A+ B+ C+ D #0, then the limit cannot be finite. Therefore we have
A+B+C+D=0. (159)

Now apply L'Hospital: Note that since f'”(xo) exists, f”'(x) must exist and be continuous on some (az, b2)
containing zo, then so does f’(z) and f(x). Therefore f(xo+ h) (and others) is differentiable at h=0.

Af'(wo+h)—Cf'(xo—h)—2D f'(xzo—2h)

" (wo) = lim 352 ' (160)
This gives us
A—C-2D=0. (161)
Applying L’Hospital again:
7 " _ " _
F(zg) = Tim Af"(xo+h)+C f"(xo—h)+4D f"(x0—2h) (162)
h—s0 6h
we obtain
A+C+4D=0. (163)

Note that we cannot apply L’Hospital’s rule anymore since it requires f'’(z) to exist in some open
interval around x. But we can use definition: (In fact we can use Toy L’Hospital here...)

Af"(@o+h)+Cf"(wo—h)+4D f"(xzo—2h) 4 "o+ h) = f"(wo)

hh_n>lo 6h o hhino 6h
4 i ¢ L @o=h) = f"(@o)
h—s0 6h
4 1im 4 p L (@0=2h) = f"(z0)
h—s0 6h
= AZC8D pyy) (164)

This implies
A—-C—-8D=6. (166)
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Putting things together, it is sufficient and necessary for the constants to satisfy

A+B+C+D =0 (167)
A-C-2D =0 (168)
A+C+4D = 0 (169)
A-C-8D =6 (170)
Notice that D can be solved from the 2nd and the 4th equation: D = —1. This gives
A-C=-2, A+C=4=— A=1,C=3. (171)
Finally we obtain B = —3. Summarizing,
lim f(zo+h) =3 f(zo) +3 Sf(zo —h)—=f(xzo—2h) = f"(z) (172)
h—s0 h
O

Problem 41. (USTC) Let f(z) be differentiable at zo with f(z)+#0 and f’(x¢) =5. Take for granted
limy,__ o (14 h)Y/"=e. Calculate

o)
L i T (173)
Solution. First note that as f(z) is continuous at x,
) f(ﬂco + %) B
Jim St =1 (174)
which means there is N € N such that for all n > N,
f(:l:0+ %)
TR (175)
Therefore
o+ D) (fwo+) )"
LN e [ B LS <—f(:vo) ' 1)
Write
ot )" _ ||, Hlaotg) = flo)”
(o) (o)
B 1 f(zo++)— flzo) 1
ol B Ve ey uro
Now let
1 f(560+%) — flwo) 1
SR T A T 1
We have
hn,—0 (179)
and
! f(fco+%)—f($0) 1
"Th A f@) (s
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Therefore

f(xo)

n——00

" im (M)

, (et E) -0
= hm (1 + hn) hn 1/n f(zo)

n——:o0

(z0+L)-f@0)
= lim [(1+hy)/r] 7 TG0

n——ao0

f(z0+7—1l>7f(z0) 1

limng.oo|: >
- { lim [(1+hn)1/hn}} S

h,—0

exp [f'(z0)/ f (x0)]. (181)

Problem 42. (USTC) Let f be twice differentiable over R, with f(0)= f(1)=0. Let F(z) =22 f(z).
Prove that there is £ € (0,1) such that F”(§) =0.

Proof. All we need are x1, 25 such that F'(x;) = F'(x2) =0.
We calculate

F'(z)=2x f(z) + 22 f'(x). (182)
Thus it is clear that F’(0) =0.
On the other hand, f(0) = f(1) =0 implies F(0) = F'(1) = 0 which gives the existence of n € (0, 1)
such that F’(n)=0
Now apply Mean Value Theorem again we obtain the existence of £ € (0,7) C (0, 1) satisfying

F(€)=0. (183)
O

Remark 1. Note that the same idea can show the following: Let f be m-th differentiable with f(0)=
f(1)=0, let F(z)=2™ f(x), then there is £ € (0,1) such that F"™)(£)=0.

