
Math 314 Fall 2012 Final Practice

• You should also

◦ review homework problems.

◦ try the 2011 final (and you should feel most of its problems are easy).

• Most problems in the final will be at the “Basic” and “Intermediate” levels (First 36
problems).

Basic

Problem 1. Let

f(x) =















−1 x 6−1

a x2 + b x+ c |x|< 1, x� 0
0 x= 0
1 x> 1

. (1)

Find a, b, c∈R such that f(x) is continuous at every x.

Solution. We know that −1, a x2 + b x + c, 0, 1 are all continuous functions, therefore for f(x) to be
continuous, we only need to make sure f(x) is continuous at 1, 0,−1.

• At −1. We need

−1 = a (−1)2 + b (−1)+ c� a− b + c =−1; (2)

• At 1. We need

a + b+ c = 1; (3)

• At 0. We need

c =0. (4)

Putting all these together we have

a = 0, b= 1, c =0. (5)

Problem 2. Calculate the derivatives of the following functions.

f1(x)=

(

1+ x2

1− x2

)

3

; f2(x)= 1 + x+ x2
√

; f3(x)= exp [x ln x]. (6)

Solution. We have

f1
′(x)=

12x (x2 + 1)2

(x2− 1)4
; f2

′(x)=
2 x+ 1

2 x2 + x+ 1
√ ; f3

′(x)= exln x [lnx + 1]. (7)

Problem 3. Calculate the following limits.

lim
x� 0

1− cos2 x

1 +x2
√

− 1
; lim

x� 0

ex − e−x − 2 x

x− sinx
; lim

x�∞
π − arctan x

sin (1/x)
. (8)
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Solution.

• We first check that

lim
x� 0

(1− cos2x)= lim
x� 0

(

1+ x2
√

− 1
)

=0 (9)

so we should apply L’Hospital’s rule.

lim
x� 0

1− cos2 x

1+ x2
√

− 1
= lim

x� 0

2 cos x sinx

x/ 1 +x2
√

= lim
x� 0

2 cos x

1+ x2
√ · sin x

x
. (10)

Notice that limx� 0
2 cos x

1+ x2
√ =

2

1
= 2. We only need to find limx� 0

sin x

x
. Applying L’Hospital’s

rule again:

lim
x� 0

sinx

x
= lim

x� 0

cos x

1
=1. (11)

So finally we conclude

lim
x� 0

1− cos2 x

1 +x2
√

− 1
=2. (12)

• We first check that

lim
x� 0

(ex − e−x − 2 x) = lim
x� 0

(x− sinx)= 0 (13)

so L’Hospital’s rule can be applied:

lim
x� 0

ex − e−x − 2 x

x− sinx
= lim

x� 0

ex + e−x − 2

1− cos x

= lim
x� 0

ex − e−x

sinx

= lim
x� 0

ex + e−x

cos x
= 2. (14)

• We notice that

lim
x�∞

(π − arctanx) =
π

2
, lim

x�∞
sin

1

x
= 0. (15)

To decide whether the limit is ∞ or −∞, we notice sin (1/x)> 0 for all x > 1/π. Therefore

lim
x�∞

π − arctanx

sin (1/x)
=∞. (16)

Problem 4. Calculate Taylor polynomial to degree 2 with Lagrange form of remainder.

f(x)= x sin (ln x); x0 = 1. (17)

Solution. We have

f(1) =0; (18)

f ′(x)= sin (lnx)+ cos (lnx)� f ′(1)= 1; (19)

f ′′(x) =
1

x
cos (ln x)− 1

x
sin (lnx)� f ′′(1)= 1; (20)

f ′′′(x)=−cos (lnx)− sin (ln x)

x2
− sin (ln x) + cos (lnx)

x2
=−2 cos (lnx)

x2
. (21)
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Therefore the Taylor polynomial with Lagrange form of remainder is

x sin (lnx) = (x− 1) +
(x− 1)2

2
− cos (ln ξ)

3 ξ2
(x− 1)3 (22)

where ξ is between 1 and x.

Problem 5. Let f(x) = 2 x − sin x defined on R. Prove that its inverse function g exists and is
differentiable. Then calculate g ′(0), g ′(π − 1).

Solution. We have f ′(x)= 2− cosx > 1> 0 so g exists and is differentiable. We have

g ′(y) =1/f ′(x)=
1

2− cos x
(23)

so all we need to do is to figure out x1, x2 such that f(x1) = 0 and f(x2) = π − 1. It’s easily seen that
x1 = 0, x2 = π/2. Therefore

g ′(0)= 1, g ′(π − 1)=
1

2
. (24)

Problem 6. Which of the following functions is/are differentiable at x0 = 0? Justify your answers

f1(x)=

{

x + 2 x > 0
x− 2 x 6 0

; f2(x)=







x sin
1

x
x� 0

0 x= 0
; f3(x)=







x2 sin
1

x
x� 0

0 x =0
. (25)

Solution.

• f1(x). Clearly f1(x) is not continuous at 0 so is not differentiable there.

• f2(x). We check

f2(x)− f2(0)

x− 0
= sin

1

x
. (26)

As the limit limx� 0sin
1

x
does not exist, f2(x) is not differentiable at x0 = 0.

• f3(x). We have

lim
x� 0

f3(x)− f3(0)

x− 0
= lim

x� 0
x sin

1

x
= 0 (27)

so f3(x) is differentiable at x0 =0.

Problem 7. Let f(x):R� R be continuous and x0 ∈E. Define F (x)7 {

f(x)− f(x0)

x −x0
x� x0

c x= x0

. Prove

that f is differentiable at x0 if and only if there is c∈R such that F (x) is continuous for all x∈R.

Proof. It is clear that F (x) is continuous at all x� x0 no matter what c is.

• Only if. If f is differentiable at x0 then by definition

lim
x� x0

F (x)= lim
x� x0

f(x)− f(x0)

x− x0
= f ′(x0) (28)

So if we set c = f ′(x0), F (x) is also continuous at x0.

• If. Since F (x) is continuous at x0, we have

c = lim
x� x0

F (x)= lim
x� x0

f(x)− f(x0)

x− x0
(29)
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which by definition meansf is differentiable at x0. �

Problem 8. Calculate the following integrals:

I1 =

∫

e

e2

dx

x (lnx)4
; I2 =

∫

0

4

e− x
√

dx; I3 =

∫

1

e

x3 ln xdx (30)

Solution.

• I1. Change of variable: y = u(x) = lnx. Then we have

I1 =

∫

e

e2

dx

x (ln x)4
=

∫

e

e2 (

1

u(x)4

)

u′(x) dx

=

∫

u(e)

u(e2) 1

y4
dy

=

∫

1

2 1

y4
dy

= −1

3
y−3O 12

=
7

24
. (31)

• I2. Change of variable: y = u(x) = x
√

. We have

I2 =

∫

0

4

e− x
√

dx =

∫

0

4

e−u(x) u′(x) (2 u(x)) dx

=

∫

u(0)

u(4)

e−y 2 y dy

= 2

∫

0

2

y e−y dy

= 2

∫

0

2

y (−e−y)′ dy

= 2

[

(−y e−y)O 02 +

∫

0

2

e−y dy

]

= 2 [−2 e−2 + 1− e−2]

= 2− 6 e−2. (32)

• I3. We integrate by parts:

I3 =

∫

1

e

x3 lnx dx =

∫

1

e

ln x

(

x4

4

)′
dx

=

[

ln x

(

x4

4

)]

x=1

x=e

−
∫

1

e x4

4
(lnx)′ dx

=
e4

4
− 1

4

∫

1

e

x3 dx

=
3 e4 + 1

16
. (33)

Problem 9. Prove that the following improper integrals exist and calculate their values:

J1 =

∫

0

∞
e−2x cos (3 x) dx; J2 =

∫

−1

1 dx

1−x2
√ ; J3 =

∫

0

1

(lnx)2 dx (34)
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Solution.

