Math 314 Fall 2012 Final Practice

- You should also
- review homework problems.
- try the 2011 final (and you should feel most of its problems are easy).
- Most problems in the final will be at the "Basic" and "Intermediate" levels (First 36 problems).

BASIC

Problem 1. Let

$$
f(x)=\left\{\begin{array}{cc}
-1 & x \leqslant-1 \tag{1}\\
a x^{2}+b x+c & |x|<1, x \neq 0 \\
0 & x=0 \\
1 & x \geqslant 1
\end{array} .\right.
$$

Find $a, b, c \in \mathbb{R}$ such that $f(x)$ is continuous at every x.
Solution. We know that $-1, a x^{2}+b x+c, 0,1$ are all continuous functions, therefore for $f(x)$ to be continuous, we only need to make sure $f(x)$ is continuous at $1,0,-1$.

- At -1 . We need

$$
\begin{equation*}
-1=a(-1)^{2}+b(-1)+c \Longleftrightarrow a-b+c=-1 ; \tag{2}
\end{equation*}
$$

- At 1 . We need

$$
\begin{equation*}
a+b+c=1 ; \tag{3}
\end{equation*}
$$

- At 0 . We need

$$
\begin{equation*}
c=0 . \tag{4}
\end{equation*}
$$

Putting all these together we have

$$
\begin{equation*}
a=0, b=1, c=0 \text {. } \tag{5}
\end{equation*}
$$

Problem 2. Calculate the derivatives of the following functions.

$$
\begin{equation*}
f_{1}(x)=\left(\frac{1+x^{2}}{1-x^{2}}\right)^{3} ; \quad f_{2}(x)=\sqrt{1+x+x^{2}} ; \quad f_{3}(x)=\exp [x \ln x] . \tag{6}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
f_{1}^{\prime}(x)=\frac{12 x\left(x^{2}+1\right)^{2}}{\left(x^{2}-1\right)^{4}} ; \quad f_{2}^{\prime}(x)=\frac{2 x+1}{2 \sqrt{x^{2}+x+1}} ; \quad f_{3}^{\prime}(x)=e^{x \ln x}[\ln x+1] . \tag{7}
\end{equation*}
$$

Problem 3. Calculate the following limits.

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{\sqrt{1+x^{2}}-1} ; \quad \lim _{x \longrightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x} ; \quad \lim _{x \longrightarrow \infty} \frac{\pi-\arctan x}{\sin (1 / x)} . \tag{8}
\end{equation*}
$$

Solution.

- We first check that

$$
\begin{equation*}
\lim _{x \longrightarrow 0}\left(1-\cos ^{2} x\right)=\lim _{x \longrightarrow 0}\left(\sqrt{1+x^{2}}-1\right)=0 \tag{9}
\end{equation*}
$$

so we should apply L'Hospital's rule.

$$
\begin{align*}
\lim _{x \longrightarrow 0} \frac{1-\cos ^{2} x}{\sqrt{1+x^{2}}-1} & =\lim _{x \longrightarrow 0} \frac{2 \cos x \sin x}{x / \sqrt{1+x^{2}}} \\
& =\lim _{x \longrightarrow 0} \frac{2 \cos x}{\sqrt{1+x^{2}}} \cdot \frac{\sin x}{x} \tag{10}
\end{align*}
$$

Notice that $\lim _{x \longrightarrow 0} \frac{2 \cos x}{\sqrt{1+x^{2}}}=\frac{2}{1}=2$. We only need to find $\lim _{x \longrightarrow 0} \frac{\sin x}{x}$. Applying L'Hospital's rule again:

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{\sin x}{x}=\lim _{x \longrightarrow 0} \frac{\cos x}{1}=1 \tag{11}
\end{equation*}
$$

So finally we conclude

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{1-\cos ^{2} x}{\sqrt{1+x^{2}}-1}=2 \tag{12}
\end{equation*}
$$

- We first check that

$$
\begin{equation*}
\lim _{x \longrightarrow 0}\left(e^{x}-e^{-x}-2 x\right)=\lim _{x \longrightarrow 0}(x-\sin x)=0 \tag{13}
\end{equation*}
$$

so L'Hospital's rule can be applied:

$$
\begin{align*}
\lim _{x \longrightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x} & =\lim _{x \longrightarrow 0} \frac{e^{x}+e^{-x}-2}{1-\cos x} \\
& =\lim _{x \longrightarrow 0} \frac{e^{x}-e^{-x}}{\sin x} \\
& =\lim _{x \longrightarrow 0} \frac{e^{x}+e^{-x}}{\cos x}=2 . \tag{14}
\end{align*}
$$

- We notice that

$$
\begin{equation*}
\lim _{x \longrightarrow \infty}(\pi-\arctan x)=\frac{\pi}{2}, \quad \lim _{x \longrightarrow \infty} \sin \frac{1}{x}=0 \tag{15}
\end{equation*}
$$

To decide whether the limit is ∞ or $-\infty$, we notice $\sin (1 / x)>0$ for all $x>1 / \pi$. Therefore

$$
\begin{equation*}
\lim _{x \longrightarrow \infty} \frac{\pi-\arctan x}{\sin (1 / x)}=\infty \tag{16}
\end{equation*}
$$

Problem 4. Calculate Taylor polynomial to degree 2 with Lagrange form of remainder.

$$
\begin{equation*}
f(x)=x \sin (\ln x) ; \quad x_{0}=1 \tag{17}
\end{equation*}
$$

Solution. We have

$$
\begin{gather*}
f(1)=0 ; \tag{18}\\
f^{\prime}(x)=\sin (\ln x)+\cos (\ln x) \Longrightarrow f^{\prime}(1)=1 ; \tag{19}\\
f^{\prime \prime}(x)=\frac{1}{x} \cos (\ln x)-\frac{1}{x} \sin (\ln x) \Longrightarrow f^{\prime \prime}(1)=1 ; \tag{20}\\
f^{\prime \prime \prime}(x)=-\frac{\cos (\ln x)-\sin (\ln x)}{x^{2}}-\frac{\sin (\ln x)+\cos (\ln x)}{x^{2}}=-\frac{2 \cos (\ln x)}{x^{2}} . \tag{21}
\end{gather*}
$$

Therefore the Taylor polynomial with Lagrange form of remainder is

$$
\begin{equation*}
x \sin (\ln x)=(x-1)+\frac{(x-1)^{2}}{2}-\frac{\cos (\ln \xi)}{3 \xi^{2}}(x-1)^{3} \tag{22}
\end{equation*}
$$

where ξ is between 1 and x.
Problem 5. Let $f(x)=2 x-\sin x$ defined on \mathbb{R}. Prove that its inverse function g exists and is differentiable. Then calculate $g^{\prime}(0), g^{\prime}(\pi-1)$.
Solution. We have $f^{\prime}(x)=2-\cos x \geqslant 1>0$ so g exists and is differentiable. We have

$$
\begin{equation*}
g^{\prime}(y)=1 / f^{\prime}(x)=\frac{1}{2-\cos x} \tag{23}
\end{equation*}
$$

so all we need to do is to figure out x_{1}, x_{2} such that $f\left(x_{1}\right)=0$ and $f\left(x_{2}\right)=\pi-1$. It's easily seen that $x_{1}=0, x_{2}=\pi / 2$. Therefore

$$
\begin{equation*}
g^{\prime}(0)=1, \quad g^{\prime}(\pi-1)=\frac{1}{2} \tag{24}
\end{equation*}
$$

Problem 6. Which of the following functions is/are differentiable at $x_{0}=0$? Justify your answers

$$
f_{1}(x)=\left\{\begin{array}{ll}
x+2 & x>0 \tag{25}\\
x-2 & x \leqslant 0
\end{array} ; \quad f_{2}(x)=\left\{\begin{array}{ll}
x \sin \frac{1}{x} & x \neq 0 \\
0 & x=0
\end{array} ; \quad f_{3}(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\
0 & x=0\end{cases}\right.\right.
$$

Solution.

- $\quad f_{1}(x)$. Clearly $f_{1}(x)$ is not continuous at 0 so is not differentiable there.
- $\quad f_{2}(x)$. We check

$$
\begin{equation*}
\frac{f_{2}(x)-f_{2}(0)}{x-0}=\sin \frac{1}{x} . \tag{26}
\end{equation*}
$$

As the limit $\lim _{x \longrightarrow 0} \sin \frac{1}{x}$ does not exist, $f_{2}(x)$ is not differentiable at $x_{0}=0$.

- $f_{3}(x)$. We have

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{f_{3}(x)-f_{3}(0)}{x-0}=\lim _{x \longrightarrow 0} x \sin \frac{1}{x}=0 \tag{27}
\end{equation*}
$$

so $f_{3}(x)$ is differentiable at $x_{0}=0$.
Problem 7. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be continuous and $x_{0} \in E$. Define $F(x):=\left\{\begin{array}{ll}\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} & x \neq x_{0} \\ c & x=x_{0}\end{array}\right.$. Prove that f is differentiable at x_{0} if and only if there is $c \in \mathbb{R}$ such that $F(x)$ is continuous for all $x \in \mathbb{R}$.

Proof. It is clear that $F(x)$ is continuous at all $x \neq x_{0}$ no matter what c is.

- Only if. If f is differentiable at x_{0} then by definition

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} F(x)=\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right) \tag{28}
\end{equation*}
$$

So if we set $c=f^{\prime}\left(x_{0}\right), F(x)$ is also continuous at x_{0}.

- If. Since $F(x)$ is continuous at x_{0}, we have

$$
\begin{equation*}
c=\lim _{x \longrightarrow x_{0}} F(x)=\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{29}
\end{equation*}
$$

which by definition means f is differentiable at x_{0}.

Problem 8. Calculate the following integrals:

$$
\begin{equation*}
I_{1}=\int_{e}^{e^{2}} \frac{\mathrm{~d} x}{x(\ln x)^{4}} ; \quad I_{2}=\int_{0}^{4} e^{-\sqrt{x}} \mathrm{~d} x ; \quad I_{3}=\int_{1}^{e} x^{3} \ln x \mathrm{~d} x \tag{30}
\end{equation*}
$$

Solution.

- $\quad I_{1}$. Change of variable: $y=u(x)=\ln x$. Then we have

$$
\begin{align*}
I_{1}=\int_{e}^{e^{2}} \frac{\mathrm{~d} x}{x(\ln x)^{4}} & =\int_{e}^{e^{2}}\left(\frac{1}{u(x)^{4}}\right) u^{\prime}(x) \mathrm{d} x \\
& =\int_{u(e)}^{u\left(e^{2}\right)} \frac{1}{y^{4}} \mathrm{~d} y \\
& =\int_{1}^{2} \frac{1}{y^{4}} \mathrm{~d} y \\
& =-\left.\frac{1}{3} y^{-3}\right|_{1} ^{2} \\
& =\frac{7}{24} \tag{31}
\end{align*}
$$

- $\quad I_{2}$. Change of variable: $y=u(x)=\sqrt{x}$. We have

$$
\begin{align*}
I_{2}=\int_{0}^{4} e^{-\sqrt{x}} \mathrm{~d} x & =\int_{0}^{4} e^{-u(x)} u^{\prime}(x)(2 u(x)) \mathrm{d} x \\
& =\int_{u(0)}^{u(4)} e^{-y} 2 y \mathrm{~d} y \\
& =2 \int_{0}^{2} y e^{-y} \mathrm{~d} y \\
& =2 \int_{0}^{2} y\left(-e^{-y}\right)^{\prime} \mathrm{d} y \\
& =2\left[\left.\left(-y e^{-y}\right)\right|_{0} ^{2}+\int_{0}^{2} e^{-y} \mathrm{~d} y\right] \\
& =2\left[-2 e^{-2}+1-e^{-2}\right] \\
& =2-6 e^{-2} \tag{32}
\end{align*}
$$

- $\quad I_{3}$. We integrate by parts:

$$
\begin{align*}
I_{3}=\int_{1}^{e} x^{3} \ln x \mathrm{~d} x & =\int_{1}^{e} \ln x\left(\frac{x^{4}}{4}\right)^{\prime} \mathrm{d} x \\
& =\left[\ln x\left(\frac{x^{4}}{4}\right)\right]_{x=1}^{x=e}-\int_{1}^{e} \frac{x^{4}}{4}(\ln x)^{\prime} \mathrm{d} x \\
& =\frac{e^{4}}{4}-\frac{1}{4} \int_{1}^{e} x^{3} \mathrm{~d} x \\
& =\frac{3 e^{4}+1}{16} \tag{33}
\end{align*}
$$

Problem 9. Prove that the following improper integrals exist and calculate their values:

$$
\begin{equation*}
J_{1}=\int_{0}^{\infty} e^{-2 x} \cos (3 x) \mathrm{d} x ; \quad J_{2}=\int_{-1}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}} ; \quad J_{3}=\int_{0}^{1}(\ln x)^{2} \mathrm{~d} x \tag{34}
\end{equation*}
$$

Solution.