Problem 43. Let f be differentiable over R. Then f’(z), though may be not continuous, always satisfies
the Intermediate Value Property:

For any s between f’(a) and f’(b), there is £ € [a, b] such that f'(£) =

Then use this to prove: If f is differentiable in (a, b) and f’ # 0, then f is either increasing or
decreasing.

Proof. Define the function

JO) + F(0) (@~b) a>b
9(@) =3 fla) zefa,b]. (184)
J(a)+ J'(a) (z —a) z<a

Then g(z) is differentiable over R. Now use Mean Value Theorem. The idea is very easy to understand
if you draw the graph of the function g(z).

If there are x1 < x2, x3 < x4 such that f(x1) < f(z2), f(x3) > f(z4), then by mean value theorem we
have £ € (x1, x2), € (23, £4) such that f'(£) >0, f ( ) < 0. Now the mean value property implies the
existence of xg between &, 7 such that f/(x) =0. Contradiction. O

Remark 2. A better way to prove is to consider g(z) = f(x) — s « defined for x € [a, b]. Assume
f'(a) <s< f'(b). Then we have g'(a) <0, ¢’(b) >0. Since g is continuous on [a, b], there is a minimizer
&€ la,b]. All we need to show is £ £ a,b. Since g'(a) <0, for h small enough we have g(a+h) < g(a) so
&+ a. Similarly £ #b. Thus ¢'(§) =0= f'({) =s.
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Problem 44. (USTC) Calculate

lim i sin (%) (185)
sin(%) —%

zn: sin<%>—i %+i [m(%)—%] (186)

Now recall the Taylor expansion of sinz with Lagrange form of remainder (to degree 1):

(Hint: Write ZZ—l) sin (Z—Z) =30, % +3 [sin (?> - %}, try to estimate
Taylor polynomial
Solution. Write

using

sinx:x—%zz (187)
for some & € (0, ). This gives
ka ka| _1(ka)? _a® 1
Sl“(?)‘? <§<?> ST (188)

Now notice

. ~ ka .. @ x=, an(n+tl) a
Jim Y e m ) ke i =g (189)
On the other hand
[ (ka ka ~ a1  a?
ray_Fail N2 o @
];[Sm<n2) n2] \];1 2 n? 2n (190)

Application of Squeeze Theorem gives

. = . (ka ka
lim ]; {sm<p) —F} =0. (191)

Therefore
. ~ . (ka\ _a

Problem 45. Let f be differentiable on (0, co) with lim,_ .o [f(z) + f'(x)] = 0. Prove that
lim, o f(x) = 0. (Hint: Let F(z) = e* f(z), G(x) = e®. Apply Cauchy’s generalized mean value
theorem.)

Proof. Following the hint, we have for any x >y >0,

e’ f(x) —e¥ f(y) = O+ () for some ¢ € (y, z). (193)

er —e¥

Therefore for every ¢, there is M > 0 such that for all z >y > M,

eV f(x) = fy)| _|e* flz) —e? f(y)
S ‘_ o ‘<g/2. (194)
This gives
()] < | = '|f(;v)|<£+—|f(y)| (195)
eV 1 2 Jem v —1]

Now fix y=M + 1. Take M’:M—I—l—l—ln(m—l—l), then for every x > M’, we have

£

M' <e/2 (196)

et~ v—-1
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which leads to
|f(z)| <e. (197)

So by definition lim,_, f(x) =0. O

Problem 46. Let f be continuous on [0,00) and satisfy lim,_ . f(2) =a. Prove

x

im L[ f(t)di=a. (198)

Proof. For any € >0, since lim, . f(x) = a, there is M; > 0 such that
|f(x)—al<e/2 (199)
for all > M. Because f is continuous on [0, M), it is bounded on [0, M;], that is there is A > 0 such that

|f(z)| <A (200)

for all z € [0, M].
Now take M =max {Ml,w}, we have for any = > M,

€

1 [* 1
E/o ft)dt—a

L[ tw-a dt\

X

1 xT
< — —ald
< / 1£(t) — al dt

€T

1M I
= L[ rO-alae L [0 - ol

T

M1 xT
< l/ (A+|a|)dt+l/ Sat
T Jo x M, 2
. Mi(Atla) , <
(A+lal) £
Mi(A+|a €
< e g <e (201)
O
Problem 47. (USTC) Let
F(;v):/ SlTntdt, z (0, 00). (202)
0
Prove that max,cr F = F(7).
Proof. First notice that
sint [ >0 t€2kn,2km+ 7] (203)
t <0 tekrn+m,2(k+1)n] "