• J1. Notice that e−2x cos (3 x) is continuous on [0, c] for every c > 0 and is therefore integrable
there, we check

∫

0

c

e−2x cos (3 x) dx =

∫

0

c

e−2x

(

1

3
sin (3x)

)′
dx

= e−2c 1

3
sin (3 c)− e−2·0 1

3
sin (3 · 0)

−
∫

0

c 1

3
sin (3x) (e−2x)′ dx

=
1

3
e−2c sin (3 c)+

2

3

∫

0

c

e−2x sin (3x) dx

=
1

3
e−2c sin (3 c)− 2

9

∫

0

c

e−2x (cos (3x))′ dx

=
1

3
e−2c sin (3 c) − 2

9

[

e−2c cos (3 c) − e−2·0 cos (3 · 0) +

2

∫

0

c

e−2x cos (3x) dx

]

=
1

3
e−2c sin (3 c)− 2

9
e−2c cos (3 c)+

2

9
− 4

9

∫

0

c

e−2x cos (3x) dx. (35)

Thus
∫

0

c

e−2x cos (3 x) dx =
9

13

[

1

3
e−2c sin (3 c)− 2

9
e−2c cos (3 c) +

2

9

]

. (36)

Taking limit c� ∞ we have

lim
c�∞

∫

0

c

e−2x cos (3x) dx=
2

13
(37)

exists and is finite. So the improper integral exists,

∫

0

∞
e−2x cos (3x) dx=

2

13
. (38)

• J2. Notice that
1

1−x2
√ becomes unbounded at x= 1 and x=−1. So we consider

∫

a

b dx

1− x2
√ (39)

with −1 < a < b < 1. We apply change of variable x = sin y with y ∈ (arcsin a, arcsin b). Then
dx = cos y dy and the integral becomes (note that for the above y we have cos y > 0)

∫

a

b dx

1− x2
√ =

∫

arcsin a

arcsin b cos y dy

cos y
= arcsin b− arcsin a. (40)

Now taking limits a� −1 +, b� 1− , we have

lim
a�−1+

[

lim
b� 1−

∫

a

b dx

1− x2
√

]

= π (41)

exists and is finite. So
∫

−1

1 dx

1−x2
√ =π. (42)
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• J3. As (lnx)2 is continuous and thus integrable on [c, 1] for any c∈ (0, 1), we consider

∫

c

1

(lnx)2 dx = [x (lnx)2]c
1−
∫

c

1

2 lnx dx

= −c (ln c)2− 2

[

1 ln 1− c ln c−
∫

c

1

dx

]

= −c (ln c)2 + c ln c +2 (1− c). (43)

Thus

lim
c� 0+

∫

c

1

(lnx)2 dx= 2 (44)

exists and is finite, so
∫

0

1

(lnx)2 dx= 2. (45)

Problem 10. Prove by definition that f(x) =

{

1 x= 0
0 x� 0

is integrable over [−1, 1] and find the value

of
∫

−1

1
f(x) dx.

Proof. Let P be any partition of [−1, 1]. Then we have, since f(x) > 0,

L(f , P )=
∑

i=1

n (

inf
x∈[xi−1,xi]

f(x)

)

(xi −xi−1) > 0; (46)

On the other hand, take Pn =
{

x0 =−1, x1 =−1+
1

n
,	 , x2n−1 = 1− 1

n
, x2n =1

}

. We see that

sup
[xi−1,xi]

f(x)=

{

1 i= n, n + 1
0 all other i

. (47)

Therefore

U(f , Pn)=
∑

i=1

2n (

sup
x∈[xi−1,xi]

f(x)
)

(xi −xi−1) =
∑

i=n

n+1

(xi − xi−1)=
2

n
. (48)

By definition we have

U(f) 6U(f , Pn) =
2

n
for all n∈N� U(f)6 0. (49)

This gives 0>U(f)>L(f)>0 which means U(f)=L(f)=0. So f(x) is integrable with
∫

−1

1
f(x) dx=

0. �

Problem 11. (USTC) Is the following calculation correct? Justify your answer.

∫

0

π

cos2x dx =

∫

0

0 dt

(1+ t2)2
= 0 (50)

where the change of variable is t = tanx.

Solution. No. Since cos2x >
1

2
when x∈ (0, π/4) we have

∫

0

π

cos2xdx>

∫

0

π/4

cos2x dx >

∫

0

π/4 1

2
dx =

π

8
> 0 (51)

so the calculation is not correct. The problem is u(x)= tanx is not differentiable over (0, π).

Problem 12. Let F (x)7 ∫

sin x

x2+2
et dt. Calculate F ′(x) and F ′′(x).
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Solution. Let G(x)7 ∫

0

x
et dt. Then we have G′(x) = ex, and

F (x)=

∫

0

x2+2

et dt +

∫

sin x

0

et dt =

∫

0

x2+2

et dt−
∫

0

sin x

et dt =G(x2 + 2)−G(sinx). (52)

This gives

F ′(x)= G′(x2 +2) (x2 + 2)′−G′(sinx) (sinx)′ =2 x ex2+2− esin x cos x. (53)

Taking derivative again we have

F ′′(x) = (4x2 + 2) ex2+2 + [sinx− (cos x)2] esin x. (54)

Problem 13. Prove the convergence/divergence of (can use convergence/divergence of
∑

na and
∑

rn).

∑

n=1

∞
2n + n

3n + 5n + 4
,

∑

n=1

∞
n2 + n

n5− 4
,

∑

n=1

∞
n2 + 1

√
(

n1/3 + 19
)

5
. (55)

Proof.

• For all n > 1 we have 2n > n. Therefore
∣

∣

∣

∣

2n + n

3n+5 n+ 4

∣

∣

∣

∣

6
2 · 2n

3n
=2

(

2

3

)n

. (56)

As
∑

n=1
∞ ( 2

3

)n
converges, so does

∑

n=1
∞ 2n + n

3n +5 n + 4
.

• When n > 2 we have
n5

2
> 4. This gives

∣

∣

∣

∣

n2 + n

n5− 4

∣

∣

∣

∣

6
2n2

n5/2
= 4n−3 (57)

when n > 2. As
∑

n=1
∞

n−3 converges, so does
∑

n=1
∞ n2 + n

n5− 4
.

• Intuitively when n is large, we have

n2 +1
√

(

n1/3 + 19
)

5
∼ n

n5/3
=n−2/3. (58)

So we expect the series to diverge.

To justify, note that when n > 193, n1/3 > 19 and n2 > 1. Therefore for such n we have

n2 +1
√

(

n1/3 + 19
)

5
>

2 n2
√
(

2n1/3
)

5
=

2
√

32

∣

∣n−2/3
∣

∣. (59)

The divergence of
∑

n=1
∞

n−2/3 now implies the divergence of
∑

n=1
∞ n2 +1

√

(

n1/3 + 19
)

5
. �

Problem 14. Prove that
∑

n=1
∞ 1

n (n +3)
converges and find its sum.

Proof. Since for all n∈N we have
1

n (n + 3)
6

1

n2 and
∑

n=1
∞ 1

n2 converges,
∑

n=1
∞ 1

n (n +3)
converges too.

To find the sum, we notice

Sn =
∑

k=1

n
1

k (k + 3)
=

1

3

∑

k=1

n (

1

k
− 1

k + 3

)

=
1

3

[

∑

k=1

n
1

k
−
∑

k=4

n+3
1

k

]

=
1

3

[

∑

k=1

3
1

k
−
∑

k=n+1

n+3
1

k

]

. (60)

Taking limit n� ∞ now gives Sn� 11

18
. �

Problem 15. Prove: If
∑

n=1
∞

an
2 converges then

∑

n=1
∞ an

n
converges. (Hint:

a2 + b2

2
> a b)

7



Proof. It suffices to show the convergence of
∑

n=1
∞ ∣

∣

an

n

∣

∣. Since this is a non-negative series, all we need

to show is that it is bounded from above. Notice that

∣

∣

∣

an

n

∣

∣

∣= |an| 1

n
6

1

2

(

an
2 +

1

n2

)

. (61)

We know that
∑

n=1
∞

an
2 and

∑

n=1
∞ 1

n2 are convergent, therefore

Sn =
∑

k=1

n
∣

∣

∣

ak

k

∣

∣

∣6
1

2

[

∑

k=1

n

ak
2 +

∑

k=1

n
1

n2

]

<
1

2

[

∑

n=1

∞
an
2 +

∑

n=1

∞
1

n2

]

∈R. (62)

So
∑

n=1
∞ ∣

∣

an

n

∣

∣ is bounded above and thus converges. �

Problem 16. Study the convergence/divergence of

∑

n=1

∞
1

n(1+1/n)
. (63)

Solution. It diverges because n1/n 6 2. To prove this statement, we only need to prove 2n > n for all
n∈N. Use mathematical induction: The statement P (n)= 288 n > n′′.

• P (1) is true. We have 21 > 1.

• If P (n) is true, that is 2n > n, then we have

2n+1 = 2 · 2n > 2 n >n + 1 (64)

therefore P (n + 1) is true.

Now we have
1

n(1+1/n)
>

1

2

1

n
. (65)

Since
∑

n=1
∞ 1

n
diverges, so does

∑

n=1
∞ 1

n(1+1/n)
.

Problem 17. Prove that
∑

n=1

∞
1

2 n + 1
=∞. (66)

You can use the divergence of
∑

n=1
∞ 1

n
.

Proof. For all n> 1 we have
1

2 n +1
>

1

3

1

n
. (67)

Therefore
∑

n=1
∞ 1

n
=∞�∑

n=1
∞ 1

2 n + 1
=∞. �

Problem 18. Consider
∑

n=1
∞

n rn. Identify the values of r∈R such that it is convergent. Justify your

answer. You can use the fact that limn�∞n rn = 0 when |r |< 1.