- J_{1}. Notice that $e^{-2 x} \cos (3 x)$ is continuous on $[0, c]$ for every $c>0$ and is therefore integrable there, we check

$$
\begin{align*}
\int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x= & \int_{0}^{c} e^{-2 x}\left(\frac{1}{3} \sin (3 x)\right)^{\prime} \mathrm{d} x \\
= & e^{-2 c} \frac{1}{3} \sin (3 c)-e^{-2 \cdot 0} \frac{1}{3} \sin (3 \cdot 0) \\
& -\int_{0}^{c} \frac{1}{3} \sin (3 x)\left(e^{-2 x}\right)^{\prime} \mathrm{d} x \\
= & \frac{1}{3} e^{-2 c} \sin (3 c)+\frac{2}{3} \int_{0}^{c} e^{-2 x} \sin (3 x) \mathrm{d} x \\
= & \frac{1}{3} e^{-2 c} \sin (3 c)-\frac{2}{9} \int_{0}^{c} e^{-2 x}(\cos (3 x))^{\prime} \mathrm{d} x \\
= & \frac{1}{3} e^{-2 c} \sin (3 c)-\frac{2}{9}\left[e^{-2 c} \cos (3 \quad c)-e^{-2 \cdot 0} \cos (3 \cdot 0)+\right. \\
& \left.2 \int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x\right] \\
= & \frac{1}{3} e^{-2 c} \sin (3 c)-\frac{2}{9} e^{-2 c} \cos (3 c)+\frac{2}{9}-\frac{4}{9} \int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x \tag{35}
\end{align*}
$$

Thus

$$
\begin{equation*}
\int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x=\frac{9}{13}\left[\frac{1}{3} e^{-2 c} \sin (3 c)-\frac{2}{9} e^{-2 c} \cos (3 c)+\frac{2}{9}\right] . \tag{36}
\end{equation*}
$$

Taking limit $c \longrightarrow \infty$ we have

$$
\begin{equation*}
\lim _{c \longrightarrow \infty} \int_{0}^{c} e^{-2 x} \cos (3 x) \mathrm{d} x=\frac{2}{13} \tag{37}
\end{equation*}
$$

exists and is finite. So the improper integral exists,

$$
\begin{equation*}
\int_{0}^{\infty} e^{-2 x} \cos (3 x) \mathrm{d} x=\frac{2}{13} \tag{38}
\end{equation*}
$$

- J_{2}. Notice that $\frac{1}{\sqrt{1-x^{2}}}$ becomes unbounded at $x=1$ and $x=-1$. So we consider

$$
\begin{equation*}
\int_{a}^{b} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}} \tag{39}
\end{equation*}
$$

with $-1<a<b<1$. We apply change of variable $x=\sin y$ with $y \in(\arcsin a, \arcsin b)$. Then $\mathrm{d} x=\cos y \mathrm{~d} y$ and the integral becomes (note that for the above y we have $\cos y>0$)

$$
\begin{equation*}
\int_{a}^{b} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}}=\int_{\arcsin a}^{\arcsin b} \frac{\cos y \mathrm{~d} y}{\cos y}=\arcsin b-\arcsin a . \tag{40}
\end{equation*}
$$

Now taking limits $a \longrightarrow-1+, b \longrightarrow 1-$, we have

$$
\begin{equation*}
\lim _{a \longrightarrow-1+}\left[\lim _{b \longrightarrow 1-} \int_{a}^{b} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}}\right]=\pi \tag{41}
\end{equation*}
$$

exists and is finite. So

$$
\begin{equation*}
\int_{-1}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}}=\pi \tag{42}
\end{equation*}
$$

- J_{3}. As $(\ln x)^{2}$ is continuous and thus integrable on $[c, 1]$ for any $c \in(0,1)$, we consider

$$
\begin{align*}
\int_{c}^{1}(\ln x)^{2} \mathrm{~d} x & =\left[x(\ln x)^{2}\right]_{c}^{1}-\int_{c}^{1} 2 \ln x \mathrm{~d} x \\
& =-c(\ln c)^{2}-2\left[1 \ln 1-c \ln c-\int_{c}^{1} \mathrm{~d} x\right] \\
& =-c(\ln c)^{2}+c \ln c+2(1-c) \tag{43}
\end{align*}
$$

Thus

$$
\begin{equation*}
\lim _{c \longrightarrow 0+} \int_{c}^{1}(\ln x)^{2} \mathrm{~d} x=2 \tag{44}
\end{equation*}
$$

exists and is finite, so

$$
\begin{equation*}
\int_{0}^{1}(\ln x)^{2} \mathrm{~d} x=2 \tag{45}
\end{equation*}
$$

Problem 10. Prove by definition that $f(x)=\left\{\begin{array}{ll}1 & x=0 \\ 0 & x \neq 0\end{array}\right.$ is integrable over $[-1,1]$ and find the value of $\int_{-1}^{1} f(x) \mathrm{d} x$.

Proof. Let P be any partition of $[-1,1]$. Then we have, since $f(x) \geqslant 0$,

$$
\begin{equation*}
L(f, P)=\sum_{i=1}^{n}\left(\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\right)\left(x_{i}-x_{i-1}\right) \geqslant 0 \tag{46}
\end{equation*}
$$

On the other hand, take $P_{n}=\left\{x_{0}=-1, x_{1}=-1+\frac{1}{n}, \ldots, x_{2 n-1}=1-\frac{1}{n}, x_{2 n}=1\right\}$. We see that

Therefore

$$
\sup _{\left[x_{i-1}, x_{i}\right]} f(x)=\left\{\begin{array}{ll}
1 & i=n, n+1 \tag{47}\\
0 & \text { all other } i
\end{array} .\right.
$$

Therefore

$$
\begin{equation*}
U\left(f, P_{n}\right)=\sum_{i=1}^{2 n}\left(\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)\right)\left(x_{i}-x_{i-1}\right)=\sum_{i=n}^{n+1}\left(x_{i}-x_{i-1}\right)=\frac{2}{n} \tag{48}
\end{equation*}
$$

By definition we have

$$
\begin{equation*}
U(f) \leqslant U\left(f, P_{n}\right)=\frac{2}{n} \text { for all } n \in \mathbb{N} \Longrightarrow U(f) \leqslant 0 \tag{49}
\end{equation*}
$$

This gives $0 \geqslant U(f) \geqslant L(f) \geqslant 0$ which means $U(f)=L(f)=0$. So $f(x)$ is integrable with $\int_{-1}^{1} f(x) \mathrm{d} x=$ 0 .

Problem 11. (USTC) Is the following calculation correct? Justify your answer.

$$
\begin{equation*}
\int_{0}^{\pi} \cos ^{2} x \mathrm{~d} x=\int_{0}^{0} \frac{\mathrm{~d} t}{\left(1+t^{2}\right)^{2}}=0 \tag{50}
\end{equation*}
$$

where the change of variable is $t=\tan x$.
Solution. No. Since $\cos ^{2} x>\frac{1}{2}$ when $x \in(0, \pi / 4)$ we have

$$
\begin{equation*}
\int_{0}^{\pi} \cos ^{2} x \mathrm{~d} x \geqslant \int_{0}^{\pi / 4} \cos ^{2} x \mathrm{~d} x>\int_{0}^{\pi / 4} \frac{1}{2} \mathrm{~d} x=\frac{\pi}{8}>0 \tag{51}
\end{equation*}
$$

so the calculation is not correct. The problem is $u(x)=\tan x$ is not differentiable over $(0, \pi)$.
Problem 12. Let $F(x):=\int_{\sin x}^{x^{2}+2} e^{t} \mathrm{~d} t$. Calculate $F^{\prime}(x)$ and $F^{\prime \prime}(x)$.

Solution. Let $G(x):=\int_{0}^{x} e^{t} \mathrm{~d} t$. Then we have $G^{\prime}(x)=e^{x}$, and

$$
\begin{equation*}
F(x)=\int_{0}^{x^{2}+2} e^{t} \mathrm{~d} t+\int_{\sin x}^{0} e^{t} \mathrm{~d} t=\int_{0}^{x^{2}+2} e^{t} \mathrm{~d} t-\int_{0}^{\sin x} e^{t} \mathrm{~d} t=G\left(x^{2}+2\right)-G(\sin x) \tag{52}
\end{equation*}
$$

This gives

$$
\begin{equation*}
F^{\prime}(x)=G^{\prime}\left(x^{2}+2\right)\left(x^{2}+2\right)^{\prime}-G^{\prime}(\sin x)(\sin x)^{\prime}=2 x e^{x^{2}+2}-e^{\sin x} \cos x \tag{53}
\end{equation*}
$$

Taking derivative again we have

$$
\begin{equation*}
F^{\prime \prime}(x)=\left(4 x^{2}+2\right) e^{x^{2}+2}+\left[\sin x-(\cos x)^{2}\right] e^{\sin x} \tag{54}
\end{equation*}
$$

Problem 13. Prove the convergence/divergence of (can use convergence/divergence of $\sum n^{a}$ and $\sum r^{n}$).

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2^{n}+n}{3^{n}+5 n+4}, \quad \sum_{n=1}^{\infty} \frac{n^{2}+n}{n^{5}-4}, \quad \sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+1}}{\left(n^{1 / 3}+19\right)^{5}} \tag{55}
\end{equation*}
$$

Proof

- For all $n \geqslant 1$ we have $2^{n}>n$. Therefore

$$
\begin{equation*}
\left|\frac{2^{n}+n}{3^{n}+5 n+4}\right| \leqslant \frac{2 \cdot 2^{n}}{3^{n}}=2\left(\frac{2}{3}\right)^{n} \tag{56}
\end{equation*}
$$

As $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ converges, so does $\sum_{n=1}^{\infty} \frac{2^{n}+n}{3^{n}+5 n+4}$.

- When $n \geqslant 2$ we have $\frac{n^{5}}{2} \geqslant 4$. This gives

$$
\begin{equation*}
\left|\frac{n^{2}+n}{n^{5}-4}\right| \leqslant \frac{2 n^{2}}{n^{5} / 2}=4 n^{-3} \tag{57}
\end{equation*}
$$

when $n \geqslant 2$. As $\sum_{n=1}^{\infty} n^{-3}$ converges, so does $\sum_{n=1}^{\infty} \frac{n^{2}+n}{n^{5}-4}$.

- Intuitively when n is large, we have

$$
\begin{equation*}
\frac{\sqrt{n^{2}+1}}{\left(n^{1 / 3}+19\right)^{5}} \sim \frac{n}{n^{5 / 3}}=n^{-2 / 3} \tag{58}
\end{equation*}
$$

So we expect the series to diverge.
To justify, note that when $n>19^{3}, n^{1 / 3}>19$ and $n^{2}>1$. Therefore for such n we have

$$
\begin{equation*}
\frac{\sqrt{n^{2}+1}}{\left(n^{1 / 3}+19\right)^{5}}>\frac{\sqrt{2 n^{2}}}{\left(2 n^{1 / 3}\right)^{5}}=\frac{\sqrt{2}}{32}\left|n^{-2 / 3}\right| \tag{59}
\end{equation*}
$$

The divergence of $\sum_{n=1}^{\infty} n^{-2 / 3}$ now implies the divergence of $\sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+1}}{\left(n^{1 / 3}+19\right)^{5}}$.
Problem 14. Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$ converges and find its sum.
Proof. Since for all $n \in \mathbb{N}$ we have $\frac{1}{n(n+3)} \leqslant \frac{1}{n^{2}}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$ converges too. To find the sum, we notice

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n} \frac{1}{k(k+3)}=\frac{1}{3} \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+3}\right)=\frac{1}{3}\left[\sum_{k=1}^{n} \frac{1}{k}-\sum_{k=4}^{n+3} \frac{1}{k}\right]=\frac{1}{3}\left[\sum_{k=1}^{3} \frac{1}{k}-\sum_{k=n+1}^{n+3} \frac{1}{k}\right] \tag{60}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$ now gives $S_{n} \longrightarrow \frac{11}{18}$.
Problem 15. Prove: If $\sum_{n=1}^{\infty} a_{n}^{2}$ converges then $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges. (Hint: $\frac{a^{2}+b^{2}}{2} \geqslant a b$)

Proof. It suffices to show the convergence of $\sum_{n=1}^{\infty}\left|\frac{a_{n}}{n}\right|$. Since this is a non-negative series, all we need to show is that it is bounded from above. Notice that

$$
\begin{equation*}
\left|\frac{a_{n}}{n}\right|=\left|a_{n}\right| \frac{1}{n} \leqslant \frac{1}{2}\left(a_{n}^{2}+\frac{1}{n^{2}}\right) . \tag{61}
\end{equation*}
$$

We know that $\sum_{n=1}^{\infty} a_{n}^{2}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ are convergent, therefore

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n}\left|\frac{a_{k}}{k}\right| \leqslant \frac{1}{2}\left[\sum_{k=1}^{n} a_{k}^{2}+\sum_{k=1}^{n} \frac{1}{n^{2}}\right]<\frac{1}{2}\left[\sum_{n=1}^{\infty} a_{n}^{2}+\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right] \in \mathbb{R} . \tag{62}
\end{equation*}
$$

So $\sum_{n=1}^{\infty}\left|\frac{a_{n}}{n}\right|$ is bounded above and thus converges.
Problem 16. Study the convergence/divergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{(1+1 / n)}} \tag{63}
\end{equation*}
$$

Solution. It diverges because $n^{1 / n} \leqslant 2$. To prove this statement, we only need to prove $2^{n} \geqslant n$ for all $n \in \mathbb{N}$. Use mathematical induction: The statement $P(n)={ }^{\prime} 2^{n} \geqslant n^{\prime \prime}$.

- $\quad P(1)$ is true. We have $2^{1} \geqslant 1$.
- If $P(n)$ is true, that is $2^{n} \geqslant n$, then we have

$$
\begin{equation*}
2^{n+1}=2 \cdot 2^{n} \geqslant 2 n \geqslant n+1 \tag{64}
\end{equation*}
$$

therefore $P(n+1)$ is true.
Now we have

$$
\begin{equation*}
\frac{1}{n^{(1+1 / n)}} \geqslant \frac{1}{2} \frac{1}{n} \tag{65}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so does $\sum_{n=1}^{\infty} \frac{1}{n^{(1+1 / n)}}$.
Problem 17. Prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2 n+1}=\infty \tag{66}
\end{equation*}
$$

You can use the divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$.
Proof. For all $n \geqslant 1$ we have

$$
\begin{equation*}
\frac{1}{2 n+1} \geqslant \frac{1}{3} \frac{1}{n} . \tag{67}
\end{equation*}
$$

Therefore $\sum_{n=1}^{\infty} \frac{1}{n}=\infty \Longrightarrow \sum_{n=1}^{\infty} \frac{1}{2 n+1}=\infty$.
Problem 18. Consider $\sum_{n=1}^{\infty} n r^{n}$. Identify the values of $r \in \mathbb{R}$ such that it is convergent. Justify your answer. You can use the fact that $\lim _{n \longrightarrow \infty} n r^{n}=0$ when $|r|<1$.