Therefore F'(x) is increasing in [2 k7,2 k7 + 7] and decreasing in [2k7+ 7,2 (k+ 1) 7] for every k € Z.
All we need to show now is F(w) > F(2kn 4+ m) for every k. In fact we will show

F(r)>F@B3m)>F(5m)>-- (204)

We show F(m) > F(3 ) here, others can be done similarly. We have
27 - 3T -

F(37) = F(m) +/ Sut” dt+/ mt” dt
T 2

2T - 2T
F(ﬂ')—l—/ Sl?tdt—l—/ sin (x + ) da

T+

2T - :
sint sint
F<7T)+/71. T_t+7Tdt<F(7r)' (205)
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The last inequality follows from the fact that sint <0 in (7,27). O

Problem 48. a,, >0, Y | a, converges. Let b, = z%"ak' Prove that Y~ | b, diverges.

Proof. We show that b, is not Cauchy through showing: For any n € N, there is m >n such that

> by (206)
k=n

Take any n € N. Since Y>> | a, converges, so does > ° ai. Denote S=3" a;>0. Now denote
S = ZZL:n ak, we have Sy, increasing and S,, — S. Thus there is m € N such that S,, > S/2.
For this m, we have

LI PRI ST Lz @S L (207)

- 9
l=n a Zk:n ak

Thus ends the proof. O

Problem 49. (Alternating series) Let b, >0 with lim,,__, b, =0. Assume there is N € N such that
forall n >N, b, > by y1.

a) Prove that 3°°° | (—=1)"*!b, converges.

b) Apply this criEerion to prove the convergence of 1 — L % —

fozl (_1)n%~ ’

¢) Show that the condition “b,, is decreasing” cannot be dropped.

=30 (=1)n % and

n=1

N

Proof.
a) For any n=2k > N, we have
2(k+1)
Satkny= > (=1)" by =Sok +bok 1 — bak+o > Sap. (208)
n=1

Thus Soj is increasing when 2k > N.
Now let kg be such that 2 ko> N but 2 (kg — 1) < N. Now we have, for any k > ko,

Sok = S2k—1 — bakg + b2ro+1 — - — bak—2+ bar—1 — bar < Sory—1 (209)

which means Sy, is bounded above.
Therefore Sop, — s € R. Since Sag4+1 — Sox =bak+1 — 0, we have Soi 1 — s too. Combine
these two we have Sy, — s.

b) All we need to show is % is decreasing with limit 0, which is obvious, and % is decreasing with
limit 0. For the latter, notice that

3" /n! n+1
3/ (n+ 1) 3 (210)
which >1 when n > 2.
On the other hand, for n > 5, we have
gntt 3 1
= = <—
bt m+1) n+l bu <3 (211)

which means lim,,__, b, =0.

¢) That the condition “b, is decreasing” is necessary can be seen from the following example:

an{ 1/n n odd . 0
0 n even
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REALLY ADVANCED

Problem 50. Let f be defined on (a,b) and zo € (a,b). Assume that f("T(z) exists and is continuous
on (a,b) with f**V(z4)#0. Consider the Taylor polynomial with Lagrange remainder:

(n)
fay=-+ L8 g (212)
Recall that & can be viewed as a function of z. If we define (naturally) £(xo) = zo, prove that £(x) is

differentiable at zg with
1

/ _
§'(e0) =—- (213)
Proof. We only need to show
fim $@ =0 L (214)
r—z9 T — TQ n+1
expand to degree n with Lagrange form of remainder
_ f(n)(xo) _ n (n+1)( ) _ n+1
flz)= T (x —x0)"+ CE] (x —xo)"th (215)
Thus we have
Mgy — f(n) (n+1)
fUAE) = (o) _ fT () (216)
T — T n+1
On the other hand, by Mean Value Theorem there is 0’ € (x¢, £) such that
)y — )
F7E) = F7HE0) _ ptnt ). (217)
§—xo
Therefore
_ (n+1)
§(@)—wo0 _ f (n) 1 (218)