Solution.
Apply ratio test, we have

|an+1|
|an|

=
n +1

n
|r |� |r | as n� ∞. (68)

Therefore the series converges for |r |<1. On the other hand, when |r |>1 it is clear that limn�∞n rn=0
does not hold. Therefore the series is divergent for such r.
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Intermediate

Problem 19. Let f , g be continuous at x0∈R. Then so are

F (x): =max {f(x), g(x)}, G(x)7 min {f(x), g(x)}. (69)

Proof. Note that we have

F (x)=max {f(x), g(x)}=
f(x)+ g(x)

2
+

|f(x)− g(x)|
2

(70)

and

G(x)=min {f(x), g(x)}=
f(x) + g(x)

2
− |f(x)− g(x)|

2
(71)

As f , g are continuous at x0, so are
f(x)+ g(x)

2
and

|f (x)− g(x)|
2

. Consequently F , G are also continuous
at x0. �

Problem 20. Prove the following.

a) There is exactly one x∈ (0, 1) such that

x1/2 ex =1. (72)

b) There are infinitely many x∈R satisfying

x sinx= 1. (73)

Proof.

a) Since x1/2 and ex are both continuous on R, x1/2 ex is also continuous on R. We try to use

intermediate value theorem. Denote f(x)= x1/2 ex. Calculate

f(0)= 0, f(1)= e� 1∈ (f(0), f(1)). (74)

Thus there is ξ ∈ (0, 1) such that f(ξ)= 1.
To show that ξ is the only solution to the equation, we check that f(x) is strictly increasing:

f ′(x)=

(

1

2
x−1/2 + x1/2

)

ex > 0 (75)

for all x∈ (0, 1). Thus f(x)> 1 when x > ξ and f(x)< 1 when x < ξ.

b) Since x, sin x are both continuous on R, f(x)7 x sin x is also continuous on R. Now we check,
for every n∈N,

f(n π)= 0< 1, f
(

n π +
π

2

)

=n π +
π

2
> 1. (76)

Thus the intermediate value theorem gives the existence of xn∈
(

n π,n π+
π

2

)

satisfying f(xn)=1.
So there are infinitely many solutions to f(x)= 1. �

Problem 21. Let f(x) be differentiable at x0 with derivative f ′(x0) =3. Calculate

lim
n�∞

(3n2 + 2n− 1)

[

f

(

x0 +
2

n2

)

− f(x0)

]

(77)

Solution. Since f(x) is differentiable at x0, we have

lim
n�∞

n2

2

[

f

(

x0 +
2

n2

)

− f(x0)

]

= f ′(x0) =3. (78)

Therefore as n� ∞.

(3n2 +2 n− 1)

[

f

(

x0 +
2

n2

)

− f(x0)

]

=

(

6 +
4

n
− 2

n2

){

n2

2

[

f

(

x0 +
2

n2

)

− f(x0)

]}� 6 f ′(x0)= 18. (79)
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Problem 22. Let f , g be differentiable on (a, b) and continuous on [a, b]. Further assume f(a)= g(b),
f(b) = g(a). Prove that there is ξ ∈ (a, b) such that f ′(ξ)=−g ′(ξ).

Proof. Let h(x)7 f(x)+ g(x). Then we have h(x) differentiable on (a, b) and continuous on [a, b], and
furthermore

h(a)= f(a) + g(a) = f(a)+ f(b)= g(b)+ f(b)= h(b). (80)

Applying the mean value theorem we have: there is ξ ∈ (a, b) such that h′(ξ) = 0. But this is exactly
f ′(ξ) =−g ′(ξ). �

Problem 23. Prove the following inequalities

a) |cosx− cos y |6 |x− y | for all x, y ∈R;

b) |arctanx− arctan y |6 |x− y | for all x, y ∈R;

c)
a − b

a
< ln

a

b
<

a − b

b
, 0< b < a.

Proof.

a) By mean value theorem

|cosx− cos y |= |(sin ξ) (x− y)|= |sin ξ | |x− y |6 |x− y |. (81)

b) By mean value theorem

|arctanx− arctan y |=
∣

∣

∣

∣

1

1 + ξ2
(x− y)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

1+ ξ2

∣

∣

∣

∣

|x− y |6 |x− y |. (82)

c) By mean value theorem

ln
a

b
= ln a− ln b =

1

ξ
(a− b). (83)

Since b < ξ <a and a− b > 0, we have

a− b

a
<

a− b

ξ
<

a− b

b
. (84)

�

Problem 24.

a) Let a∈ (0, 1). Prove that

lim
n�∞

[(n + 1)a−na] = 0. (85)

You can use (xa)′ = a xa−1.

b) Prove that

lim
n�∞

[

sin
(

(n+ 1)1/3
)

− sin
(

n1/3
)]

= 0. (86)

Proof.

a) Applying Mean Value Theorem to f(x)= xa, we have

0 6 (n + 1)a −na = a ξa−1 [(n + 1)−n] =
a

ξ1−a
6

1

n1−a
(87)

where the last inequality follows from ξ ∈ (n, n + 1) and 1 − a > 0. Now take n� ∞, Squeeze
Theorem gives

lim
n�∞

[(n + 1)a−na] = 0. (88)

b) By Mean Value Theorem we have

sin
(

(n + 1)1/3
)

− sin
(

n1/3
)

= cos (ξ)
[

(n +1)1/3−n1/3
]

(89)
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where ξ ∈
(

n1/3, (n + 1)1/3
)

. This gives

∣

∣sin
(

(n + 1)1/3
)

− sin
(

n1/3
)∣

∣6 (n + 1)1/3−n1/3. (90)

Thanks to a) we have limn�∞
[

(n + 1)1/3−n1/3
]

= 0. Application of Squeeze Theorem to

−
[

(n +1)1/3−n1/3
]

6 sin
(

(n + 1)1/3
)

− sin
(

n1/3
)

6 (n +1)1/3−n1/3 (91)

gives the desired result. �

Problem 25. (USTC) Let f be differentiable on R, f(0) = 0 and f ′(x) is strictly increasing. Prove

that
f(x)

x
is strictly increasing on (0,∞).

Proof. We calculate
(

f(x)

x

)′
=

f ′(x) x− f(x)

x2
. (92)

Now notice that by the mean value theorem,

f(x)

x
=

f(x)− f(0)

x− 0
= f ′(ξ) (93)

for some ξ ∈ (0, x). As f ′(x) is strictly increasing, f ′(ξ)< f ′(x) therefore

f(x)= x f ′(ξ) <x f ′(x) (94)

thanks to x > 0.

This gives
(

f(x)

x

)′
=

f ′(x)x− f(x)

x2
> 0 (95)

for all x∈ (0,∞). So
f(x)

x
is strictly increasing on (0,∞). �

Problem 26. Let f(x) be differentiable on (−∞, 0) and (0,∞). Assume that

lim
x� 0−

f ′(x)=A, lim
x� 0+

f ′(x) =B. (96)

Prove that if A� B then f(x) is not differentiable at x= 0.

Proof. First notice that if f(x) is not continuous at x = 0 then it is not differentiable there. In the
following we assume f(x) is continuous at x = 0.

Take one sequence xn < 0, xn� 0 and another sequence yn > 0, yn� 0. Then by Mean Value
Theorem (note that we can apply MVT because now f(x) is continuous on the closed intervals [x0, 0]
and [0, yn]) there are ξn∈ (xn, 0) and ηn∈ (0, yn) such that

f(xn)− f(0)

xn − 0
= f ′(ξn);

f(yn)− f(0)

yn − 0
= f ′(ηn). (97)

As xn, yn� 0, application of Squeeze Theorem gives ξn, ηn� 0. Therefore

lim
n�∞

f(xn)− f(0)

xn − 0
= lim

n�∞
f ′(ξn)= A� B = lim

n�∞
f ′(ηn)= lim

n�∞
f(yn)− f(0)

yn− 0
(98)

which means

lim
x� 0

f(x)− f(0)

x− 0
(99)

does not exist and therefore f(x) is not differentiable at 0. �
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Problem 27. Let a > 1. Assume f(x) satisfies |f(x)− f(y)|6 |x− y |a for all x, y ∈R. Prove that f is
constant.

Proof. We show that f(x) is differentiable and f ′(x)= 0. Take any x0∈R, we have

−|x−x0|a−1 6−|f(x)− f(x0)|
|x− x0|

6
f(x)− f(x0)

x−x0
6

|f(x)− f(x0)|
|x− x0|

6 |x− x0|a−1. (100)

Since a > 1, limx� x0
|x− x0|a−1 = 0. Application of Squeeze Theorem gives

lim
x� x0

f(x)− f(x0)

x− x0
=0� f ′(x0)= 0. (101)

Therefore f ′(x) =0 for all x∈R and f(x) is a constant. �

Problem 28. (USTC) Let f , g be differentiable on [a,∞), and |f ′(x)|6 g ′(x) for all x∈ [a,∞). Prove
that

|f(x)− f(a)|6 g(x)− g(a) (102)

for all x > a. (Hint: Cauchy’s generalized mean value theorem.)