Solution.

Apply ratio test, we have

$$
\begin{equation*}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{n+1}{n}|r| \longrightarrow|r| \text { as } n \longrightarrow \infty . \tag{68}
\end{equation*}
$$

Therefore the series converges for $|r|<1$. On the other hand, when $|r| \geqslant 1$ it is clear that $\lim _{n \longrightarrow \infty} n r^{n}=0$ does not hold. Therefore the series is divergent for such r.

Intermediate

Problem 19. Let f, g be continuous at $x_{0} \in \mathbb{R}$. Then so are

$$
\begin{equation*}
F(x):=\max \{f(x), g(x)\}, \quad G(x):=\min \{f(x), g(x)\} . \tag{69}
\end{equation*}
$$

Proof. Note that we have

$$
\begin{equation*}
F(x)=\max \{f(x), g(x)\}=\frac{f(x)+g(x)}{2}+\frac{|f(x)-g(x)|}{2} \tag{70}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x)=\min \{f(x), g(x)\}=\frac{f(x)+g(x)}{2}-\frac{|f(x)-g(x)|}{2} \tag{71}
\end{equation*}
$$

As f, g are continuous at x_{0}, so are $\frac{f(x)+g(x)}{2}$ and $\frac{|f(x)-g(x)|}{2}$. Consequently F, G are also continuous at x_{0}.

Problem 20. Prove the following.
a) There is exactly one $x \in(0,1)$ such that

$$
\begin{equation*}
x^{1 / 2} e^{x}=1 . \tag{72}
\end{equation*}
$$

b) There are infinitely many $x \in \mathbb{R}$ satisfying

$$
\begin{equation*}
x \sin x=1 \text {. } \tag{73}
\end{equation*}
$$

Proof.

a) Since $x^{1 / 2}$ and e^{x} are both continuous on $\mathbb{R}, x^{1 / 2} e^{x}$ is also continuous on \mathbb{R}. We try to use intermediate value theorem. Denote $f(x)=x^{1 / 2} e^{x}$. Calculate

$$
\begin{equation*}
f(0)=0, \quad f(1)=e \Longrightarrow 1 \in(f(0), f(1)) . \tag{74}
\end{equation*}
$$

Thus there is $\xi \in(0,1)$ such that $f(\xi)=1$.
To show that ξ is the only solution to the equation, we check that $f(x)$ is strictly increasing:

$$
\begin{equation*}
f^{\prime}(x)=\left(\frac{1}{2} x^{-1 / 2}+x^{1 / 2}\right) e^{x}>0 \tag{75}
\end{equation*}
$$

for all $x \in(0,1)$. Thus $f(x)>1$ when $x>\xi$ and $f(x)<1$ when $x<\xi$.
b) Since $x, \sin x$ are both continuous on $\mathbb{R}, f(x):=x \sin x$ is also continuous on \mathbb{R}. Now we check, for every $n \in \mathbb{N}$,

$$
\begin{equation*}
f(n \pi)=0<1, \quad f\left(n \pi+\frac{\pi}{2}\right)=n \pi+\frac{\pi}{2}>1 . \tag{76}
\end{equation*}
$$

Thus the intermediate value theorem gives the existence of $x_{n} \in\left(n \pi, n \pi+\frac{\pi}{2}\right)$ satisfying $f\left(x_{n}\right)=1$. So there are infinitely many solutions to $f(x)=1$.

Problem 21. Let $f(x)$ be differentiable at x_{0} with derivative $f^{\prime}\left(x_{0}\right)=3$. Calculate

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(3 n^{2}+2 n-1\right)\left[f\left(x_{0}+\frac{2}{n^{2}}\right)-f\left(x_{0}\right)\right] \tag{77}
\end{equation*}
$$

Solution. Since $f(x)$ is differentiable at x_{0}, we have

Therefore as $n \longrightarrow \infty$.

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{n^{2}}{2}\left[f\left(x_{0}+\frac{2}{n^{2}}\right)-f\left(x_{0}\right)\right]=f^{\prime}\left(x_{0}\right)=3 . \tag{78}
\end{equation*}
$$

$$
\begin{align*}
\left(3 n^{2}+2 n-1\right)\left[f\left(x_{0}+\frac{2}{n^{2}}\right)-f\left(x_{0}\right)\right] & =\left(6+\frac{4}{n}-\frac{2}{n^{2}}\right)\left\{\frac{n^{2}}{2}\left[f\left(x_{0}+\frac{2}{n^{2}}\right)-f\left(x_{0}\right)\right]\right\} \\
& \longrightarrow f^{\prime}\left(x_{0}\right)=18 . \tag{79}
\end{align*}
$$

Problem 22. Let f, g be differentiable on (a, b) and continuous on $[a, b]$. Further assume $f(a)=g(b)$, $f(b)=g(a)$. Prove that there is $\xi \in(a, b)$ such that $f^{\prime}(\xi)=-g^{\prime}(\xi)$.

Proof. Let $h(x):=f(x)+g(x)$. Then we have $h(x)$ differentiable on (a, b) and continuous on $[a, b]$, and furthermore

$$
\begin{equation*}
h(a)=f(a)+g(a)=f(a)+f(b)=g(b)+f(b)=h(b) . \tag{80}
\end{equation*}
$$

Applying the mean value theorem we have: there is $\xi \in(a, b)$ such that $h^{\prime}(\xi)=0$. But this is exactly $f^{\prime}(\xi)=-g^{\prime}(\xi)$.

Problem 23. Prove the following inequalities
a) $|\cos x-\cos y| \leqslant|x-y|$ for all $x, y \in \mathbb{R}$;
b) $|\arctan x-\arctan y| \leqslant|x-y|$ for all $x, y \in \mathbb{R}$;
c) $\frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b}, 0<b<a$.

Proof.

a) By mean value theorem

$$
\begin{equation*}
|\cos x-\cos y|=|(\sin \xi)(x-y)|=|\sin \xi||x-y| \leqslant|x-y| . \tag{81}
\end{equation*}
$$

b) By mean value theorem

$$
\begin{equation*}
|\arctan x-\arctan y|=\left|\frac{1}{1+\xi^{2}}(x-y)\right|=\left|\frac{1}{1+\xi^{2}}\right||x-y| \leqslant|x-y| \tag{82}
\end{equation*}
$$

c) By mean value theorem

$$
\begin{equation*}
\ln \frac{a}{b}=\ln a-\ln b=\frac{1}{\xi}(a-b) . \tag{83}
\end{equation*}
$$

Since $b<\xi<a$ and $a-b>0$, we have

$$
\begin{equation*}
\frac{a-b}{a}<\frac{a-b}{\xi}<\frac{a-b}{b} \tag{84}
\end{equation*}
$$

Problem 24.

a) Let $a \in(0,1)$. Prove that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left[(n+1)^{a}-n^{a}\right]=0 . \tag{85}
\end{equation*}
$$

You can use $\left(x^{a}\right)^{\prime}=a x^{a-1}$.
b) Prove that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left[\sin \left((n+1)^{1 / 3}\right)-\sin \left(n^{1 / 3}\right)\right]=0 \tag{86}
\end{equation*}
$$

Proof.
a) Applying Mean Value Theorem to $f(x)=x^{a}$, we have

$$
\begin{equation*}
0 \leqslant(n+1)^{a}-n^{a}=a \xi^{a-1}[(n+1)-n]=\frac{a}{\xi^{1-a}} \leqslant \frac{1}{n^{1-a}} \tag{87}
\end{equation*}
$$

where the last inequality follows from $\xi \in(n, n+1)$ and $1-a>0$. Now take $n \longrightarrow \infty$, Squeeze Theorem gives

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left[(n+1)^{a}-n^{a}\right]=0 . \tag{88}
\end{equation*}
$$

b) By Mean Value Theorem we have

$$
\begin{equation*}
\sin \left((n+1)^{1 / 3}\right)-\sin \left(n^{1 / 3}\right)=\cos (\xi)\left[(n+1)^{1 / 3}-n^{1 / 3}\right] \tag{89}
\end{equation*}
$$

where $\xi \in\left(n^{1 / 3},(n+1)^{1 / 3}\right)$. This gives

$$
\begin{equation*}
\left|\sin \left((n+1)^{1 / 3}\right)-\sin \left(n^{1 / 3}\right)\right| \leqslant(n+1)^{1 / 3}-n^{1 / 3} \tag{90}
\end{equation*}
$$

Thanks to a) we have $\lim _{n} \longrightarrow \infty\left[(n+1)^{1 / 3}-n^{1 / 3}\right]=0$. Application of Squeeze Theorem to

$$
\begin{equation*}
-\left[(n+1)^{1 / 3}-n^{1 / 3}\right] \leqslant \sin \left((n+1)^{1 / 3}\right)-\sin \left(n^{1 / 3}\right) \leqslant(n+1)^{1 / 3}-n^{1 / 3} \tag{91}
\end{equation*}
$$

gives the desired result.
Problem 25. (USTC) Let f be differentiable on $\mathbb{R}, f(0)=0$ and $f^{\prime}(x)$ is strictly increasing. Prove that $\frac{f(x)}{x}$ is strictly increasing on $(0, \infty)$.

Proof. We calculate

$$
\begin{equation*}
\left(\frac{f(x)}{x}\right)^{\prime}=\frac{f^{\prime}(x) x-f(x)}{x^{2}} . \tag{92}
\end{equation*}
$$

Now notice that by the mean value theorem,

$$
\begin{equation*}
\frac{f(x)}{x}=\frac{f(x)-f(0)}{x-0}=f^{\prime}(\xi) \tag{93}
\end{equation*}
$$

for some $\xi \in(0, x)$. As $f^{\prime}(x)$ is strictly increasing, $f^{\prime}(\xi)<f^{\prime}(x)$ therefore

$$
\begin{equation*}
f(x)=x f^{\prime}(\xi)<x f^{\prime}(x) \tag{94}
\end{equation*}
$$

thanks to $x>0$.
This gives

$$
\begin{equation*}
\left(\frac{f(x)}{x}\right)^{\prime}=\frac{f^{\prime}(x) x-f(x)}{x^{2}}>0 \tag{95}
\end{equation*}
$$

for all $x \in(0, \infty)$. So $\frac{f(x)}{x}$ is strictly increasing on $(0, \infty)$.
Problem 26. Let $f(x)$ be differentiable on $(-\infty, 0)$ and $(0, \infty)$. Assume that

$$
\begin{equation*}
\lim _{x \longrightarrow 0-} f^{\prime}(x)=A, \quad \lim _{x \longrightarrow 0+} f^{\prime}(x)=B . \tag{96}
\end{equation*}
$$

Prove that if $A \neq B$ then $f(x)$ is not differentiable at $x=0$.
Proof. First notice that if $f(x)$ is not continuous at $x=0$ then it is not differentiable there. In the following we assume $f(x)$ is continuous at $x=0$.

Take one sequence $x_{n}<0, x_{n} \longrightarrow 0$ and another sequence $y_{n}>0, y_{n} \longrightarrow 0$. Then by Mean Value Theorem (note that we can apply MVT because now $f(x)$ is continuous on the closed intervals $\left[x_{0}, 0\right]$ and $\left.\left[0, y_{n}\right]\right)$ there are $\xi_{n} \in\left(x_{n}, 0\right)$ and $\eta_{n} \in\left(0, y_{n}\right)$ such that

$$
\begin{equation*}
\frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=f^{\prime}\left(\xi_{n}\right) ; \quad \frac{f\left(y_{n}\right)-f(0)}{y_{n}-0}=f^{\prime}\left(\eta_{n}\right) \tag{97}
\end{equation*}
$$

As $x_{n}, y_{n} \longrightarrow 0$, application of Squeeze Theorem gives $\xi_{n}, \eta_{n} \longrightarrow 0$. Therefore

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{f\left(x_{n}\right)-f(0)}{x_{n}-0}=\lim _{n \longrightarrow \infty} f^{\prime}\left(\xi_{n}\right)=A \neq B=\lim _{n \longrightarrow \infty} f^{\prime}\left(\eta_{n}\right)=\lim _{n \longrightarrow \infty} \frac{f\left(y_{n}\right)-f(0)}{y_{n}-0} \tag{98}
\end{equation*}
$$

which means

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{f(x)-f(0)}{x-0} \tag{99}
\end{equation*}
$$

does not exist and therefore $f(x)$ is not differentiable at 0 .

Problem 27. Let $a>1$. Assume $f(x)$ satisfies $|f(x)-f(y)| \leqslant|x-y|^{a}$ for all $x, y \in \mathbb{R}$. Prove that f is constant.