T—x9 f("+1)(77/) n+1
Note that 7 is a function of x, while 1’ is a function of £ which is itself a function of z, so n’ is also a
function of x. We further have
r—xg=1n,1n — x0 (219)

by Squeeze Theorem.
Since f"*1) is continuous with ("1 (z0)+£ 0, we have

_ ; (n+1) (n+1)
o S —wo Hmy o fHOe) 1 g0tV 1 1 (220)
r—z9 T — X0 hmn/—>0 f(n+1)(,,7/) n+1 f(nJrl)(xO) n+1 n+1
So by definition £(x) is differentiable with &'(xo) = T O
Problem 51. (USTC) Let f be differentiable. ab>0. Then there is £ € (a,b) such that
1
Ll (0 b S (@) = 1€ £, (221)
(Hint: Use Cauchy’s Generalized Mean Value Theorem).
Proof. Notice that
f) _ f(@)
a‘f(b)_bf(a):T_ a (222)
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Now apply Cauchy’s Generalized Mean Value Theorem to f(z)/x and 1/z, we have

1) f@ (M)’ , ,
2 e @ r@UE_ L L
g_é Sy e - (223)

O

Remark 3. Note that the condition a b > 0 is necessary because 1/z is not differentiable on (a, b) if
ab<0.

Problem 52. (USTC) Let f(xz) be differentiable on [0,1]. f(0)=0, f(1)=1. Then for any n € N and
k1,...,k, >0, there are n distinct numbers z, ..., z, € (0, 1), such that
Zn: i :Zn: k;. (224)
i=1 fi(wi) i=1 Z

Remark 4. Note that when k=1, this is simply mean value theorem. Also if we do not require zq, ...,

Zn to be distinct, the problem is trivial since we can take x1=--- =z, =& with f'(§)=1.
(Hint: Take y1 < y2 <+ < yn—1 such that f(y;) = % Set yo=0,y; =1. Then define g(x) to

be linear on each [y;, yi+1] with g(v:) = f(v:), 9(yi+1) = f(yi+1). Apply Cauchy’s generalized mean value
theorem.)

Proof. Following the hint, on each [y;_1, y;] we have a x,; such that

g9'(
f(

o) T —fly) "

But since g is linear, we have

which gives

since Y " | (Yi—Yi—1) =Yn—Yo=1—0=1 O
Problem 53. (USTC) Let f, g be continuous on [—1, 1], infinitely differentiable on (—1,1), and
}f(")(;v)—g(”)(x)} <n! x| n=0,1,2,... (228)

Prove that f = g. (Hint: Show first f(™(0) = 0 for all n. Then use Taylor polynomial with Lagrange
form of remainder)

Proof. Set h(z)= f — g. We have h(0)=0. Next we have

|h(z) — h(0)| =|h'(&) | <2?=Rh'(0)=0. (229)
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Do this 7 — 1 more times we have 2™ (0) =0 for any n € N. Now estimate

(n)
Ih(z) = | nff) 2| <ot (230)
For every |x| <1, letting n — 0o, we have
[h(z)| < lim |z|"=0. (231)

n——:uoQo

Therefore h(z) =0 for all € (—1,1). As h(z) is continuous on [—1, 1], we have h(z)=0 for all x =—1,
1 too. 0

Problem 54. Define v, through Zz;ll %zlnn—l— Tn

a) Show that ~, >0, 7, is increasing with respect to n.
b) Show that v, — v €R.

¢) Show that % (=1)"*!/n=In2.

Proof.
a) Denote
n+1
an:l—/ ld:z:. (232)
n " T
Then we have a, >0 and
n—1
Y= Z . (233)
k=1

Clearly 7, is increasing.

b) All we need to show is 7, is bounded above. We have
n—1 n
1 " dx 1 " dx
= _— — K _— —_—

Therefore 7, converges with some limit v € (0,1).