Proof. Since |a|=max (a,−a) for any a∈R, it suffices to prove

f(x)− f(a)6 g(x)− g(a) and (−f)(x)− (−f)(a)6 g(x)− g(a). (103)

It is clear that g ′(x) > 0 so g(x) is increasing. Therefore if f(x)= f(a), we have

|f(x)− f(a)|=0 6 g(x)− g(a). (104)

Thus in the following we only consider those x such that f(x)� f(a). This implies g(x) > g(a).
Applying generalized mean value theorem to f and g we have

f(x)− f(a)

g(x)− g(a)
=

f ′(ξ)
g ′(ξ)

(105)

for some ξ ∈ (a, x). As f(x)� f(a), f ′(ξ)� 0 which means g ′(ξ)� 0.
Since |f ′(ξ)|6 g ′(ξ) we have f ′(ξ)/g ′(ξ) 6 1 so

f(x)− f(a)

g(x)− g(a)
6 1�Recall that g(x)−g(a)>0

f(x)− f(a)6 g(x)− g(a). (106)

On the other hand, applying the same theorem to −f and g gives

−(f(x)− f(a))

g(x)− g(a)
6 1� −(f(x)− f(a))6 g(x)− g(a). (107)

Combining the two inequalities we reach

|f(x)− f(a)|6 g(x)− g(a) (108)

as required. �

Problem 29. Let f be continuous and g be integrable on [a, b]. Further assume that g(x) doesn’t
change sign in [a, b]. Prove that there is ξ ∈ [a, b] such that

∫

a

b

f(x) g(x) dx= f(ξ)

∫

a

b

g(x) dx. (109)

Does the conclusion still hold if we drop “g(x) doesn’t change sign in [a, b]”?

Proof. First notice that we only need to prove for the case g(x) > 0 since the case g(x) 6 0 can be
immediately obtained through the former case by considering −g(x).
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Next we notice that if
∫

a

b
g(x) dx=0, then

∣

∣

∣

∫

a

b
f(x) g(x) dx

∣

∣

∣6
∫

a

b |f(x)| g(x) dx6A
∫

a

b
g(x) dx=0

where A=max[a,b] |f(x)| ∈R whose existence follows from the continuity of f on [a, b]. Therefore in this
case

0 =

∫

a

b

f(x) g(x) dx = f(ξ)

∫

a

b

g(x) dx =0 (110)

holds for any ξ ∈ [a, b].

Now we assume
∫

a

b
g(x) dx > 0. As f(x) is continuous on [a, b] there are ξ1, ξ2∈ [a, b] such that

f(ξ1) 6 f(x) 6 f(ξ2) (111)

for all x∈ [a, b]. As g(x)> 0, we have

f(ξ1) g(x)6 f(x) g(x)6 f(ξ2) g(x) (112)

which leads to

f(ξ1)

∫

a

b

g(x) dx 6

∫

a

b

f(x) g(x) dx 6 f(ξ2)

∫

a

b

g(x) dx. (113)

that is

f(ξ1)6

∫

a

b
f(x) g(x) dx
∫

a

b
g(x) dx

6 f(ξ2). (114)

Application of the Intermediate Value Theorem now gives the existence of ξ ∈ [a, b] satisfying

f(ξ) =

∫

a

b
f(x) g(x) dx
∫

a

b
g(x) dx

(115)

which is what we need to prove.
If g changes sign the conclusion does not hold anymore. For example take g(x)= sinx, f(x)=1 and

a= 0, b= 2 π. �

Problem 30. Prove the following inequalities:

a)
∫

0

1
e−x2

dx >
∫

1

2
e−x2

dx;

b)
∫

0

π/2 sin x

x
dx >

∫

0

π/2 sin2x

x2 dx;

Proof.

a) We do a change of variable: y = x− 1 for the second integral:

∫

1

2

e−x2
dx=

∫

0

1

e−(y+1)2 dy =

∫

0

1

e−(x+1)2 dx. (116)

Now for x∈ (0, 1) we have

−x2 >−(x+ 1)2� e−x2
> e−(x+1)2 (117)

which gives
∫

0

1

e−x2
dx >

∫

0

1

e−(x+1)2 dx (118)

as desired.

b) We show that for x∈
(

0,
π

2

)

, 06
sin x

x
< 1. The first inequality is obvious. To show the second, we

calculate
(

sinx

x

)′
=

x cos x− sinx

x2
. (119)

Now let f(x)= x cos x− sinx and notice that

f(0) =0, f ′(x)=−x sinx < 0 for all x∈
(

0,
π

2

)

(120)
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therefore

f(x) < 0 (121)

for all x > 0. Consequently f(x) is strictly decreasing which means

x cos x− sinx= f(x)< f(0)= 0. (122)

Therefore
(

sinx

x

)′
< 0� sin x

x
is strictly decreasing. (123)

As limx� 0
sin x

x
=1, this means

sinx

x
< 1 (124)

for x∈
(

0,
π

2

)

.

From this we have
sinx

x
>

sin2 x

x2
∀x∈

(

0,
π

2

)

(125)

which gives
∫

0

π/2 sinx

x
dx >

∫

0

π/2 sin2x

x2
dx. (126)

�

Problem 31. (USTC) Prove
∫

0

2π
[
∫

x

2π sin t

t
dt

]

dx= 0. (127)

(Hint: Set u(x)=
∫

x

2π sin t

t
dt then integrate by parts)

Proof. Set

u(x) =

∫

x

2π sin t

t
dt, v(x)= x (128)

then we have
∫

0

2π
[
∫

x

2π sin t

t
dt

]

dx =

∫

0

2π

u(x) v ′(x) dx

= u(2π) v(2π)− u(0) v(0)−
∫

0

2π

v(x)u′(x) dx

= 0− 0−
∫

0

2π

x

(

−sinx

x

)

dx

= 0.

�

Problem 32. Let f be continuous on R. Let a, b∈R, a < b. Then

lim
h� 0

∫

a

b f(x + h)− f(x)

h
dx = f(b)− f(a). (129)

Proof. Let F (x) be an antiderivative of f . Since f(x) is continuous on the closed interval [a, b] it is
integrable. We have

∫

a

b

f(x) dx= F (b)−F (a) (130)

On the other hand,

∫

a

b

f(x + h) dx =

∫

a+h

b+h

f(y) dy = F (b + h)−F (a + h). (131)
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Thus

lim
h� 0

∫

a

b f(x+ h)− f(x)

h
= lim

h� 0

1

h
[(F (b+ h)−F (b)− (F (a + h)−F (a)))]

= F ′(b)−F ′(a)

= f(b)− f(a) (132)

Thanks to FTC Version 2. �

Problem 33. (USTC) Let f be integrable. Prove that

∫

0

π

x f(sin x) dx=
π

2

∫

0

π

f(sinx) dx. (133)

(Hint: Change of variable: t = π − x.)

Proof. Do the change of variable as in the hint, we have
∫

0

π ( π

2
−x

)

f(sinx) dx =

∫

π

0 (

t− π

2

)

f(sin t) (−1) dt =−
∫

0

π ( π

2
− t
)

f(sin t) dt (134)

That is
∫

0

π ( π

2
−x

)

f(sinx) dx =−
∫

0

π ( π

2
− x

)

f(sinx) dx (135)

so
∫

0

π ( π

2
−x

)

f(sinx) dx =0. (136)

�

Problem 34. Apply Ratio/Root tests to determine the convergence/divergence of the following series
(You need to decide which one is more convenient to use).

∑

n=1

∞
1

2n
(1 +1/n)n2

;
∑

n=1

∞
(n!)xn;

∑

n=1

∞
(n!)

nn
xn. (137)

You can use the fact (1+ 1/n)n� e, and the Stirling’s formula

lim
n�∞

n!

2 πn
√

(n/e)n
=1 (138)

without proof.

Solution.

• We apply root test:

|an|1/n =
1

2
(1 + 1/n)n. (139)

As limn�∞
1

2
(1+ 1/n)n =

e

2
, we have

liminf
n�∞

|an|1/n =
e

2
> 1 (140)

so the series diverges.

• We apply ratio test:
|an+1|
|an|

=(n +1) |x|. (141)

This leads to

lim
n�∞

(n +1) |x|=
{

0 x = 0
∞ x� 0

. (142)
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Since the limit exists, we have

limsup
n�∞

|an+1|
|an|

= 0< 1 when x= 0; liminf
n�∞

|an+1|
|an|

=∞> 1 when x� 0. (143)

So the series converges for x =0 but diverges for all x� 0.

• We apply ratio test:

|an+1|
|an|

=
(n + 1) |x|

(n + 1)n+1 n−n
=

|x|
(1+ 1/n)n

� |x|
e

. (144)

The ratio test then gives convergence when |x| < e and divergence when |x| > e. When |x| = e,
we have

|an|= (n!)

nn
en =

n!

(n/e)n
(145)

and Stirling’s formula gives

lim
n�∞

|an|
2π n

√ = 1. (146)

This means an�0 so the series diverges.
Summarizing, the series converges when |x|< e and diverges when |x|> e.

Problem 35. an > 0,
∑

n=1
∞

an converges. Prove that
∑

n=1
∞

an an+1
√

converges. On the other hand,

if an furthermore is decreasing, then
∑

n=1
∞

an an+1
√

converges� ∑

n=1
∞

an converges. Any example

of if an is not decreasing then not true? (Take an = 0 for all n even)

Proof. First we note that

∑

n=1

∞
an converges�∑

n=1

∞
an+1 converges. (147)

since
∑

k=1

n

ak = a1 +
∑

k=1

n−1

ak+1. (148)

• If
∑

n=1
∞

an converges, so does
∑

n=1
∞

an+1 and then
∑

n=1
∞ (an + an+1). The convergence of

∑

n=1
∞

an an+1
√

then follows from

an an+1
√

6
1

2
(an + an+1). (149)

• If an is decreasing, we have an > an+1 � an+1 6 an an+1
√

. Thus the convergence of
∑

n=1
∞

an an+1
√

implies the convergence of
∑

n=1
∞

an+1 and then that of
∑

n=1
∞

an.