Proof. We show that $f(x)$ is differentiable and $f^{\prime}(x)=0$. Take any $x_{0} \in \mathbb{R}$, we have

$$
\begin{equation*}
-\left|x-x_{0}\right|^{a-1} \leqslant-\frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|x-x_{0}\right|} \leqslant \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \leqslant \frac{\left|f(x)-f\left(x_{0}\right)\right|}{\left|x-x_{0}\right|} \leqslant\left|x-x_{0}\right|^{a-1} . \tag{100}
\end{equation*}
$$

Since $a>1, \lim _{x \longrightarrow x_{0}}\left|x-x_{0}\right|^{a-1}=0$. Application of Squeeze Theorem gives

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=0 \Longrightarrow f^{\prime}\left(x_{0}\right)=0 \tag{101}
\end{equation*}
$$

Therefore $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$ and $f(x)$ is a constant.
Problem 28. (USTC) Let f, g be differentiable on $[a, \infty)$, and $\left|f^{\prime}(x)\right| \leqslant g^{\prime}(x)$ for all $x \in[a, \infty)$. Prove that

$$
\begin{equation*}
|f(x)-f(a)| \leqslant g(x)-g(a) \tag{102}
\end{equation*}
$$

for all $x>a$. (Hint: Cauchy's generalized mean value theorem.)
Proof. Since $|a|=\max (a,-a)$ for any $a \in \mathbb{R}$, it suffices to prove

$$
\begin{equation*}
f(x)-f(a) \leqslant g(x)-g(a) \text { and }(-f)(x)-(-f)(a) \leqslant g(x)-g(a) \tag{103}
\end{equation*}
$$

It is clear that $g^{\prime}(x) \geqslant 0$ so $g(x)$ is increasing. Therefore if $f(x)=f(a)$, we have

$$
\begin{equation*}
|f(x)-f(a)|=0 \leqslant g(x)-g(a) \tag{104}
\end{equation*}
$$

Thus in the following we only consider those x such that $f(x) \neq f(a)$. This implies $g(x)>g(a)$.
Applying generalized mean value theorem to f and g we have

$$
\begin{equation*}
\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \tag{105}
\end{equation*}
$$

for some $\xi \in(a, x)$. As $f(x) \neq f(a), f^{\prime}(\xi) \neq 0$ which means $g^{\prime}(\xi) \neq 0$.
Since $\left|f^{\prime}(\xi)\right| \leqslant g^{\prime}(\xi)$ we have $f^{\prime}(\xi) / g^{\prime}(\xi) \leqslant 1$ so

$$
\begin{equation*}
\frac{f(x)-f(a)}{g(x)-g(a)} \leqslant 1 \xlongequal{\text { Recall that } g(x)-g(a)>0} f(x)-f(a) \leqslant g(x)-g(a) . \tag{106}
\end{equation*}
$$

On the other hand, applying the same theorem to $-f$ and g gives

$$
\begin{equation*}
\frac{-(f(x)-f(a))}{g(x)-g(a)} \leqslant 1 \Longrightarrow-(f(x)-f(a)) \leqslant g(x)-g(a) \tag{107}
\end{equation*}
$$

Combining the two inequalities we reach

$$
\begin{equation*}
|f(x)-f(a)| \leqslant g(x)-g(a) \tag{108}
\end{equation*}
$$

as required.
Problem 29. Let f be continuous and g be integrable on $[a, b]$. Further assume that $g(x)$ doesn't change sign in $[a, b]$. Prove that there is $\xi \in[a, b]$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(\xi) \int_{a}^{b} g(x) \mathrm{d} x \tag{109}
\end{equation*}
$$

Does the conclusion still hold if we drop " $g(x)$ doesn't change sign in $[a, b]$ "?
Proof. First notice that we only need to prove for the case $g(x) \geqslant 0$ since the case $g(x) \leqslant 0$ can be immediately obtained through the former case by considering $-g(x)$.

Next we notice that if $\int_{a}^{b} g(x) \mathrm{d} x=0$, then $\left|\int_{a}^{b} f(x) g(x) \mathrm{d} x\right| \leqslant \int_{a}^{b}|f(x)| g(x) \mathrm{d} x \leqslant A \int_{a}^{b} g(x) \mathrm{d} x=0$ where $A=\max _{[a, b]}|f(x)| \in \mathbb{R}$ whose existence follows from the continuity of f on $[a, b]$. Therefore in this case

$$
\begin{equation*}
0=\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(\xi) \int_{a}^{b} g(x) \mathrm{d} x=0 \tag{110}
\end{equation*}
$$

holds for any $\xi \in[a, b]$.
Now we assume $\int_{a}^{b} g(x) \mathrm{d} x>0$. As $f(x)$ is continuous on $[a, b]$ there are $\xi_{1}, \xi_{2} \in[a, b]$ such that

$$
\begin{equation*}
f\left(\xi_{1}\right) \leqslant f(x) \leqslant f\left(\xi_{2}\right) \tag{111}
\end{equation*}
$$

for all $x \in[a, b]$. As $g(x) \geqslant 0$, we have

$$
\begin{equation*}
f\left(\xi_{1}\right) g(x) \leqslant f(x) g(x) \leqslant f\left(\xi_{2}\right) g(x) \tag{112}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
f\left(\xi_{1}\right) \int_{a}^{b} g(x) \mathrm{d} x \leqslant \int_{a}^{b} f(x) g(x) \mathrm{d} x \leqslant f\left(\xi_{2}\right) \int_{a}^{b} g(x) \mathrm{d} x . \tag{113}
\end{equation*}
$$

that is

$$
\begin{equation*}
f\left(\xi_{1}\right) \leqslant \frac{\int_{a}^{b} f(x) g(x) \mathrm{d} x}{\int_{a}^{b} g(x) \mathrm{d} x} \leqslant f\left(\xi_{2}\right) \tag{114}
\end{equation*}
$$

Application of the Intermediate Value Theorem now gives the existence of $\xi \in[a, b]$ satisfying

$$
\begin{equation*}
f(\xi)=\frac{\int_{a}^{b} f(x) g(x) \mathrm{d} x}{\int_{a}^{b} g(x) \mathrm{d} x} \tag{115}
\end{equation*}
$$

which is what we need to prove.
If g changes sign the conclusion does not hold anymore. For example take $g(x)=\sin x, f(x)=1$ and $a=0, b=2 \pi$.

Problem 30. Prove the following inequalities:
a) $\int_{0}^{1} e^{-x^{2}} \mathrm{~d} x>\int_{1}^{2} e^{-x^{2}} \mathrm{~d} x$;
b) $\int_{0}^{\pi / 2} \frac{\sin x}{x} \mathrm{~d} x>\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x$;

Proof.

a) We do a change of variable: $y=x-1$ for the second integral:

$$
\begin{equation*}
\int_{1}^{2} e^{-x^{2}} \mathrm{~d} x=\int_{0}^{1} e^{-(y+1)^{2}} \mathrm{~d} y=\int_{0}^{1} e^{-(x+1)^{2}} \mathrm{~d} x \tag{116}
\end{equation*}
$$

Now for $x \in(0,1)$ we have

$$
\begin{equation*}
-x^{2}>-(x+1)^{2} \Longrightarrow e^{-x^{2}}>e^{-(x+1)^{2}} \tag{117}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\int_{0}^{1} e^{-x^{2}} \mathrm{~d} x>\int_{0}^{1} e^{-(x+1)^{2}} \mathrm{~d} x \tag{118}
\end{equation*}
$$

as desired.
b) We show that for $x \in\left(0, \frac{\pi}{2}\right), 0 \leqslant \frac{\sin x}{x}<1$. The first inequality is obvious. To show the second, we calculate

$$
\begin{equation*}
\left(\frac{\sin x}{x}\right)^{\prime}=\frac{x \cos x-\sin x}{x^{2}} \tag{119}
\end{equation*}
$$

Now let $f(x)=x \cos x-\sin x$ and notice that

$$
\begin{equation*}
f(0)=0, \quad f^{\prime}(x)=-x \sin x<0 \text { for all } x \in\left(0, \frac{\pi}{2}\right) \tag{120}
\end{equation*}
$$

therefore

$$
\begin{equation*}
f(x)<0 \tag{121}
\end{equation*}
$$

for all $x>0$. Consequently $f(x)$ is strictly decreasing which means

$$
\begin{equation*}
x \cos x-\sin x=f(x)<f(0)=0 . \tag{122}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left(\frac{\sin x}{x}\right)^{\prime}<0 \Longrightarrow \frac{\sin x}{x} \text { is strictly decreasing. } \tag{123}
\end{equation*}
$$

As $\lim _{x \longrightarrow 0} \frac{\sin x}{x}=1$, this means

$$
\begin{equation*}
\frac{\sin x}{x}<1 \tag{124}
\end{equation*}
$$

for $x \in\left(0, \frac{\pi}{2}\right)$.
From this we have

$$
\begin{equation*}
\frac{\sin x}{x}>\frac{\sin ^{2} x}{x^{2}} \quad \forall x \in\left(0, \frac{\pi}{2}\right) \tag{125}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\sin x}{x} \mathrm{~d} x>\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x \tag{126}
\end{equation*}
$$

Problem 31. (USTC) Prove

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[\int_{x}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t\right] \mathrm{d} x=0 \tag{127}
\end{equation*}
$$

(Hint: Set $u(x)=\int_{x}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t$ then integrate by parts)
Proof. Set

$$
\begin{equation*}
u(x)=\int_{x}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t, \quad v(x)=x \tag{128}
\end{equation*}
$$

then we have

$$
\begin{aligned}
\int_{0}^{2 \pi}\left[\int_{x}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t\right] \mathrm{d} x & =\int_{0}^{2 \pi} u(x) v^{\prime}(x) \mathrm{d} x \\
& =u(2 \pi) v(2 \pi)-u(0) v(0)-\int_{0}^{2 \pi} v(x) u^{\prime}(x) \mathrm{d} x \\
& =0-0-\int_{0}^{2 \pi} x\left(-\frac{\sin x}{x}\right) \mathrm{d} x \\
& =0
\end{aligned}
$$

Problem 32. Let f be continuous on \mathbb{R}. Let $a, b \in \mathbb{R}, a<b$. Then

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \int_{a}^{b} \frac{f(x+h)-f(x)}{h} \mathrm{~d} x=f(b)-f(a) . \tag{129}
\end{equation*}
$$

Proof. Let $F(x)$ be an antiderivative of f. Since $f(x)$ is continuous on the closed interval $[a, b]$ it is integrable. We have

On the other hand,

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \tag{130}
\end{equation*}
$$

$$
\begin{equation*}
\int_{a}^{b} f(x+h) \mathrm{d} x=\int_{a+h}^{b+h} f(y) \mathrm{d} y=F(b+h)-F(a+h) \tag{131}
\end{equation*}
$$

Thus

$$
\begin{align*}
\lim _{h \longrightarrow 0} \int_{a}^{b} \frac{f(x+h)-f(x)}{h} & =\lim _{h \longrightarrow 0} \frac{1}{h}[(F(b+h)-F(b)-(F(a+h)-F(a)))] \\
& =F^{\prime}(b)-F^{\prime}(a) \\
& =f(b)-f(a) \tag{132}
\end{align*}
$$

Thanks to FTC Version 2.

Problem 33. (USTC) Let f be integrable. Prove that

$$
\begin{equation*}
\int_{0}^{\pi} x f(\sin x) \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \mathrm{d} x \tag{133}
\end{equation*}
$$

(Hint: Change of variable: $t=\pi-x$.)
Proof. Do the change of variable as in the hint, we have

$$
\begin{equation*}
\int_{0}^{\pi}\left(\frac{\pi}{2}-x\right) f(\sin x) \mathrm{d} x=\int_{\pi}^{0}\left(t-\frac{\pi}{2}\right) f(\sin t)(-1) \mathrm{d} t=-\int_{0}^{\pi}\left(\frac{\pi}{2}-t\right) f(\sin t) \mathrm{d} t \tag{134}
\end{equation*}
$$

That is
so

$$
\begin{equation*}
\int_{0}^{\pi}\left(\frac{\pi}{2}-x\right) f(\sin x) \mathrm{d} x=-\int_{0}^{\pi}\left(\frac{\pi}{2}-x\right) f(\sin x) \mathrm{d} x \tag{135}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{\pi}\left(\frac{\pi}{2}-x\right) f(\sin x) \mathrm{d} x=0 \tag{136}
\end{equation*}
$$

Problem 34. Apply Ratio/Root tests to determine the convergence/divergence of the following series (You need to decide which one is more convenient to use).

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}}(1+1 / n)^{n^{2}} ; \quad \sum_{n=1}^{\infty}(n!) x^{n} ; \quad \sum_{n=1}^{\infty} \frac{(n!)}{n^{n}} x^{n} \tag{137}
\end{equation*}
$$

You can use the fact $(1+1 / n)^{n} \longrightarrow e$, and the Stirling's formula

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{n!}{\sqrt{2 \pi n}(n / e)^{n}}=1 \tag{138}
\end{equation*}
$$

without proof.

Solution.

- We apply root test:

$$
\begin{equation*}
\left|a_{n}\right|^{1 / n}=\frac{1}{2}(1+1 / n)^{n} . \tag{139}
\end{equation*}
$$

As $\lim _{n \longrightarrow \infty} \frac{1}{2}(1+1 / n)^{n}=\frac{e}{2}$, we have

$$
\begin{equation*}
\liminf _{n \longrightarrow \infty}\left|a_{n}\right|^{1 / n}=\frac{e}{2}>1 \tag{140}
\end{equation*}
$$

so the series diverges.

- We apply ratio test:

$$
\begin{equation*}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=(n+1)|x| . \tag{141}
\end{equation*}
$$

This leads to

$$
\lim _{n \longrightarrow \infty}(n+1)|x|=\left\{\begin{array}{ll}
0 & x=0 \tag{142}\\
\infty & x \neq 0
\end{array}\right. \text {. }
$$

Since the limit exists, we have

$$
\begin{equation*}
\limsup _{n \longrightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=0<1 \text { when } x=0 ; \quad \liminf _{n \longrightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\infty>1 \text { when } x \neq 0 . \tag{143}
\end{equation*}
$$

So the series converges for $x=0$ but diverges for all $x \neq 0$.