1 Fode
E_/k—l ?] <1. (234)

¢) We have
3 ( 1)k+1—2m l—i l—11r1(2m—|—1)—lm(m—i—l)—ln 2mt 1), (235)
E k E N m+1 )
k=1 k=1 k=1
2m—+1 2m m
(—1)k+1 1 Z 1 1 <2m+1> 1
o=y =Y o+ =In + . (236)
= k k:lk k:lk 2m—+1 m-+1 2m+1
Since
lim ln<2m+1):1n2, (237)
for any € >0, if we take N > max {Nl, %} where Nj is such that for any m > N7 /2,
2m+1
‘ln( I )—1112 <e/2 (238)
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Then for any n > N we have

No(_1\k+1

3 %—1112 <e. (239)
k=1

Thus ends the proof. O

Remark 5. The convergence of -, can be shown directly by estimating

n+1
anzl—/ ld:zczl—ln(l—i—l)zl—[111(1—|—l>—1r11] (240)
n o J, x n n n n

using Mean Value Theorem (on In).

Problem 55. (Bonar2006)

a) Let 220:1 an be any convergent non-negative series, then there is another convergent non-negative
series 220:1 A, satisfying lim,, ., (A,/a,) =o0; (Hint: Set A, = ﬁ)

b) Let Z;’;l D,, be any divergent non-negative series, then there is another divergent non-negative
series fozl d,, satisfying lim,,_, o (d»/Dy) =0. (Hint: Set d,,=D,,/(D1+ -+ Dp_1))

Proof.
a) Define
L= a, (241)
and then e
A, =" (242)

Then clearly lim,,_, o (Ay/a,) = 0.
On the other hand, we have

- . - te —te_1 g
ZAk—Z —t</0 %dx<oo. (243)

k=1 k=1 k
b) Define
S, = Z Dy, (244)
k=1
and then
D
=g (245)
Since 220:1 D,, diverges, together with D,, >0 we have S,, — oo so lim,,__ (d,,/D;,,) =0.
On the other hand,
%) Sh 1
Zdn>/ —dz— 00 (246)
s, T

as n — 00. O
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REALLY REALLY ADVANCED

Problem 56. (USTC) Let f(x) be continuous on [0,00) and be bounded. Then for every A € R, there

is x,, — oo such that

m [f(zn+A) = f(2a)] =0. (247)

n——:uo0

Proof. Prove by contradiction. Note that all we need to show is that the sets
Awi={o=n,| fl@+N) - f(@)| <1/n} (248)

are non-empty for every n € N. Assume the contrary: There is no € N such that A,,,=@. That is for all
x > ny, either

fl@+A) = f(x)>1/ng  or  flz+A)— f(z)<1/no. (249)

Let g(z):= f(x + X) — f(z). Then g(z) is continuous. We have for every z > ng, either g(x) > 1/ng or
g(x) < —1/ng. There are three possible cases:

e If there are x1 > ng and x2 > ng such that g(x1) >1/ng, g(x2) < —1/ng, then by intermediate value
theorem we have £ >ng such that g(£) =0. Contradiction.

o If g(x) >1/ng for all x> ng, then we have
Fo kA > Flo-+ (k= 1) A) 4 > s> fng) + 22 (250)
0 0

As a consequence, for any M € R, take k> (|M |+ |f(no)|) no, we have
fno+ kX)) > M. (251)
This means f is not bounded above and thus not bounded. Contradiction.

e g(z)<—1/ng for all z >ng. Similar. U

Problem 57. Let f(z) be differentiable with f(z) =0. Further assume |f'(z)| < |f(x)| for all 2 > x.
Prove that f(x)=0 for all z > z.

Proof. We prove that f(xz)=0 for all = € [xg, 0+ 1/2]. Then by repeating the same argument setting
with xq replaced by zo+ 1/2 we will get f(z) =0 for all € [zg, 20+ 1]. Doing this again and again we
can cover all x > x.