If an is not decreasing then
∑

n=1
∞

an an+1
√

converges � ∑

n=1
∞

an converges. For example take

an =

{

0 n even
1 n odd

. �

Problem 36. Let an>0. Prove that
∑

n=1
∞

an converges then
∑

n=1
∞

an
2 converges. Is the converse true?

Justify your answer.

Proof. Since
∑

n=1
∞

an converges, limn�∞an =0. Thus there is N ∈N such that for all n >N , an < 1.
Now for these n we have

|an
2 |= an

2 <an. (150)

Therefore the convergence of
∑

n=1
∞

an gives the convergence of
∑

n=1
∞

an.

The converse is not true. Take an =
1

n
. �
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Advanced

Problem 37. A function f(x): E � R is called “uniformly continuous” if for any ε > 0, there is δ > 0
such that for all x, y ∈E satisfying |x− y |< δ, |f(x)− f(y)|<ε.

a) Prove that if f is uniformly continuous, then it is continuous.

b) Give an example of a continuous function that is not uniformly continuous. Justify your answer.

c) If f : E� R is continuous with E a bounded closed set, then f is uniformly continuous.

d) Prove that if f is continuous on [a, b], then it is integrable on [a, b].

Proof.

a) This is obvious.

b) f(x)=1/x defined for x>0. Take ε=1. Then for any δ >0 we can take n∈N such that n>δ−1.

Then we have
∣

∣

∣

1

n
− 1

n +1

∣

∣

∣<δ but |f(1/n)− f(1/(n +1))|= 1> ε.

c) Assume the contrary. Then there is ε0 > 0 such that for all n∈N, there are xn, yn such that

|xn − yn|< 1/n, |f(xn)− f(yn)|> ε0. (151)

Applying Bolzano-Weierstrass, there is a subsequence xnk
� ξ∈ [a, b]. As |xn− yn|� 0, we have

ynk
� ξ too. But then |limk�∞f(xnk

)− limk�∞f(ynk
)|> ε0, contradicting the continuity of

f .

d) From c) we know that f is uniformly continuous. Now for any ε > 0, take δ such that for all
|x− y |< δ, |f(x)− f(y)|< ε/(b− a).

Now take any partition P = {x0 = a, x1, 	 , xn = b} with |xi − xi−1| < δ for all i = 1, 2, 	 , n.
Then we have

U(f , P )−L(f , P )=
∑

i=1

n

(sup f − inf f) (xi − xi−1)<
∑

i=1

n
ε

b− a
(xi −xi−1) = ε. (152)

Therefore f is integrable. �

Problem 38. Let f(x) be continuous over R, and satisfies f(x+ y)= f(x)+ f(y) for all x, y∈R. Prove
that there is a∈R such that f(x)= a x.

Proof. First

f(0 +0)= f(0)+ f(0)� f(0) =0; (153)

Now let a = f(1). Clearly f(n)= na. Next consider any rational number q =
n

m
. Then we have

na = f(n) = f(m q)= m f(q)� f(q) = a q. (154)

Finally for any x∈R\Q, there is qn� x. Since f(x) is continuous we have

f(x)= lim
n�∞

f(qn)= lim
n�∞

a qn = a x. (155)

Thus ends the proof. �

Problem 39. (USTC) Let f(x) be differentiable. Assume that there are a<b such that f(a)= f(b)=0,
f ′(a) f ′(b)> 0. Prove that there is ξ ∈ (a, b) such that f(ξ)= 0.

Proof. There are two cases, f ′(a) > 0, f ′(b) > 0 and f ′(a) < 0, f ′(b) < 0. Considering −f instead of f

would turn any one case into the other, so we only consider the first case here.
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Since f ′(a)> 0,

lim
x� a

f(x)− f(a)

x− a
> 0. (156)

Thus there is x1∈
(

a,
a + b

2

)

such that f(x1)> 0; On the other hand, since f ′(b)> 0

lim
x� b

f(x)− f(b)

x− b
> 0 (157)

which means there is x2∈
(

a + b

2
, b
)

such that f(x2)< 0.

Now f(x) is differentiable on (a, b) so is continuous on (a, b). Application of Intermediate Value
Theorem gives the existence of ξ ∈ (x1, x2)⊆ (a, b) satisfying f(ξ)= 0. �

Problem 40. Let f(x) be continuous on (a, b). Assume there is x0 ∈ (a, b) such that f ′′′(x0) exists.
Prove that there are constants A, B, C, D such that

lim
h� 0

A f(x0 + h)+ B f(x0) +C f(x0−h) +D f(x0− 2h)

h3
= f ′′′(x0) (158)

and find their values. (Hint: L’Hospital)

Proof. First notice that if A +B +C +D � 0, then the limit cannot be finite. Therefore we have

A+ B + C + D = 0. (159)

Now apply L’Hospital: Note that since f ′′′(x0) exists, f ′′(x) must exist and be continuous on some (a2, b2)
containing x0, then so does f ′(x) and f(x). Therefore f(x0 +h) (and others) is differentiable at h =0.

f ′′′(x0)= lim
h� 0

A f ′(x0 + h)−Cf ′(x0− h)− 2 Df ′(x0− 2 h)

3 h2
. (160)

This gives us

A−C − 2D =0. (161)

Applying L’Hospital again:

f ′′′(x0)= lim
h� 0

Af ′′(x0 +h) +C f ′′(x0− h)+ 4 D f ′′(x0− 2h)

6h
(162)

we obtain

A+ C + 4 D =0. (163)

Note that we cannot apply L’Hospital’s rule anymore since it requires f ′′′(x) to exist in some open
interval around x0. But we can use definition: (In fact we can use Toy L’Hospital here...)

lim
h� 0

Af ′′(x0 + h)+ C f ′′(x0− h)+ 4D f ′′(x0− 2 h)

6 h
= lim

h� 0
A

f ′′(x0 +h)− f ′′(x0)

6 h

+ lim
h� 0

C
f ′′(x0− h)− f ′′(x0)

6h

+ lim
h� 0

4 D
f ′′(x0− 2 h)− f ′′(x0)

6h

=
A−C − 8D

6
f ′′′(x0). (164)

(165)

This implies

A−C − 8D =6. (166)
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Putting things together, it is sufficient and necessary for the constants to satisfy

A+ B + C + D = 0 (167)

A−C − 2 D = 0 (168)

A +C +4 D = 0 (169)

A−C − 8 D = 6 (170)

Notice that D can be solved from the 2nd and the 4th equation: D =−1. This gives

A−C =−2, A+ C = 4� A= 1, C = 3. (171)

Finally we obtain B =−3. Summarizing,

lim
h� 0

f(x0 + h)− 3 f(x0)+ 3 f(x0− h)− f(x0− 2 h)

h3
= f ′′′(x0) (172)

�

Problem 41. (USTC) Let f(x) be differentiable at x0 with f(x0)� 0 and f ′(x0)=5. Take for granted

limh� 0 (1 + h)1/h = e. Calculate

lim
n�∞

∣

∣

∣

∣

∣

f
(

x0 +
1

n

)

f(x0)

∣

∣

∣

∣

∣

n

. (173)

Solution. First note that as f(x) is continuous at x0,

lim
n�∞

f
(

x0 +
1

n

)

f(x0)
= 1 (174)

which means there is N ∈N such that for all n > N ,

f
(

x0 +
1

n

)

f(x0)
> 0. (175)

Therefore

lim
n�∞

∣

∣

∣

∣

∣

f
(

x0 +
1

n

)

f(x0)

∣

∣

∣

∣

∣

n

= lim
n�∞

(

f
(

x0 +
1

n

)

f(x0)

)n

. (176)

Write
∣

∣

∣

∣

∣

f
(

x0 +
1

n

)

f(x0)

∣

∣

∣

∣

∣

n

=

∣

∣

∣

∣

∣

1 +
f
(

x0 +
1

n

)

− f(x0)

f(x0)

∣

∣

∣

∣

∣

n

=

∣

∣

∣

∣

∣

1 +
1

n

f
(

x0 +
1

n

)

− f(x0)

1/n

1

f(x0)

∣

∣

∣

∣

∣

n

. (177)

Now let

hn =
1

n

f
(

x0 +
1

n

)

− f(x0)

1/n

1

f(x0)
. (178)

We have

hn� 0 (179)

and

n =
1

hn

f
(

x0 +
1

n

)

− f(x0)

1/n

1

f(x0)
. (180)
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Therefore

lim
n�∞

∣

∣

∣

∣

∣

f
(

x0 +
1

n

)

f(x0)

∣

∣

∣

∣

∣

n

= lim
n�∞

(

f
(

x0 +
1

n

)

f(x0)

)n

= lim
n�∞

(1 +hn)
1

hn

f

(

x0+
1

n

)

−f(x0)

1/n

1

f(x0)

= lim
n�∞

[

(1+ hn)1/hn
]

f

(

x0+
1

n

)

−f(x0)

1/n

1

f(x0)

=

{

lim
hn� 0

[

(1+ hn)1/hn
]

}

limn�∞

[

f

(

x0+
1

n

)

−f(x0)

1/n

1

f(x0)

]

= exp [f ′(x0)/f(x0)]. (181)

Problem 42. (USTC) Let f be twice differentiable over R, with f(0)= f(1)=0. Let F (x)=x2 f(x).
Prove that there is ξ ∈ (0, 1) such that F ′′(ξ) =0.