- We apply ratio test:

$$
\begin{equation*}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(n+1)|x|}{(n+1)^{n+1} n^{-n}}=\frac{|x|}{(1+1 / n)^{n}} \longrightarrow \frac{|x|}{e} \tag{144}
\end{equation*}
$$

The ratio test then gives convergence when $|x|<e$ and divergence when $|x|>e$. When $|x|=e$, we have

$$
\begin{equation*}
\left|a_{n}\right|=\frac{(n!)}{n^{n}} e^{n}=\frac{n!}{(n / e)^{n}} \tag{145}
\end{equation*}
$$

and Stirling's formula gives

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{\left|a_{n}\right|}{\sqrt{2 \pi n}}=1 \tag{146}
\end{equation*}
$$

This means $a_{n} \nrightarrow 0$ so the series diverges.
Summarizing, the series converges when $|x|<e$ and diverges when $|x| \geqslant e$.
Problem 35. $a_{n} \geqslant 0, \sum_{n=1}^{\infty} a_{n}$ converges. Prove that $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges. On the other hand, if a_{n} furthermore is decreasing, then $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges. Any example of if a_{n} is not decreasing then not true? (Take $a_{n}=0$ for all n even)

Proof. First we note that

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \text { converges } \Longleftrightarrow \sum_{n=1}^{\infty} a_{n+1} \text { converges. } \tag{147}
\end{equation*}
$$

since

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k}=a_{1}+\sum_{k=1}^{n-1} a_{k+1} \tag{148}
\end{equation*}
$$

- If $\sum_{n=1}^{\infty} a_{n}$ converges, so does $\sum_{n=1}^{\infty} a_{n+1}$ and then $\sum_{n=1}^{\infty}\left(a_{n}+a_{n+1}\right)$. The convergence of $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ then follows from

$$
\begin{equation*}
\sqrt{a_{n} a_{n+1}} \leqslant \frac{1}{2}\left(a_{n}+a_{n+1}\right) \tag{149}
\end{equation*}
$$

- If a_{n} is decreasing, we have $a_{n} \geqslant a_{n+1} \Longrightarrow a_{n+1} \leqslant \sqrt{a_{n} a_{n+1}}$. Thus the convergence of $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ implies the convergence of $\sum_{n=1}^{\infty} a_{n+1}$ and then that of $\sum_{n=1}^{\infty} a_{n}$.
If a_{n} is not decreasing then $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges. For example take $a_{n}=\left\{\begin{array}{ll}0 & n \text { even } \\ 1 & n \text { odd }\end{array}\right.$.

Problem 36. Let $a_{n} \geqslant 0$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges. Is the converse true? Justify your answer.

Proof. Since $\sum_{n=1}^{\infty} a_{n}$ converges, $\lim _{n \longrightarrow \infty} a_{n}=0$. Thus there is $N \in \mathbb{N}$ such that for all $n>N, a_{n}<1$. Now for these n we have

$$
\begin{equation*}
\left|a_{n}^{2}\right|=a_{n}^{2}<a_{n} \tag{150}
\end{equation*}
$$

Therefore the convergence of $\sum_{n=1}^{\infty} a_{n}$ gives the convergence of $\sum_{n=1}^{\infty} a_{n}$.
The converse is not true. Take $a_{n}=\frac{1}{n}$.

Advanced

Problem 37. A function $f(x): E \mapsto \mathbb{R}$ is called "uniformly continuous" if for any $\varepsilon>0$, there is $\delta>0$ such that for all $x, y \in E$ satisfying $|x-y|<\delta,|f(x)-f(y)|<\varepsilon$.
a) Prove that if f is uniformly continuous, then it is continuous.
b) Give an example of a continuous function that is not uniformly continuous. Justify your answer.
c) If $f: E \mapsto \mathbb{R}$ is continuous with E a bounded closed set, then f is uniformly continuous.
d) Prove that if f is continuous on $[a, b]$, then it is integrable on $[a, b]$.

Proof.

a) This is obvious.
b) $f(x)=1 / x$ defined for $x>0$. Take $\varepsilon=1$. Then for any $\delta>0$ we can take $n \in \mathbb{N}$ such that $n>\delta^{-1}$. Then we have $\left|\frac{1}{n}-\frac{1}{n+1}\right|<\delta$ but $|f(1 / n)-f(1 /(n+1))|=1 \geqslant \varepsilon$.
c) Assume the contrary. Then there is $\varepsilon_{0}>0$ such that for all $n \in \mathbb{N}$, there are x_{n}, y_{n} such that

$$
\begin{equation*}
\left|x_{n}-y_{n}\right|<1 / n, \quad\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geqslant \varepsilon_{0} . \tag{151}
\end{equation*}
$$

Applying Bolzano-Weierstrass, there is a subsequence $x_{n_{k}} \longrightarrow \xi \in[a, b]$. As $\left|x_{n}-y_{n}\right| \longrightarrow 0$, we have $y_{n_{k}} \longrightarrow \xi$ too. But then $\left|\lim _{k \longrightarrow \infty} f\left(x_{n_{k}}\right)-\lim _{k \longrightarrow \infty} f\left(y_{n_{k}}\right)\right| \geqslant \varepsilon_{0}$, contradicting the continuity of f.
d) From c) we know that f is uniformly continuous. Now for any $\varepsilon>0$, take δ such that for all $|x-y|<\delta,|f(x)-f(y)|<\varepsilon /(b-a)$.

Now take any partition $P=\left\{x_{0}=a, x_{1}, \ldots, x_{n}=b\right\}$ with $\left|x_{i}-x_{i-1}\right|<\delta$ for all $i=1,2, \ldots, n$. Then we have

$$
\begin{equation*}
U(f, P)-L(f, P)=\sum_{i=1}^{n}(\sup f-\inf f)\left(x_{i}-x_{i-1}\right)<\sum_{i=1}^{n} \frac{\varepsilon}{b-a}\left(x_{i}-x_{i-1}\right)=\varepsilon \tag{152}
\end{equation*}
$$

Therefore f is integrable.
Problem 38. Let $f(x)$ be continuous over \mathbb{R}, and satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Prove that there is $a \in \mathbb{R}$ such that $f(x)=a x$.

Proof. First

$$
\begin{equation*}
f(0+0)=f(0)+f(0) \Longrightarrow f(0)=0 \tag{153}
\end{equation*}
$$

Now let $a=f(1)$. Clearly $f(n)=n a$. Next consider any rational number $q=\frac{n}{m}$. Then we have

$$
\begin{equation*}
n a=f(n)=f(m q)=m f(q) \Longrightarrow f(q)=a q \tag{154}
\end{equation*}
$$

Finally for any $x \in \mathbb{R} \backslash \mathbb{Q}$, there is $q_{n} \longrightarrow x$. Since $f(x)$ is continuous we have

$$
\begin{equation*}
f(x)=\lim _{n \longrightarrow \infty} f\left(q_{n}\right)=\lim _{n \longrightarrow \infty} a q_{n}=a x \tag{155}
\end{equation*}
$$

Thus ends the proof.
Problem 39. (USTC) Let $f(x)$ be differentiable. Assume that there are $a<b$ such that $f(a)=f(b)=0$, $f^{\prime}(a) f^{\prime}(b)>0$. Prove that there is $\xi \in(a, b)$ such that $f(\xi)=0$.

Proof. There are two cases, $f^{\prime}(a)>0, f^{\prime}(b)>0$ and $f^{\prime}(a)<0, f^{\prime}(b)<0$. Considering $-f$ instead of f would turn any one case into the other, so we only consider the first case here.

Since $f^{\prime}(a)>0$,

$$
\begin{equation*}
\lim _{x \longrightarrow a} \frac{f(x)-f(a)}{x-a}>0 \tag{156}
\end{equation*}
$$

Thus there is $x_{1} \in\left(a, \frac{a+b}{2}\right)$ such that $f\left(x_{1}\right)>0$; On the other hand, since $f^{\prime}(b)>0$

$$
\begin{equation*}
\lim _{x \longrightarrow b} \frac{f(x)-f(b)}{x-b}>0 \tag{157}
\end{equation*}
$$

which means there is $x_{2} \in\left(\frac{a+b}{2}, b\right)$ such that $f\left(x_{2}\right)<0$.
Now $f(x)$ is differentiable on (a, b) so is continuous on (a, b). Application of Intermediate Value Theorem gives the existence of $\xi \in\left(x_{1}, x_{2}\right) \subseteq(a, b)$ satisfying $f(\xi)=0$.

Problem 40. Let $f(x)$ be continuous on (a, b). Assume there is $x_{0} \in(a, b)$ such that $f^{\prime \prime \prime}\left(x_{0}\right)$ exists. Prove that there are constants A, B, C, D such that

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{A f\left(x_{0}+h\right)+B f\left(x_{0}\right)+C f\left(x_{0}-h\right)+D f\left(x_{0}-2 h\right)}{h^{3}}=f^{\prime \prime \prime}\left(x_{0}\right) \tag{158}
\end{equation*}
$$

and find their values. (Hint: L'Hospital)
Proof. First notice that if $A+B+C+D \neq 0$, then the limit cannot be finite. Therefore we have

$$
\begin{equation*}
A+B+C+D=0 \tag{159}
\end{equation*}
$$

Now apply L'Hospital: Note that since $f^{\prime \prime \prime}\left(x_{0}\right)$ exists, $f^{\prime \prime}(x)$ must exist and be continuous on some $\left(a_{2}, b_{2}\right)$ containing x_{0}, then so does $f^{\prime}(x)$ and $f(x)$. Therefore $f\left(x_{0}+h\right)$ (and others) is differentiable at $h=0$.

$$
\begin{equation*}
f^{\prime \prime \prime}\left(x_{0}\right)=\lim _{h \longrightarrow 0} \frac{A f^{\prime}\left(x_{0}+h\right)-C f^{\prime}\left(x_{0}-h\right)-2 D f^{\prime}\left(x_{0}-2 h\right)}{3 h^{2}} . \tag{160}
\end{equation*}
$$

This gives us

$$
\begin{equation*}
A-C-2 D=0 \tag{161}
\end{equation*}
$$

Applying L'Hospital again:

$$
\begin{equation*}
f^{\prime \prime \prime}\left(x_{0}\right)=\lim _{h \longrightarrow 0} \frac{A f^{\prime \prime}\left(x_{0}+h\right)+C f^{\prime \prime}\left(x_{0}-h\right)+4 D f^{\prime \prime}\left(x_{0}-2 h\right)}{6 h} \tag{162}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
A+C+4 D=0 \tag{163}
\end{equation*}
$$

Note that we cannot apply L'Hospital's rule anymore since it requires $f^{\prime \prime \prime}(x)$ to exist in some open interval around x_{0}. But we can use definition: (In fact we can use Toy L'Hospital here...)

$$
\begin{align*}
\lim _{h \longrightarrow 0} \frac{A f^{\prime \prime}\left(x_{0}+h\right)+C f^{\prime \prime}\left(x_{0}-h\right)+4 D f^{\prime \prime}\left(x_{0}-2 h\right)}{6 h}= & \lim _{h \longrightarrow 0} A \frac{f^{\prime \prime}\left(x_{0}+h\right)-f^{\prime \prime}\left(x_{0}\right)}{6 h} \\
& +\lim _{h \longrightarrow 0} C \frac{f^{\prime \prime}\left(x_{0}-h\right)-f^{\prime \prime}\left(x_{0}\right)}{6 h} \\
& +\lim _{h \longrightarrow 0} 4 D \frac{f^{\prime \prime}\left(x_{0}-2 h\right)-f^{\prime \prime}\left(x_{0}\right)}{6 h} \\
= & \frac{A-C-8 D}{6} f^{\prime \prime \prime}\left(x_{0}\right) . \tag{164}
\end{align*}
$$

This implies

$$
\begin{equation*}
A-C-8 D=6 \tag{166}
\end{equation*}
$$

Putting things together, it is sufficient and necessary for the constants to satisfy

$$
\begin{align*}
A+B+C+D & =0 \tag{167}\\
A-C-2 D & =0 \tag{168}\\
A+C+4 D & =0 \tag{169}\\
A-C-8 D & =6 \tag{170}
\end{align*}
$$

Notice that D can be solved from the 2 nd and the 4 th equation: $D=-1$. This gives

$$
\begin{equation*}
A-C=-2, \quad A+C=4 \Longrightarrow A=1, C=3 \tag{171}
\end{equation*}
$$

Finally we obtain $B=-3$. Summarizing,

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{f\left(x_{0}+h\right)-3 f\left(x_{0}\right)+3 f\left(x_{0}-h\right)-f\left(x_{0}-2 h\right)}{h^{3}}=f^{\prime \prime \prime}\left(x_{0}\right) \tag{172}
\end{equation*}
$$

Problem 41. (USTC) Let $f(x)$ be differentiable at x_{0} with $f\left(x_{0}\right) \neq 0$ and $f^{\prime}\left(x_{0}\right)=5$. Take for granted $\lim _{h \longrightarrow 0}(1+h)^{1 / h}=e$. Calculate

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left|\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}\right|^{n} . \tag{173}
\end{equation*}
$$

Solution. First note that as $f(x)$ is continuous at x_{0},

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}=1 \tag{174}
\end{equation*}
$$

which means there is $N \in \mathbb{N}$ such that for all $n>N$,

$$
\begin{equation*}
\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}>0 . \tag{175}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left|\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}\right|^{n}=\lim _{n \longrightarrow \infty}\left(\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}\right)^{n} . \tag{176}
\end{equation*}
$$

Write

$$
\begin{align*}
\left|\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}\right|^{n} & =\left|1+\frac{f\left(x_{0}+\frac{1}{n}\right)-f\left(x_{0}\right)}{f\left(x_{0}\right)}\right|^{n} \\
& =\left|1+\frac{1}{n} \frac{f\left(x_{0}+\frac{1}{n}\right)-f\left(x_{0}\right)}{1 / n} \frac{1}{f\left(x_{0}\right)}\right|^{n} . \tag{177}
\end{align*}
$$

Now let

$$
\begin{equation*}
h_{n}=\frac{1}{n} \frac{f\left(x_{0}+\frac{1}{n}\right)-f\left(x_{0}\right)}{1 / n} \frac{1}{f\left(x_{0}\right)} . \tag{178}
\end{equation*}
$$

We have

$$
\begin{equation*}
h_{n} \longrightarrow 0 \tag{179}
\end{equation*}
$$

and

$$
\begin{equation*}
n=\frac{1}{h_{n}} \frac{f\left(x_{0}+\frac{1}{n}\right)-f\left(x_{0}\right)}{1 / n} \frac{1}{f\left(x_{0}\right)} . \tag{180}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\lim _{n \longrightarrow \infty}\left|\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}\right|^{n} & =\lim _{n \longrightarrow \infty}\left(\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}\right)^{n} \\
& =\lim _{n \longrightarrow \infty}\left(1+h_{n}\right)^{\frac{1}{h_{n}} \frac{f\left(x_{0}+\frac{1}{n}\right)-f\left(x_{0}\right)}{1 / n} \frac{1}{f\left(x_{0}\right)}} \\
& =\lim _{n \longrightarrow \infty}\left[\left(1+h_{n}\right)^{1 / h_{n}}\right] \frac{f\left(x_{0}+\frac{1}{n}\right)-f\left(x_{0}\right)}{1 / n} \frac{1}{f\left(x_{0}\right)} \\
& =\left\{\lim _{h_{n} \longrightarrow 0}\left[\left(1+h_{n}\right)^{1 / h_{n}}\right]\right\}^{\lim _{n} \longrightarrow \infty}\left[\frac{f\left(x_{0}+\frac{1}{n}\right)-f\left(x_{0}\right)}{1 / n} \frac{1}{f\left(x_{0}\right)}\right] \\
& =\exp \left[f^{\prime}\left(x_{0}\right) / f\left(x_{0}\right)\right] . \tag{181}
\end{align*}
$$

Problem 42. (USTC) Let f be twice differentiable over \mathbb{R}, with $f(0)=f(1)=0$. Let $F(x)=x^{2} f(x)$. Prove that there is $\xi \in(0,1)$ such that $F^{\prime \prime}(\xi)=0$.