Take any x € (zg, o+ 1/2]. By mean value theorem we have

flx) = fzo) _ £1(6) (252)

r — X9

for some & € (zg, zo+ 1/2). This leads to

@] = 1)z =0l <51 (E0)]

Apply the same argument we find & € (z0, &1) such that

FEl <5 lFE) (253)
This way we obtain a decreasing sequence &, satisfying
(el <51 £l (254)
This implies
@) <5 1 F )] (255)

Since f(x) is differentiable it is continuous on [z, 2o+ 1/2] which means there is A > 0 such that

[f(én)] <A VneN. (256)
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This gives
[f(@)| <
for all n, so f(z)=0. O

A
o (257)

Problem 58. (Darboux’s Theorem) 1Let f(z) be a bounded function over a finite interval [a, b].
Let P, = {xoza,xlza—i— b—a ...,:En:b}. Then

U(f, Pn) —U(f); L(f, Pa) — L(f) (258)
Proof. Let M >0 be the bound of |f(x)|. We prove the first statement, the second is similar.

Take any ¢ >0. Let P={z1,..., 2} be a partition such that
U(f, P)<U(f) +2/2 (259)

Now consider P, with n>2m. It is clear that at least n — 2 m intervals in P,, are fully contained in some
[x;—1, ;] of P. As a consequence

U(f,P) = > + >

intervals contained in some [z; —1,2;] intervals containing some x;
< (s, p)+ A
< U+ 2mM e (260)
n 2
From this we see that, if we take N € N such that N > 4";M, then for every n > N,
U(f,P)<U(f)+e. (261)
On the other hand, by definition of U(f) we have
U(f,Pa)2U(f). (262)
Thus we have shown that, for every € >0, we can find N € N such that for all n > N,
\U(f, Pn) =U(f)| <e. (263)
This by definition gives U(f, P,) — U(f) as n — 0. O

Problem 59. (Claesson1970) Let f(z) be a bounded function over a finite interval [a, b]. Let U(f)
denote its upper integral. Prove: f is integrable <= For any bounded function g(z),

U(f+9)=U(f)+U(9)- (264)
Proof.
e —>. Assume f is integrable. Let P be any partition of [a,b]. We have by definition
U(f+g,P)SU(f,P)+U(g,P). (265)
On the other hand, by definition

[
NE

U(f+g,P) [ o f<x>+g<x>] (s — wi1)

1 Ti—1,T)

-
3l

WV

[ inf  f(e)+ sup g<x>]<xi—xi_1>

= € [Ti—1,24) r€[r; 1,24

= L(f,P)+U(g,P). (266)

1. Darboux Theorem actually states that the conclusion holds for any sequence of partitions with sup; (z; —
2;—1) — 0. But the proof in such general case is very similar to the special one here.
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Thus we have
L(f,P)+U(g,P)<U(f+9.P)<SU(f,P)+U(yg,P)
for any partition P. Thus on one hand we have

U(f+9)<U(f+g,P)<U(f,P)+U(g, P)
which leads to

Ulf+9)<U(f)+Ul(g)
due to the arbitrariness of P.
On the other hand, we have

U(f+9,P)2L(f,P)+U(g, P) = L(f,P)+U(g).
Now for any partition @), we have
U(f+9,Q)2U(f+9,PUQ)ZL(f,PUQ)+U(g) = L(f, P) + U(g).

Taking supreme over P and then infimum over ) we obtain

U(f+9)=L(f)+U(g).

Summarizing:
LN +U(g)<U(f+9)<Uf)+U(g).
But f is integrable so L( f)=U(f) which leads to
U(f+9)=U(f)+U(9)-
&—. Take g=—f. Then g is bounded. We have
0=U0)=U(f+9)=U(f)+U(=/).

(267)

(268)

(269)

(270)

(271)

(272)

(273)

(274)

(275)

In the following we show U(—f) = —L(f) with when substituted into (275) immediately gives

integrability of f.
Now notice, for any partition P,

U(-f,P) = Z[ sup <—f<x>>]<xi—x“>

TE€[Ti—1,7]

ze{zi_1,%:}

—L(f,P).

= 3 [— inf f(x)} (x —xi—1)

.

From this we have
U(-f)<-L(f,P)
for any partition P so
U(=f)<=L(f)= L(f)<=U(-[).
On the other hand,

L(f,P)==U(=f,P)= L(f) 2 -U(= [, P) for all P= L(f) > -U(-/).

Summarizing, we have

Thus we have

so f is integrable.

(276)

(277)

(278)

(279)

(280)

(281)