Proof. All we need are x1, x2 such that F ′(x1)= F ′(x2)= 0.

We calculate

F ′(x)= 2x f(x)+ x2 f ′(x). (182)

Thus it is clear that F ′(0)= 0.

On the other hand, f(0) = f(1) = 0 implies F (0) = F (1) = 0 which gives the existence of η ∈ (0, 1)
such that F ′(η) =0.

Now apply Mean Value Theorem again we obtain the existence of ξ ∈ (0, η)⊂ (0, 1) satisfying

F ′′(ξ)= 0. (183)

�

Remark 1. Note that the same idea can show the following: Let f be m-th differentiable with f(0) =

f(1) =0, let F (x) =xm f(x), then there is ξ ∈ (0, 1) such that F (m)(ξ)= 0.

Problem 43. Let f be differentiable overR. Then f ′(x), though may be not continuous, always satisfies
the Intermediate Value Property:

For any s between f ′(a) and f ′(b), there is ξ ∈ [a, b] such that f ′(ξ)= s.

Then use this to prove: If f is differentiable in (a, b) and f ′ � 0, then f is either increasing or
decreasing.

Proof. Define the function

g(x)=







f(b)+ f ′(b) (x− b) x > b

f(x) x∈ [a, b]
f(a)+ f ′(a) (x− a) x < a

. (184)

Then g(x) is differentiable over R. Now use Mean Value Theorem. The idea is very easy to understand
if you draw the graph of the function g(x).

If there are x1 < x2, x3 < x4 such that f(x1)< f(x2), f(x3) > f(x4), then by mean value theorem we
have ξ ∈ (x1, x2), η ∈ (x3, x4) such that f ′(ξ) > 0, f ′(η) < 0. Now the mean value property implies the
existence of x0 between ξ, η such that f ′(x0)= 0. Contradiction. �

Remark 2. A better way to prove is to consider g(x) = f(x) − s x defined for x ∈ [a, b]. Assume
f ′(a) <s < f ′(b). Then we have g ′(a) < 0, g ′(b) > 0. Since g is continuous on [a, b], there is a minimizer
ξ ∈ [a, b]. All we need to show is ξ � a, b. Since g ′(a)< 0, for h small enough we have g(a +h)< g(a) so
ξ � a. Similarly ξ � b. Thus g ′(ξ)= 0� f ′(ξ)= s.
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Problem 44. (USTC) Calculate

lim
n�∞

∑

k=1

n

sin

(

k a

n2

)

. (185)

(Hint: Write
∑

k=1
n

sin
(

k a

n2

)

=
∑

k=1
n k a

n2 +
∑

k=1
n

[

sin
(

k a

n2

)

− k a

n2

]

, try to estimate
∣

∣

∣sin
(

k a

n2

)

− k a

n2

∣

∣

∣ using

Taylor polynomial)

Solution. Write
∑

k=1

n

sin

(

k a

n2

)

=
∑

k=1

n
k a

n2
+
∑

k=1

n [

sin

(

k a

n2

)

− k a

n2

]

(186)

Now recall the Taylor expansion of sinx with Lagrange form of remainder (to degree 1):

sin x= x− sin ξ

2
x2 (187)

for some ξ ∈ (0, x). This gives
∣

∣

∣

∣

sin

(

k a

n2

)

− k a

n2

∣

∣

∣

∣

6
1

2

(

k a

n2

)

2

6
a2

2

1

n2
. (188)

Now notice

lim
n�∞

∑

k=1

n
k a

n2
= lim

n�∞
a

n2

∑

n=1

n

k = lim
n�∞

a

n2

n (n +1)

2
=

a

2
. (189)

On the other hand
∣

∣

∣

∣

∣

∑

k=1

n [

sin

(

k a

n2

)

− k a

n2

]

∣

∣

∣

∣

∣

6
∑

k=1

n
a2

2

1

n2
=

a2

2n
. (190)

Application of Squeeze Theorem gives

lim
n�∞

∑

k=1

n [

sin

(

k a

n2

)

− k a

n2

]

= 0. (191)

Therefore

lim
n�∞

∑

k=1

n

sin

(

k a

n2

)

=
a

2
. (192)

Problem 45. Let f be differentiable on (0, ∞) with limx�∞ [f(x) + f ′(x)] = 0. Prove that
limx�∞f(x) = 0. (Hint: Let F (x) = ex f(x), G(x) = ex. Apply Cauchy’s generalized mean value
theorem.)

Proof. Following the hint, we have for any x > y > 0,

ex f(x)− ey f(y)

ex − ey = f(ξ) + f ′(ξ) for some ξ ∈ (y, x). (193)

Therefore for every ε, there is M > 0 such that for all x > y >M ,

∣

∣

∣

∣

ex−y f(x)− f(y)

ex−y − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

ex f(x)− ey f(y)

ex − ey

∣

∣

∣

∣

<ε/2. (194)

This gives

|f(x)|<
∣

∣

∣

∣

ex−y

ex−y − 1

∣

∣

∣

∣

|f(x)|< ε

2
+

|f(y)|
|ex−y − 1| (195)

Now fix y = M +1. Take M ′=M + 1+ ln
(

2 |f(y)|
ε

+ 1
)

, then for every x > M ′, we have

∣

∣

∣

∣

f(y)

ex−y − 1

∣

∣

∣

∣

<ε/2 (196)
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which leads to

|f(x)|< ε. (197)

So by definition limx�∞f(x) =0. �

Problem 46. Let f be continuous on [0,∞) and satisfy limx�∞f(x)= a. Prove

lim
x�∞

1

x

∫

0

x

f(t) dt = a. (198)

Proof. For any ε > 0, since limx�∞f(x)= a, there is M1 > 0 such that

|f(x)− a|< ε/2 (199)

for all x>M1. Because f is continuous on [0,M1], it is bounded on [0,M1], that is there is A>0 such that

|f(x)|6 A (200)

for all x∈ [0, M ].

Now take M =max
{

M1,
2 M1 (A + |a|)

ε

}

, we have for any x > M ,

∣

∣

∣

∣

1

x

∫

0

x

f(t) dt− a

∣

∣

∣

∣

=

∣

∣

∣

∣

1

x

∫

0

x

(f(t)− a) dt

∣

∣

∣

∣

6
1

x

∫

0

x

|f(t)− a| dt

=
1

x

∫

0

M1

|f(t)− a| dt +
1

x

∫

M1

x

|f(t)− a| dt

6
1

x

∫

0

M1

(A+ |a|) dt +
1

x

∫

M1

x ε

2
dt

6
M1 (A+ |a|)

x
+

ε

2

<
M1 (A+ |a|)

M
+

ε

2
< ε. (201)

�

Problem 47. (USTC) Let

F (x)=

∫

0

x sin t

t
dt, x∈ (0,∞). (202)

Prove that maxx∈RF = F (π).

Proof. First notice that
sin t

t

{

>0 t∈ [2 k π, 2 k π +π]
60 t∈ [2 k π + π, 2 (k + 1)π]

. (203)

Therefore F (x) is increasing in [2 k π, 2 k π + π] and decreasing in [2 k π + π, 2 (k +1)π] for every k ∈Z.
All we need to show now is F (π)> F (2 k π + π) for every k. In fact we will show

F (π)> F (3π)> F (5 π) >
 (204)

We show F (π)> F (3 π) here, others can be done similarly. We have

F (3π) = F (π)+

∫

π

2π sin t

t
dt +

∫

2π

3π sin t

t
dt

= F (π)+

∫

π

2π sin t

t
dt +

∫

π

2π sin (x +π)

x+ π
dx

= F (π)+

∫

π

2π sin t

t
− sin t

t + π
dt <F (π). (205)
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The last inequality follows from the fact that sin t < 0 in (π, 2 π). �

Problem 48. an > 0,
∑

n=1
∞

an converges. Let bn =
an

∑

n
∞ ak

. Prove that
∑

n=1
∞

bn diverges.

Proof. We show that bn is not Cauchy through showing: For any n∈N, there is m > n such that

∑

k=n

m

bk >
1

2
. (206)

Take any n ∈N. Since
∑

n=1
∞

an converges, so does
∑

k=n

∞
ak. Denote S =

∑

k=n

∞
ak > 0. Now denote

Sm =
∑

k=n

m
ak, we have Sm increasing and Sm� S. Thus there is m∈N such that Sm > S/2.