Proof. All we need are x_{1}, x_{2} such that $F^{\prime}\left(x_{1}\right)=F^{\prime}\left(x_{2}\right)=0$.
We calculate

$$
\begin{equation*}
F^{\prime}(x)=2 x f(x)+x^{2} f^{\prime}(x) . \tag{182}
\end{equation*}
$$

Thus it is clear that $F^{\prime}(0)=0$.
On the other hand, $f(0)=f(1)=0$ implies $F(0)=F(1)=0$ which gives the existence of $\eta \in(0,1)$ such that $F^{\prime}(\eta)=0$.

Now apply Mean Value Theorem again we obtain the existence of $\xi \in(0, \eta) \subset(0,1)$ satisfying

$$
\begin{equation*}
F^{\prime \prime}(\xi)=0 \tag{183}
\end{equation*}
$$

Remark 1. Note that the same idea can show the following: Let f be m-th differentiable with $f(0)=$ $f(1)=0$, let $F(x)=x^{m} f(x)$, then there is $\xi \in(0,1)$ such that $F^{(m)}(\xi)=0$.

Problem 43. Let f be differentiable over \mathbb{R}. Then $f^{\prime}(x)$, though may be not continuous, always satisfies the Intermediate Value Property:

For any s between $f^{\prime}(a)$ and $f^{\prime}(b)$, there is $\xi \in[a, b]$ such that $f^{\prime}(\xi)=s$.
Then use this to prove: If f is differentiable in (a, b) and $f^{\prime} \neq 0$, then f is either increasing or decreasing.

Proof. Define the function

$$
g(x)= \begin{cases}f(b)+f^{\prime}(b)(x-b) & x>b \tag{184}\\ f(x) & x \in[a, b] . \\ f(a)+f^{\prime}(a)(x-a) & x<a\end{cases}
$$

Then $g(x)$ is differentiable over \mathbb{R}. Now use Mean Value Theorem. The idea is very easy to understand if you draw the graph of the function $g(x)$.

If there are $x_{1}<x_{2}, x_{3}<x_{4}$ such that $f\left(x_{1}\right)<f\left(x_{2}\right), f\left(x_{3}\right)>f\left(x_{4}\right)$, then by mean value theorem we have $\xi \in\left(x_{1}, x_{2}\right), \eta \in\left(x_{3}, x_{4}\right)$ such that $f^{\prime}(\xi)>0, f^{\prime}(\eta)<0$. Now the mean value property implies the existence of x_{0} between ξ, η such that $f^{\prime}\left(x_{0}\right)=0$. Contradiction.

Remark 2. A better way to prove is to consider $g(x)=f(x)-s x$ defined for $x \in[a, b]$. Assume $f^{\prime}(a)<s<f^{\prime}(b)$. Then we have $g^{\prime}(a)<0, g^{\prime}(b)>0$. Since g is continuous on $[a, b]$, there is a minimizer $\xi \in[a, b]$. All we need to show is $\xi \neq a, b$. Since $g^{\prime}(a)<0$, for h small enough we have $g(a+h)<g(a)$ so $\xi \neq a$. Similarly $\xi \neq b$. Thus $g^{\prime}(\xi)=0 \Longrightarrow f^{\prime}(\xi)=s$.

Problem 44. (USTC) Calculate

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sum_{k=1}^{n} \sin \left(\frac{k a}{n^{2}}\right) . \tag{185}
\end{equation*}
$$

(Hint: Write $\sum_{k=1}^{n} \sin \left(\frac{k a}{n^{2}}\right)=\sum_{k=1}^{n} \frac{k a}{n^{2}}+\sum_{k=1}^{n}\left[\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right]$, try to estimate $\left|\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right|$ using Taylor polynomial)
Solution. Write

$$
\begin{equation*}
\sum_{k=1}^{n} \sin \left(\frac{k a}{n^{2}}\right)=\sum_{k=1}^{n} \frac{k a}{n^{2}}+\sum_{k=1}^{n}\left[\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right] \tag{186}
\end{equation*}
$$

Now recall the Taylor expansion of $\sin x$ with Lagrange form of remainder (to degree 1):

$$
\begin{equation*}
\sin x=x-\frac{\sin \xi}{2} x^{2} \tag{187}
\end{equation*}
$$

for some $\xi \in(0, x)$. This gives

$$
\begin{equation*}
\left|\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right| \leqslant \frac{1}{2}\left(\frac{k a}{n^{2}}\right)^{2} \leqslant \frac{a^{2}}{2} \frac{1}{n^{2}} . \tag{188}
\end{equation*}
$$

Now notice

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sum_{k=1}^{n} \frac{k a}{n^{2}}=\lim _{n \longrightarrow \infty} \frac{a}{n^{2}} \sum_{n=1}^{n} k=\lim _{n \longrightarrow \infty} \frac{a}{n^{2}} \frac{n(n+1)}{2}=\frac{a}{2} \tag{189}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\left|\sum_{k=1}^{n}\left[\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right]\right| \leqslant \sum_{k=1}^{n} \frac{a^{2}}{2} \frac{1}{n^{2}}=\frac{a^{2}}{2 n} \tag{190}
\end{equation*}
$$

Application of Squeeze Theorem gives

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sum_{k=1}^{n}\left[\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right]=0 . \tag{191}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sum_{k=1}^{n} \sin \left(\frac{k a}{n^{2}}\right)=\frac{a}{2} . \tag{192}
\end{equation*}
$$

Problem 45. Let f be differentiable on ($0, \infty$) with $\lim _{x \rightarrow \infty}\left[f(x)+f^{\prime}(x)\right]=0$. Prove that $\lim _{x \rightarrow \infty} f(x)=0$. (Hint: Let $F(x)=e^{x} f(x), G(x)=e^{x}$. Apply Cauchy's generalized mean value theorem.)

Proof. Following the hint, we have for any $x>y>0$,

$$
\begin{equation*}
\frac{e^{x} f(x)-e^{y} f(y)}{e^{x}-e^{y}}=f(\xi)+f^{\prime}(\xi) \quad \text { for some } \xi \in(y, x) \tag{193}
\end{equation*}
$$

Therefore for every ε, there is $M>0$ such that for all $x>y>M$,

$$
\begin{equation*}
\left|\frac{e^{x-y} f(x)-f(y)}{e^{x-y}-1}\right|=\left|\frac{e^{x} f(x)-e^{y} f(y)}{e^{x}-e^{y}}\right|<\varepsilon / 2 \tag{194}
\end{equation*}
$$

This gives

$$
\begin{equation*}
|f(x)|<\left|\frac{e^{x-y}}{e^{x-y}-1}\right||f(x)|<\frac{\varepsilon}{2}+\frac{|f(y)|}{\left|e^{x-y}-1\right|} \tag{195}
\end{equation*}
$$

Now fix $y=M+1$. Take $M^{\prime}=M+1+\ln \left(\frac{2|f(y)|}{\varepsilon}+1\right)$, then for every $x>M^{\prime}$, we have

$$
\begin{equation*}
\left|\frac{f(y)}{e^{x-y}-1}\right|<\varepsilon / 2 \tag{196}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
|f(x)|<\varepsilon \tag{197}
\end{equation*}
$$

So by definition $\lim _{x \longrightarrow \infty} f(x)=0$.
Problem 46. Let f be continuous on $[0, \infty)$ and satisfy $\lim _{x \longrightarrow \infty} f(x)=a$. Prove

$$
\begin{equation*}
\lim _{x \longrightarrow \infty} \frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t=a \tag{198}
\end{equation*}
$$

Proof. For any $\varepsilon>0$, since $\lim _{x \longrightarrow \infty} f(x)=a$, there is $M_{1}>0$ such that

$$
\begin{equation*}
|f(x)-a|<\varepsilon / 2 \tag{199}
\end{equation*}
$$

for all $x>M_{1}$. Because f is continuous on $\left[0, M_{1}\right]$, it is bounded on $\left[0, M_{1}\right]$, that is there is $A>0$ such that

$$
\begin{equation*}
|f(x)| \leqslant A \tag{200}
\end{equation*}
$$

for all $x \in[0, M]$.
Now take $M=\max \left\{M_{1}, \frac{2 M_{1}(A+|a|)}{\varepsilon}\right\}$, we have for any $x>M$,

$$
\begin{align*}
\left|\frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t-a\right| & =\left|\frac{1}{x} \int_{0}^{x}(f(t)-a) \mathrm{d} t\right| \\
& \leqslant \frac{1}{x} \int_{0}^{x}|f(t)-a| \mathrm{d} t \\
& =\frac{1}{x} \int_{0}^{M_{1}}|f(t)-a| \mathrm{d} t+\frac{1}{x} \int_{M_{1}}^{x}|f(t)-a| \mathrm{d} t \\
& \leqslant \frac{1}{x} \int_{0}^{M_{1}}(A+|a|) \mathrm{d} t+\frac{1}{x} \int_{M_{1}}^{x} \frac{\varepsilon}{2} \mathrm{~d} t \\
& \leqslant \frac{M_{1}(A+|a|)}{x}+\frac{\varepsilon}{2} \\
& <\frac{M_{1}(A+|a|)}{M}+\frac{\varepsilon}{2}<\varepsilon \tag{201}
\end{align*}
$$

Problem 47. (USTC) Let

$$
\begin{equation*}
F(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t, \quad x \in(0, \infty) \tag{202}
\end{equation*}
$$

Prove that $\max _{x \in \mathbb{R}} F=F(\pi)$.
Proof. First notice that

$$
\frac{\sin t}{t} \begin{cases}\geqslant 0 & t \in[2 k \pi, 2 k \pi+\pi] \tag{203}\\ \leqslant 0 & t \in[2 k \pi+\pi, 2(k+1) \pi]\end{cases}
$$

Therefore $F(x)$ is increasing in $[2 k \pi, 2 k \pi+\pi]$ and decreasing in $[2 k \pi+\pi, 2(k+1) \pi]$ for every $k \in \mathbb{Z}$. All we need to show now is $F(\pi)>F(2 k \pi+\pi)$ for every k. In fact we will show

$$
\begin{equation*}
F(\pi)>F(3 \pi)>F(5 \pi)>\cdots \tag{204}
\end{equation*}
$$

We show $F(\pi)>F(3 \pi)$ here, others can be done similarly. We have

$$
\begin{align*}
F(3 \pi) & =F(\pi)+\int_{\pi}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t+\int_{2 \pi}^{3 \pi} \frac{\sin t}{t} \mathrm{~d} t \\
& =F(\pi)+\int_{\pi}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t+\int_{\pi}^{2 \pi} \frac{\sin (x+\pi)}{x+\pi} \mathrm{d} x \\
& =F(\pi)+\int_{\pi}^{2 \pi} \frac{\sin t}{t}-\frac{\sin t}{t+\pi} \mathrm{d} t<F(\pi) \tag{205}
\end{align*}
$$

The last inequality follows from the fact that $\sin t<0$ in $(\pi, 2 \pi)$.
Problem 48. $a_{n} \geqslant 0, \sum_{n=1}^{\infty} a_{n}$ converges. Let $b_{n}=\frac{a_{n}}{\sum_{n}^{\infty} a_{k}}$. Prove that $\sum_{n=1}^{\infty} b_{n}$ diverges.
Proof. We show that b_{n} is not Cauchy through showing: For any $n \in \mathbb{N}$, there is $m>n$ such that

$$
\begin{equation*}
\sum_{k=n}^{m} b_{k}>\frac{1}{2} \tag{206}
\end{equation*}
$$

Take any $n \in \mathbb{N}$. Since $\sum_{n=1}^{\infty} a_{n}$ converges, so does $\sum_{k=n}^{\infty} a_{k}$. Denote $S=\sum_{k=n}^{\infty} a_{k}>0$. Now denote $S_{m}=\sum_{k=n}^{m} a_{k}$, we have S_{m} increasing and $S_{m} \longrightarrow S$. Thus there is $m \in \mathbb{N}$ such that $S_{m}>S / 2$.