For this m, we have

∑

k=n

m

bk =
∑

k=n

m
ak

∑

l=k
∞ al

>
∑

k=n

m
ak

∑

l=n
∞ al

=

∑

k=n

m
ak

∑

k=n
∞ ak

=
Sm

S
>

1

2
. (207)

Thus ends the proof. �

Problem 49. (Alternating series) Let bn >0 with limn�∞bn =0. Assume there is N ∈N such that
for all n > N , bn > bn+1.

a) Prove that
∑

n=1
∞

(−1)n+1 bn converges.

b) Apply this criterion to prove the convergence of 1 − 1

2
+

1

3
− 1

4
+ 
 =

∑

n=1
∞ (−1)n+1 1

n
and

∑

n=1
∞ (−1)n 3n

n!
.

c) Show that the condition “bn is decreasing” cannot be dropped.

Proof.

a) For any n =2 k >N , we have

S2(k+1) =
∑

n=1

2(k+1)

(−1)n+1bn =S2k + b2k+1− b2k+2 >S2k. (208)

Thus S2k is increasing when 2 k >N .
Now let k0 be such that 2 k0 > N but 2 (k0− 1) <N . Now we have, for any k > k0,

S2k = S2k0−1− b2k0 + b2k0+1−
 − b2k−2 + b2k−1− b2k 6 S2k0−1 (209)

which means S2k is bounded above.
Therefore S2k� s∈R. Since S2k+1−S2k = b2k+1� 0, we have S2k+1� s too. Combine

these two we have Sk� s.

b) All we need to show is
1

n
is decreasing with limit 0, which is obvious, and

3n

n!
is decreasing with

limit 0. For the latter, notice that

3n/n!

3n+1/(n+ 1)!
=

n+ 1

3
(210)

which >1 when n > 2.
On the other hand, for n > 5, we have

bn+1 =
3n+1

(n +1)!
=

3

n +1
bn 6

1

2
bn (211)

which means limn�∞bn = 0.

c) That the condition “bn is decreasing” is necessary can be seen from the following example:

bn =

{

1/n n odd
0 n even

. �
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Really Advanced

Problem 50. Let f be defined on (a, b) and x0∈ (a, b). Assume that f (n+1)(x) exists and is continuous

on (a, b) with f (n+1)(x0)� 0. Consider the Taylor polynomial with Lagrange remainder:

f(x)=
 +
f (n)(ξ)

n!
(x−x0)

n. (212)

Recall that ξ can be viewed as a function of x. If we define (naturally) ξ(x0) = x0, prove that ξ(x) is
differentiable at x0 with

ξ ′(x0)=
1

n +1
. (213)

Proof. We only need to show

lim
x� x0

ξ(x)− x0

x−x0
=

1

n + 1
. (214)

expand to degree n with Lagrange form of remainder

f(x)=
 +
f (n)(x0)

n!
(x− x0)

n +
f (n+1)(η)

(n + 1)!
(x− x0)

n+1. (215)

Thus we have

f (n)(ξ)− f (n)(x0)

x− x0
=

f (n+1)(η)

n + 1
. (216)

On the other hand, by Mean Value Theorem there is η ′∈ (x0, ξ) such that

f (n)(ξ)− f (n)(x0)

ξ − x0
= f (n+1)(η ′). (217)

Therefore

ξ(x)−x0

x− x0
=

f (n+1)(η)

f (n+1)(η ′)

1

n +1
. (218)

Note that η is a function of x, while η ′ is a function of ξ which is itself a function of x, so η ′ is also a
function of x. We further have

x� x0� η, η ′� x0 (219)

by Squeeze Theorem.

Since f (n+1) is continuous with f (n+1)(x0)� 0, we have

lim
x� x0

ξ(x)− x0

x− x0
=

limη� 0 f (n+1)(η)

limη ′� 0 f (n+1)(η ′)

1

n + 1
=

f (n+1)(x0)

f (n+1)(x0)

1

n + 1
=

1

n+ 1
. (220)

So by definition ξ(x) is differentiable with ξ ′(x0) =
1

n +1
. �

Problem 51. (USTC) Let f be differentiable. a b > 0. Then there is ξ ∈ (a, b) such that

1

a− b
[a f(b)− b f(a)] = f(ξ)− ξ f ′(ξ). (221)

(Hint: Use Cauchy’s Generalized Mean Value Theorem).

Proof. Notice that

a f(b)− b f(a)

a− b
=

f(b)

b
− f(a)

a
1

b
− 1

a

. (222)

24 Math 314 Fall 2012 Final Practice



Now apply Cauchy’s Generalized Mean Value Theorem to f(x)/x and 1/x, we have

f(b)

b
− f(a)

a
1

b
− 1

a

=

(

f(x)

x

)

x=ξ

′

( 1

x

)

x=ξ

′ =
[f ′(ξ) ξ − f(ξ)]/ξ2

−1/ξ2
= f(ξ)− ξ f ′(ξ). (223)

�

Remark 3. Note that the condition a b > 0 is necessary because 1/x is not differentiable on (a, b) if
a b < 0.

Problem 52. (USTC) Let f(x) be differentiable on [0, 1]. f(0)=0, f(1)=1. Then for any n∈N and
k1,	 , kn > 0, there are n distinct numbers x1,	 , xn∈ (0, 1), such that

∑

i=1

n
ki

f ′(xi)
=
∑

i=1

n

ki. (224)

Remark 4. Note that when k =1, this is simply mean value theorem. Also if we do not require x1,	 ,

xn to be distinct, the problem is trivial since we can take x1 =
 = xn = ξ with f ′(ξ)= 1.

(Hint: Take y1 < y2 <
 < yn−1 such that f(yi) =
k1 +
 + ki

k1 +
 + kn
. Set y0 = 0, y1 = 1. Then define g(x) to

be linear on each [yi, yi+1] with g(yi)= f(yi), g(yi+1)= f(yi+1). Apply Cauchy’s generalized mean value
theorem.)

Proof. Following the hint, on each [yi−1, yi] we have a xi such that

g ′(xi)

f ′(xi)
=

g(yi)− g(yi−1)

f(yi)− f(yi−1)
= 1. (225)

But since g is linear, we have

g ′(xi) =
ki/
(
∑

j=1
n

kj

)

yi − yi−1
(226)

which gives

ki

f ′(xi)
= (yi − yi−1)





∑

j=1

n

kj



�∑

i=1

n
ki

f ′(xi)
=

(

∑

i=1

n

(yi − yi−1)

)





∑

j=1

n

kj



=
∑

j=1

n

kj (227)

since
∑

i=1
n (yi − yi−1) = yn − y0 =1− 0= 1. �

Problem 53. (USTC) Let f , g be continuous on [−1, 1], infinitely differentiable on (−1, 1), and

∣

∣f (n)(x)− g(n)(x)
∣

∣6 n! |x| n= 0, 1, 2,	 (228)

Prove that f = g. (Hint: Show first f (n)(0) = 0 for all n. Then use Taylor polynomial with Lagrange
form of remainder)

Proof. Set h(x)= f − g. We have h(0)= 0. Next we have

|h(x)− h(0)|= |h′(ξ) x|6 x2� h′(0)= 0. (229)
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Do this n− 1 more times we have h(n)(0)= 0 for any n∈N. Now estimate

|h(x)|=
∣

∣

∣

∣

∣

h(n)(ξ)

n!
xn

∣

∣

∣

∣

∣

6 |x|n+1. (230)

For every |x|< 1, letting n� ∞, we have

|h(x)|6 lim
n�∞

|x|n = 0. (231)

Therefore h(x) = 0 for all x∈ (−1, 1). As h(x) is continuous on [−1, 1], we have h(x)= 0 for all x =−1,
1 too. �

Problem 54. Define γn through
∑

k=1
n−1 1

k
= lnn+ γn

a) Show that γn > 0, γn is increasing with respect to n.

b) Show that γn� γ ∈R.

c) Show that
∑

1
∞ (−1)n+1/n = ln 2.

Proof.

a) Denote

an =
1

n
−
∫

n

n+1 1

x
dx. (232)

Then we have an > 0 and

γn =
∑

k=1

n−1

an. (233)

Clearly γn is increasing.

b) All we need to show is γn is bounded above. We have

γn =
∑

1

n−1
1

k
−
∫

1

n dx

x
6 1+

∑

2

n
1

k
−
∫

1

n dx

x
= 1 +

∑

k=2

n
[

1

k
−
∫

k−1

k dx

x

]

< 1. (234)

Therefore γn converges with some limit γ ∈ (0, 1).

c) We have

∑

k=1

2m
(−1)k+1

k
=
∑

k=1

2m
1

k
−
∑

k=1

m
1

k
= ln (2 m +1)− ln (m +1)= ln

(

2 m + 1

m + 1

)

; (235)

∑

k=1

2m+1
(−1)k+1

k
=
∑

k=1

2m
1

k
−
∑

k=1

m
1

k
+

1

2 m + 1
= ln

(

2m + 1

m + 1

)

+
1

2m + 1
. (236)

Since

lim
m�∞

ln

(

2 m +1

m + 1

)

= ln 2, (237)

for any ε > 0, if we take N >max
{

N1,
2

ε

}

where N1 is such that for any m >N1/2,

∣

∣

∣

∣

ln

(

2m + 1

m +1

)

− ln 2

∣

∣

∣

∣

< ε/2 (238)
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Then for any n > N we have
∣

∣

∣

∣

∣

∑

k=1

n
(−1)k+1

k
− ln 2

∣

∣

∣

∣

∣

<ε. (239)

Thus ends the proof. �

Remark 5. The convergence of γn can be shown directly by estimating

an =
1

n
−
∫

n

n+1 1

x
dx=

1

n
− ln

(

1 +
1

n

)

=
1

n
−
[

ln

(

1 +
1

n

)

− ln 1

]

(240)

using Mean Value Theorem (on ln ).

Problem 55. (Bonar2006)

a) Let
∑

n=1
∞

an be any convergent non-negative series, then there is another convergent non-negative

series
∑

n=1
∞

An satisfying limn�∞ (An/an) =∞; (Hint: Set An =
an

an + an+1 +
√ )

b) Let
∑

n=1
∞

Dn be any divergent non-negative series, then there is another divergent non-negative

series
∑

n=1
∞

dn satisfying limn�∞ (dn/Dn)= 0. (Hint: Set dn = Dn/(D1 +
 +Dn−1))

Proof.

a) Define

tn =
∑

k=n

∞
an (241)

and then

An =
an

tn
√ . (242)

Then clearly limn�∞ (An/an) =∞.

On the other hand, we have

∑

k=1

n

Ak =
∑

k=1

n
tk − tk−1

tk
√ 6

∫

0

t1 1

x
√ dx <∞. (243)

b) Define

Sn =
∑

k=1

n

Dk (244)

and then

dn =
Dn

Sn−1
. (245)

Since
∑

n=1
∞

Dn diverges, together with Dn > 0 we have Sn� ∞ so limn�∞ (dn/Dn) =0.

On the other hand,

∑

k=1

∞
dn >

∫

S1

Sn 1

x
dx� ∞ (246)

as n� ∞. �
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Really Really Advanced

Problem 56. (USTC) Let f(x) be continuous on [0,∞) and be bounded. Then for every λ∈R, there
is xn� ∞ such that

lim
n�∞

[f(xn + λ)− f(xn)] = 0. (247)

Proof. Prove by contradiction. Note that all we need to show is that the sets

An7 {x> n, |f(x + λ)− f(x)|6 1/n} (248)

are non-empty for every n∈N. Assume the contrary: There is n0∈N such that An0
= ∅. That is for all

x > n0, either

f(x+ λ)− f(x)> 1/n0 or f(x + λ)− f(x)< 1/n0. (249)

Let g(x)7 f(x + λ)− f(x). Then g(x) is continuous. We have for every x > n0, either g(x) > 1/n0 or
g(x) <−1/n0. There are three possible cases:

• If there are x1>n0 and x2>n0 such that g(x1)>1/n0, g(x2)<−1/n0, then by intermediate value
theorem we have ξ >n0 such that g(ξ) =0. Contradiction.

• If g(x) > 1/n0 for all x > n0, then we have

f(n0 + k λ) > f(n0 +(k − 1)λ)+
1

n0
>
 > f(n0)+

k

n0
. (250)

As a consequence, for any M ∈R, take k > (|M |+ |f(n0)|)n0, we have

f(n0 + k λ)> M. (251)

This means f is not bounded above and thus not bounded. Contradiction.

• g(x)<−1/n0 for all x > n0. Similar. �

Problem 57. Let f(x) be differentiable with f(x0) = 0. Further assume |f ′(x)|6 |f(x)| for all x > x0.
Prove that f(x)= 0 for all x> x0.

Proof. We prove that f(x)= 0 for all x∈ [x0, x0 + 1/2]. Then by repeating the same argument setting
with x0 replaced by x0 + 1/2 we will get f(x) = 0 for all x∈ [x0, x0 + 1]. Doing this again and again we
can cover all x > x0.

Take any x∈ (x0, x0 + 1/2]. By mean value theorem we have

f(x)− f(x0)

x− x0
= f ′(ξ) (252)

for some ξ1∈ (x0, x0 +1/2). This leads to

|f(x)| = |f ′(ξ)| |x−x0|6 1

2
|f(ξ1)|.

Apply the same argument we find ξ2∈ (x0, ξ1) such that

|f(ξ1)|6 1

2
|f(ξ2)|. (253)

This way we obtain a decreasing sequence ξn satisfying

|f(ξn−1)|6 1

2
|f(ξn)|. (254)

This implies

|f(x)|6 1

2n
|f(ξn)|. (255)

Since f(x) is differentiable it is continuous on [x0, x0 + 1/2] which means there is A > 0 such that

|f(ξn)|6A ∀n∈N. (256)
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This gives

|f(x)|6 A

2n
(257)

for all n, so f(x)= 0. �

Problem 58. (Darboux’s Theorem) 1Let f(x) be a bounded function over a finite interval [a, b].

Let Pn =
{

x0 = a, x1 = a +
b − a

n
,	 , xn = b

}

. Then

U(f , Pn)� U(f); L(f , Pn)� L(f). (258)

Proof. Let M > 0 be the bound of |f(x)|. We prove the first statement, the second is similar.
Take any ε > 0. Let P = {x1,	 , xm} be a partition such that

U(f , P )6 U(f)+ ε/2. (259)

Now consider Pn with n>2 m. It is clear that at least n−2 m intervals in Pn are fully contained in some
[xi−1, xi] of P . As a consequence

U(f , Pn) =
∑

intervals contained in some [xi−1,xi]

+
∑

intervals containing some xi

6 U(f , P )+
2 m M

n

6 U(f)+
2m M

n
+

ε

2
. (260)

From this we see that, if we take N ∈N such that N >
4 m M

ε
, then for every n > N ,

U(f , Pn) 6U(f)+ ε. (261)

On the other hand, by definition of U(f) we have

U(f , Pn)> U(f). (262)

Thus we have shown that, for every ε > 0, we can find N ∈N such that for all n > N ,

|U(f , Pn)−U(f)|< ε. (263)

This by definition gives U(f , Pn)� U(f) as n� ∞. �

Problem 59. (Claesson1970) Let f(x) be a bounded function over a finite interval [a, b]. Let U(f)
denote its upper integral. Prove: f is integrable� For any bounded function g(x),

U(f + g)= U(f)+ U(g). (264)

Proof.

• � . Assume f is integrable. Let P be any partition of [a, b]. We have by definition

U(f + g, P )6 U(f , P ) +U(g, P ). (265)

On the other hand, by definition

U(f + g, P ) =
∑

i=1

n [

sup
x∈[xi−1,xi]

f(x) + g(x)
]

(xi −xi−1)

>
∑

i=1

n [

inf
x∈[xi−1,xi]

f(x) + sup
x∈[xi−1,xi]

g(x)
]

(xi − xi−1)

= L(f , P )+ U(g, P ). (266)

1. Darboux Theorem actually states that the conclusion holds for any sequence of partitions with supi (xi −

xi−1)� 0. But the proof in such general case is very similar to the special one here.
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Thus we have

L(f , P )+ U(g, P )6 U(f + g, P )6 U(f , P )+ U(g, P ) (267)

for any partition P . Thus on one hand we have

U(f + g)6 U(f + g, P )6 U(f , P )+ U(g, P ) (268)

which leads to

U(f + g)6 U(f)+ U(g) (269)

due to the arbitrariness of P .
On the other hand, we have

U(f + g, P )>L(f , P )+ U(g, P )> L(f , P )+ U(g). (270)

Now for any partition Q, we have

U(f + g, Q) >U(f + g, P ∪ Q) >L(f , P ∪ Q)+ U(g)> L(f , P )+ U(g). (271)

Taking supreme over P and then infimum over Q we obtain

U(f + g)> L(f)+ U(g). (272)

Summarizing:

L(f) +U(g)6 U(f + g)6 U(f) +U(g). (273)

But f is integrable so L(f)= U(f) which leads to

U(f + g)= U(f) +U(g). (274)

• � . Take g =−f . Then g is bounded. We have

0= U(0) =U(f + g)= U(f)+ U(−f). (275)

In the following we show U(−f) = −L(f) with when substituted into (275) immediately gives
integrability of f .

Now notice, for any partition P ,

U(−f , P ) =
∑

i=1

n [

sup
x∈[xi−1,xi]

(−f(x))
]

(xi − xi−1)

=
∑

i=1

n [

− inf
x∈{xi−1,xi}

f(x)

]

(xi −xi−1)

= −L(f , P ). (276)

From this we have

U(−f)6−L(f , P ) (277)

for any partition P so

U(−f) 6−L(f)� L(f)6−U(−f). (278)

On the other hand,

L(f , P ) =−U(−f , P )� L(f)>−U(−f , P ) for all P� L(f)>−U(−f). (279)

Summarizing, we have

U(−f)=−L(f). (280)

Thus we have

0 = U(f)−L(f)� U(f)= L(f) (281)

so f is integrable. �
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