For this m, we have

$$
\begin{equation*}
\sum_{k=n}^{m} b_{k}=\sum_{k=n}^{m} \frac{a_{k}}{\sum_{l=k}^{\infty} a_{l}} \geqslant \sum_{k=n}^{m} \frac{a_{k}}{\sum_{l=n}^{\infty} a_{l}}=\frac{\sum_{k=n}^{m} a_{k}}{\sum_{k=n}^{\infty} a_{k}}=\frac{S_{m}}{S}>\frac{1}{2} \tag{207}
\end{equation*}
$$

Thus ends the proof.
Problem 49. (Alternating series) Let $b_{n} \geqslant 0$ with $\lim _{n} \longrightarrow \infty b_{n}=0$. Assume there is $N \in \mathbb{N}$ such that for all $n>N, b_{n} \geqslant b_{n+1}$.
a) Prove that $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ converges.
b) Apply this criterion to prove the convergence of $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ and $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{n!}$.
c) Show that the condition " b_{n} is decreasing" cannot be dropped.

Proof.

a) For any $n=2 k>N$, we have

$$
\begin{equation*}
S_{2(k+1)}=\sum_{n=1}^{2(k+1)}(-1)^{n+1} b_{n}=S_{2 k}+b_{2 k+1}-b_{2 k+2} \geqslant S_{2 k} . \tag{208}
\end{equation*}
$$

Thus $S_{2 k}$ is increasing when $2 k>N$.
Now let k_{0} be such that $2 k_{0}>N$ but $2\left(k_{0}-1\right)<N$. Now we have, for any $k \geqslant k_{0}$,

$$
\begin{equation*}
S_{2 k}=S_{2 k_{0}-1}-b_{2 k_{0}}+b_{2 k_{0}+1}-\cdots-b_{2 k-2}+b_{2 k-1}-b_{2 k} \leqslant S_{2 k_{0}-1} \tag{209}
\end{equation*}
$$

which means $S_{2 k}$ is bounded above.
Therefore $S_{2 k} \longrightarrow s \in \mathbb{R}$. Since $S_{2 k+1}-S_{2 k}=b_{2 k+1} \longrightarrow 0$, we have $S_{2 k+1} \longrightarrow s$ too. Combine these two we have $S_{k} \longrightarrow s$.
b) All we need to show is $\frac{1}{n}$ is decreasing with limit 0 , which is obvious, and $\frac{3^{n}}{n!}$ is decreasing with limit 0 . For the latter, notice that

$$
\begin{equation*}
\frac{3^{n} / n!}{3^{n+1} /(n+1)!}=\frac{n+1}{3} \tag{210}
\end{equation*}
$$

which $\geqslant 1$ when $n \geqslant 2$.
On the other hand, for $n \geqslant 5$, we have

$$
\begin{equation*}
b_{n+1}=\frac{3^{n+1}}{(n+1)!}=\frac{3}{n+1} b_{n} \leqslant \frac{1}{2} b_{n} \tag{211}
\end{equation*}
$$

which means $\lim _{n \longrightarrow \infty} b_{n}=0$.
c) That the condition " b_{n} is decreasing" is necessary can be seen from the following example: $b_{n}=\left\{\begin{array}{ll}1 / n & n \text { odd } \\ 0 & n \text { even }\end{array}\right.$.

Really Advanced

Problem 50. Let f be defined on (a, b) and $x_{0} \in(a, b)$. Assume that $f^{(n+1)}(x)$ exists and is continuous on (a, b) with $f^{(n+1)}\left(x_{0}\right) \neq 0$. Consider the Taylor polynomial with Lagrange remainder:

$$
\begin{equation*}
f(x)=\cdots+\frac{f^{(n)}(\xi)}{n!}\left(x-x_{0}\right)^{n} \tag{212}
\end{equation*}
$$

Recall that ξ can be viewed as a function of x. If we define (naturally) $\xi\left(x_{0}\right)=x_{0}$, prove that $\xi(x)$ is differentiable at x_{0} with

$$
\begin{equation*}
\xi^{\prime}\left(x_{0}\right)=\frac{1}{n+1} \tag{213}
\end{equation*}
$$

Proof. We only need to show

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{\xi(x)-x_{0}}{x-x_{0}}=\frac{1}{n+1} . \tag{214}
\end{equation*}
$$

expand to degree n with Lagrange form of remainder

$$
\begin{equation*}
f(x)=\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(n+1)}(\eta)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \tag{215}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\frac{f^{(n)}(\xi)-f^{(n)}\left(x_{0}\right)}{x-x_{0}}=\frac{f^{(n+1)}(\eta)}{n+1} \tag{216}
\end{equation*}
$$

On the other hand, by Mean Value Theorem there is $\eta^{\prime} \in\left(x_{0}, \xi\right)$ such that

$$
\begin{equation*}
\frac{f^{(n)}(\xi)-f^{(n)}\left(x_{0}\right)}{\xi-x_{0}}=f^{(n+1)}\left(\eta^{\prime}\right) \tag{217}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\xi(x)-x_{0}}{x-x_{0}}=\frac{f^{(n+1)}(\eta)}{f^{(n+1)}\left(\eta^{\prime}\right)} \frac{1}{n+1} \tag{218}
\end{equation*}
$$

Note that η is a function of x, while η^{\prime} is a function of ξ which is itself a function of x, so η^{\prime} is also a function of x. We further have

$$
\begin{equation*}
x \longrightarrow x_{0} \Longrightarrow \eta, \eta^{\prime} \longrightarrow x_{0} \tag{219}
\end{equation*}
$$

by Squeeze Theorem.
Since $f^{(n+1)}$ is continuous with $f^{(n+1)}\left(x_{0}\right) \neq 0$, we have

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{\xi(x)-x_{0}}{x-x_{0}}=\frac{\lim _{\eta \longrightarrow 0} f^{(n+1)}(\eta)}{\lim _{\eta^{\prime} \longrightarrow 0} f^{(n+1)}\left(\eta^{\prime}\right)} \frac{1}{n+1}=\frac{f^{(n+1)}\left(x_{0}\right)}{f^{(n+1)}\left(x_{0}\right)} \frac{1}{n+1}=\frac{1}{n+1} . \tag{220}
\end{equation*}
$$

So by definition $\xi(x)$ is differentiable with $\xi^{\prime}\left(x_{0}\right)=\frac{1}{n+1}$.
Problem 51. (USTC) Let f be differentiable. $a b>0$. Then there is $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{1}{a-b}[a f(b)-b f(a)]=f(\xi)-\xi f^{\prime}(\xi) \tag{221}
\end{equation*}
$$

(Hint: Use Cauchy's Generalized Mean Value Theorem).

Proof. Notice that

$$
\begin{equation*}
\frac{a f(b)-b f(a)}{a-b}=\frac{\frac{f(b)}{b}-\frac{f(a)}{a}}{\frac{1}{b}-\frac{1}{a}} \tag{222}
\end{equation*}
$$

Now apply Cauchy's Generalized Mean Value Theorem to $f(x) / x$ and $1 / x$, we have

$$
\begin{equation*}
\frac{\frac{f(b)}{b}-\frac{f(a)}{a}}{\frac{1}{b}-\frac{1}{a}}=\frac{\left(\frac{f(x)}{x}\right)_{x=\xi}^{\prime}}{\left(\frac{1}{x}\right)_{x=\xi}^{\prime}}=\frac{\left[f^{\prime}(\xi) \xi-f(\xi)\right] / \xi^{2}}{-1 / \xi^{2}}=f(\xi)-\xi f^{\prime}(\xi) . \tag{223}
\end{equation*}
$$

Remark 3. Note that the condition $a b>0$ is necessary because $1 / x$ is not differentiable on (a, b) if $a b<0$.

Problem 52. (USTC) Let $f(x)$ be differentiable on $[0,1] . f(0)=0, f(1)=1$. Then for any $n \in \mathbb{N}$ and $k_{1}, \ldots, k_{n}>0$, there are n distinct numbers $x_{1}, \ldots, x_{n} \in(0,1)$, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{k_{i}}{f^{\prime}\left(x_{i}\right)}=\sum_{i=1}^{n} k_{i} \tag{224}
\end{equation*}
$$

Remark 4. Note that when $k=1$, this is simply mean value theorem. Also if we do not require x_{1}, \ldots, x_{n} to be distinct, the problem is trivial since we can take $x_{1}=\cdots=x_{n}=\xi$ with $f^{\prime}(\xi)=1$.
(Hint: Take $y_{1}<y_{2}<\cdots<y_{n-1}$ such that $f\left(y_{i}\right)=\frac{k_{1}+\cdots+k_{i}}{k_{1}+\cdots+k_{n}}$. Set $y_{0}=0, y_{1}=1$. Then define $g(x)$ to be linear on each $\left[y_{i}, y_{i+1}\right]$ with $g\left(y_{i}\right)=f\left(y_{i}\right), g\left(y_{i+1}\right)=f\left(y_{i+1}\right)$. Apply Cauchy's generalized mean value theorem.)

Proof. Following the hint, on each $\left[y_{i-1}, y_{i}\right]$ we have a x_{i} such that

$$
\begin{equation*}
\frac{g^{\prime}\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}=\frac{g\left(y_{i}\right)-g\left(y_{i-1}\right)}{f\left(y_{i}\right)-f\left(y_{i-1}\right)}=1 . \tag{225}
\end{equation*}
$$

But since g is linear, we have

$$
\begin{equation*}
g^{\prime}\left(x_{i}\right)=\frac{k_{i} /\left(\sum_{j=1}^{n} k_{j}\right)}{y_{i}-y_{i-1}} \tag{226}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{k_{i}}{f^{\prime}\left(x_{i}\right)}=\left(y_{i}-y_{i-1}\right)\left(\sum_{j=1}^{n} k_{j}\right) \Longrightarrow \sum_{i=1}^{n} \frac{k_{i}}{f^{\prime}\left(x_{i}\right)}=\left(\sum_{i=1}^{n}\left(y_{i}-y_{i-1}\right)\right)\left(\sum_{j=1}^{n} k_{j}\right)=\sum_{j=1}^{n} k_{j} \tag{227}
\end{equation*}
$$

since $\sum_{i=1}^{n}\left(y_{i}-y_{i-1}\right)=y_{n}-y_{0}=1-0=1$.

Problem 53. (USTC) Let f, g be continuous on $[-1,1]$, infinitely differentiable on $(-1,1)$, and

$$
\begin{equation*}
\left|f^{(n)}(x)-g^{(n)}(x)\right| \leqslant n!|x| \quad n=0,1,2, \ldots \tag{228}
\end{equation*}
$$

Prove that $f=g$. (Hint: Show first $f^{(n)}(0)=0$ for all n. Then use Taylor polynomial with Lagrange form of remainder)

Proof. Set $h(x)=f-g$. We have $h(0)=0$. Next we have

$$
\begin{equation*}
|h(x)-h(0)|=\left|h^{\prime}(\xi) x\right| \leqslant x^{2} \Longrightarrow h^{\prime}(0)=0 \tag{229}
\end{equation*}
$$

Do this $n-1$ more times we have $h^{(n)}(0)=0$ for any $n \in \mathbb{N}$. Now estimate

$$
\begin{equation*}
|h(x)|=\left|\frac{h^{(n)}(\xi)}{n!} x^{n}\right| \leqslant|x|^{n+1} \tag{230}
\end{equation*}
$$

For every $|x|<1$, letting $n \longrightarrow \infty$, we have

$$
\begin{equation*}
|h(x)| \leqslant \lim _{n \longrightarrow \infty}|x|^{n}=0 \tag{231}
\end{equation*}
$$

Therefore $h(x)=0$ for all $x \in(-1,1)$. As $h(x)$ is continuous on $[-1,1]$, we have $h(x)=0$ for all $x=-1$, 1 too.

Problem 54. Define γ_{n} through $\sum_{k=1}^{n-1} \frac{1}{k}=\ln n+\gamma_{n}$
a) Show that $\gamma_{n} \geqslant 0, \gamma_{n}$ is increasing with respect to n.
b) Show that $\gamma_{n} \longrightarrow \gamma \in \mathbb{R}$.
c) Show that $\sum_{1}^{\infty}(-1)^{n+1} / n=\ln 2$.

Proof.

a) Denote

$$
\begin{equation*}
a_{n}=\frac{1}{n}-\int_{n}^{n+1} \frac{1}{x} \mathrm{~d} x \tag{232}
\end{equation*}
$$

Then we have $a_{n} \geqslant 0$ and

$$
\begin{equation*}
\gamma_{n}=\sum_{k=1}^{n-1} a_{n} \tag{233}
\end{equation*}
$$

Clearly γ_{n} is increasing.
b) All we need to show is γ_{n} is bounded above. We have

$$
\begin{equation*}
\gamma_{n}=\sum_{1}^{n-1} \frac{1}{k}-\int_{1}^{n} \frac{\mathrm{~d} x}{x} \leqslant 1+\sum_{2}^{n} \frac{1}{k}-\int_{1}^{n} \frac{\mathrm{~d} x}{x}=1+\sum_{k=2}^{n}\left[\frac{1}{k}-\int_{k-1}^{k} \frac{\mathrm{~d} x}{x}\right]<1 . \tag{234}
\end{equation*}
$$

Therefore γ_{n} converges with some limit $\gamma \in(0,1)$.
c) We have

$$
\begin{gather*}
\sum_{k=1}^{2 m} \frac{(-1)^{k+1}}{k}=\sum_{k=1}^{2 m} \frac{1}{k}-\sum_{k=1}^{m} \frac{1}{k}=\ln (2 m+1)-\ln (m+1)=\ln \left(\frac{2 m+1}{m+1}\right) \tag{235}\\
\sum_{k=1}^{2 m+1} \frac{(-1)^{k+1}}{k}=\sum_{k=1}^{2 m} \frac{1}{k}-\sum_{k=1}^{m} \frac{1}{k}+\frac{1}{2 m+1}=\ln \left(\frac{2 m+1}{m+1}\right)+\frac{1}{2 m+1} \tag{236}
\end{gather*}
$$

Since

$$
\begin{equation*}
\lim _{m \longrightarrow \infty} \ln \left(\frac{2 m+1}{m+1}\right)=\ln 2 \tag{237}
\end{equation*}
$$

for any $\varepsilon>0$, if we take $N>\max \left\{N_{1}, \frac{2}{\varepsilon}\right\}$ where N_{1} is such that for any $m>N_{1} / 2$,

$$
\begin{equation*}
\left|\ln \left(\frac{2 m+1}{m+1}\right)-\ln 2\right|<\varepsilon / 2 \tag{238}
\end{equation*}
$$

Then for any $n>N$ we have

$$
\begin{equation*}
\left|\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k}-\ln 2\right|<\varepsilon \tag{239}
\end{equation*}
$$

Thus ends the proof.

Remark 5. The convergence of γ_{n} can be shown directly by estimating

$$
\begin{equation*}
a_{n}=\frac{1}{n}-\int_{n}^{n+1} \frac{1}{x} \mathrm{~d} x=\frac{1}{n}-\ln \left(1+\frac{1}{n}\right)=\frac{1}{n}-\left[\ln \left(1+\frac{1}{n}\right)-\ln 1\right] \tag{240}
\end{equation*}
$$

using Mean Value Theorem (on ln).

Problem 55. (Bonar2006)
a) Let $\sum_{n=1}^{\infty} a_{n}$ be any convergent non-negative series, then there is another convergent non-negative series $\sum_{n=1}^{\infty} A_{n}$ satisfying $\lim _{n} \longrightarrow \infty\left(A_{n} / a_{n}\right)=\infty ;\left(\right.$ Hint: Set $A_{n}=\frac{a_{n}}{\sqrt{a_{n}+a_{n+1}+\ldots}}$)
b) Let $\sum_{n=1}^{\infty} D_{n}$ be any divergent non-negative series, then there is another divergent non-negative series $\sum_{n=1}^{\infty} d_{n}$ satisfying $\lim _{n \longrightarrow \infty}\left(d_{n} / D_{n}\right)=0$. (Hint: Set $\left.d_{n}=D_{n} /\left(D_{1}+\cdots+D_{n-1}\right)\right)$

Proof.

a) Define

$$
\begin{equation*}
t_{n}=\sum_{k=n}^{\infty} a_{n} \tag{241}
\end{equation*}
$$

and then

$$
\begin{equation*}
A_{n}=\frac{a_{n}}{\sqrt{t_{n}}} \tag{242}
\end{equation*}
$$

Then clearly $\lim _{n \longrightarrow \infty}\left(A_{n} / a_{n}\right)=\infty$.
On the other hand, we have

$$
\begin{equation*}
\sum_{k=1}^{n} A_{k}=\sum_{k=1}^{n} \frac{t_{k}-t_{k-1}}{\sqrt{t_{k}}} \leqslant \int_{0}^{t_{1}} \frac{1}{\sqrt{x}} \mathrm{~d} x<\infty \tag{243}
\end{equation*}
$$

b) Define

$$
\begin{equation*}
S_{n}=\sum_{k=1}^{n} D_{k} \tag{244}
\end{equation*}
$$

and then

$$
\begin{equation*}
d_{n}=\frac{D_{n}}{S_{n-1}} \tag{245}
\end{equation*}
$$

Since $\sum_{n=1}^{\infty} D_{n}$ diverges, together with $D_{n} \geqslant 0$ we have $S_{n} \longrightarrow \infty$ so $\lim _{n \longrightarrow \infty}\left(d_{n} / D_{n}\right)=0$.
On the other hand,

$$
\begin{equation*}
\sum_{k=1}^{\infty} d_{n}>\int_{S_{1}}^{S_{n}} \frac{1}{x} \mathrm{~d} x \longrightarrow \infty \tag{246}
\end{equation*}
$$

as $n \longrightarrow \infty$.

Really Really Advanced

Problem 56. (USTC) Let $f(x)$ be continuous on $[0, \infty)$ and be bounded. Then for every $\lambda \in \mathbb{R}$, there is $x_{n} \longrightarrow \infty$ such that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left[f\left(x_{n}+\lambda\right)-f\left(x_{n}\right)\right]=0 \tag{247}
\end{equation*}
$$

Proof. Prove by contradiction. Note that all we need to show is that the sets

$$
\begin{equation*}
A_{n}:=\{x \geqslant n,|f(x+\lambda)-f(x)| \leqslant 1 / n\} \tag{248}
\end{equation*}
$$

are non-empty for every $n \in \mathbb{N}$. Assume the contrary: There is $n_{0} \in \mathbb{N}$ such that $A_{n_{0}}=\varnothing$. That is for all $x>n_{0}$, either

$$
\begin{equation*}
f(x+\lambda)-f(x)>1 / n_{0} \quad \text { or } \quad f(x+\lambda)-f(x)<1 / n_{0} . \tag{249}
\end{equation*}
$$

Let $g(x):=f(x+\lambda)-f(x)$. Then $g(x)$ is continuous. We have for every $x>n_{0}$, either $g(x)>1 / n_{0}$ or $g(x)<-1 / n_{0}$. There are three possible cases:

- If there are $x_{1}>n_{0}$ and $x_{2}>n_{0}$ such that $g\left(x_{1}\right)>1 / n_{0}, g\left(x_{2}\right)<-1 / n_{0}$, then by intermediate value theorem we have $\xi>n_{0}$ such that $g(\xi)=0$. Contradiction.
- If $g(x)>1 / n_{0}$ for all $x>n_{0}$, then we have

$$
\begin{equation*}
f\left(n_{0}+k \lambda\right)>f\left(n_{0}+(k-1) \lambda\right)+\frac{1}{n_{0}}>\cdots>f\left(n_{0}\right)+\frac{k}{n_{0}} . \tag{250}
\end{equation*}
$$

As a consequence, for any $M \in \mathbb{R}$, take $k>\left(|M|+\left|f\left(n_{0}\right)\right|\right) n_{0}$, we have

$$
\begin{equation*}
f\left(n_{0}+k \lambda\right)>M \tag{251}
\end{equation*}
$$

This means f is not bounded above and thus not bounded. Contradiction.

- $g(x)<-1 / n_{0}$ for all $x>n_{0}$. Similar.

Problem 57. Let $f(x)$ be differentiable with $f\left(x_{0}\right)=0$. Further assume $\left|f^{\prime}(x)\right| \leqslant|f(x)|$ for all $x>x_{0}$. Prove that $f(x)=0$ for all $x \geqslant x_{0}$.

Proof. We prove that $f(x)=0$ for all $x \in\left[x_{0}, x_{0}+1 / 2\right]$. Then by repeating the same argument setting with x_{0} replaced by $x_{0}+1 / 2$ we will get $f(x)=0$ for all $x \in\left[x_{0}, x_{0}+1\right]$. Doing this again and again we can cover all $x \geqslant x_{0}$.

Take any $x \in\left(x_{0}, x_{0}+1 / 2\right]$. By mean value theorem we have

$$
\begin{equation*}
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}(\xi) \tag{252}
\end{equation*}
$$

for some $\xi_{1} \in\left(x_{0}, x_{0}+1 / 2\right)$. This leads to

$$
|f(x)|=\left|f^{\prime}(\xi)\right|\left|x-x_{0}\right| \leqslant \frac{1}{2}\left|f\left(\xi_{1}\right)\right|
$$

Apply the same argument we find $\xi_{2} \in\left(x_{0}, \xi_{1}\right)$ such that

$$
\begin{equation*}
\left|f\left(\xi_{1}\right)\right| \leqslant \frac{1}{2}\left|f\left(\xi_{2}\right)\right| \tag{253}
\end{equation*}
$$

This way we obtain a decreasing sequence ξ_{n} satisfying

$$
\begin{equation*}
\left|f\left(\xi_{n-1}\right)\right| \leqslant \frac{1}{2}\left|f\left(\xi_{n}\right)\right| \tag{254}
\end{equation*}
$$

This implies

$$
\begin{equation*}
|f(x)| \leqslant \frac{1}{2^{n}}\left|f\left(\xi_{n}\right)\right| \tag{255}
\end{equation*}
$$

Since $f(x)$ is differentiable it is continuous on $\left[x_{0}, x_{0}+1 / 2\right]$ which means there is $A>0$ such that

$$
\begin{equation*}
\left|f\left(\xi_{n}\right)\right| \leqslant A \quad \forall n \in \mathbb{N} \tag{256}
\end{equation*}
$$

This gives

$$
\begin{equation*}
|f(x)| \leqslant \frac{A}{2^{n}} \tag{257}
\end{equation*}
$$

for all n, so $f(x)=0$.
Problem 58. (Darboux's Theorem) ${ }^{1}$ Let $f(x)$ be a bounded function over a finite interval $[a, b]$. Let $P_{n}=\left\{x_{0}=a, x_{1}=a+\frac{b-a}{n}, \ldots, x_{n}=b\right\}$. Then

$$
\begin{equation*}
U\left(f, P_{n}\right) \longrightarrow U(f) ; \quad L\left(f, P_{n}\right) \longrightarrow L(f) \tag{258}
\end{equation*}
$$

Proof. Let $M>0$ be the bound of $|f(x)|$. We prove the first statement, the second is similar.
Take any $\varepsilon>0$. Let $P=\left\{x_{1}, \ldots, x_{m}\right\}$ be a partition such that

$$
\begin{equation*}
U(f, P) \leqslant U(f)+\varepsilon / 2 \tag{259}
\end{equation*}
$$

Now consider P_{n} with $n>2 m$. It is clear that at least $n-2 m$ intervals in P_{n} are fully contained in some $\left[x_{i-1}, x_{i}\right]$ of P. As a consequence

$$
\begin{align*}
U\left(f, P_{n}\right) & =\sum_{\text {intervals contained in some }\left[x_{i-1}, x_{i}\right]}+\sum_{\text {intervals containing some } x_{i}} \\
& \leqslant U(f, P)+\frac{2 m M}{n} \\
& \leqslant U(f)+\frac{2 m M}{n}+\frac{\varepsilon}{2} . \tag{260}
\end{align*}
$$

From this we see that, if we take $N \in \mathbb{N}$ such that $N>\frac{4 m M}{\varepsilon}$, then for every $n>N$,

$$
\begin{equation*}
U\left(f, P_{n}\right) \leqslant U(f)+\varepsilon \tag{261}
\end{equation*}
$$

On the other hand, by definition of $U(f)$ we have

$$
\begin{equation*}
U\left(f, P_{n}\right) \geqslant U(f) \tag{262}
\end{equation*}
$$

Thus we have shown that, for every $\varepsilon>0$, we can find $N \in \mathbb{N}$ such that for all $n>N$,

$$
\begin{equation*}
\left|U\left(f, P_{n}\right)-U(f)\right|<\varepsilon \tag{263}
\end{equation*}
$$

This by definition gives $U\left(f, P_{n}\right) \longrightarrow U(f)$ as $n \longrightarrow \infty$.
Problem 59. (Claesson1970) Let $f(x)$ be a bounded function over a finite interval $[a, b]$. Let $U(f)$ denote its upper integral. Prove: f is integrable \Longleftrightarrow For any bounded function $g(x)$,

$$
\begin{equation*}
U(f+g)=U(f)+U(g) \tag{264}
\end{equation*}
$$

Proof.

- \Longrightarrow. Assume f is integrable. Let P be any partition of $[a, b]$. We have by definition

$$
\begin{equation*}
U(f+g, P) \leqslant U(f, P)+U(g, P) \tag{265}
\end{equation*}
$$

On the other hand, by definition

$$
\begin{align*}
U(f+g, P) & =\sum_{i=1}^{n}\left[\sup _{x \in\left[x_{i-1}, x_{i}\right]} f(x)+g(x)\right]\left(x_{i}-x_{i-1}\right) \\
& \geqslant \sum_{i=1}^{n}\left[\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x)+\sup _{x \in\left[x_{i-1}, x_{i}\right]} g(x)\right]\left(x_{i}-x_{i-1}\right) \\
& =L(f, P)+U(g, P) \tag{266}
\end{align*}
$$

[^0]Thus we have

$$
\begin{equation*}
L(f, P)+U(g, P) \leqslant U(f+g, P) \leqslant U(f, P)+U(g, P) \tag{267}
\end{equation*}
$$

for any partition P. Thus on one hand we have

$$
\begin{equation*}
U(f+g) \leqslant U(f+g, P) \leqslant U(f, P)+U(g, P) \tag{268}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
U(f+g) \leqslant U(f)+U(g) \tag{269}
\end{equation*}
$$

due to the arbitrariness of P.
On the other hand, we have

$$
\begin{equation*}
U(f+g, P) \geqslant L(f, P)+U(g, P) \geqslant L(f, P)+U(g) \tag{270}
\end{equation*}
$$

Now for any partition Q, we have

$$
\begin{equation*}
U(f+g, Q) \geqslant U(f+g, P \cup Q) \geqslant L(f, P \cup Q)+U(g) \geqslant L(f, P)+U(g) \tag{271}
\end{equation*}
$$

Taking supreme over P and then infimum over Q we obtain

$$
\begin{equation*}
U(f+g) \geqslant L(f)+U(g) \tag{272}
\end{equation*}
$$

Summarizing:

$$
\begin{equation*}
L(f)+U(g) \leqslant U(f+g) \leqslant U(f)+U(g) . \tag{273}
\end{equation*}
$$

But f is integrable so $L(f)=U(f)$ which leads to

$$
\begin{equation*}
U(f+g)=U(f)+U(g) \tag{274}
\end{equation*}
$$

- \Longleftarrow. Take $g=-f$. Then g is bounded. We have

$$
\begin{equation*}
0=U(0)=U(f+g)=U(f)+U(-f) \tag{275}
\end{equation*}
$$

In the following we show $U(-f)=-L(f)$ with when substituted into (275) immediately gives integrability of f.

Now notice, for any partition P,

$$
\begin{align*}
U(-f, P) & =\sum_{i=1}^{n}\left[\sup _{x \in\left[x_{i-1}, x_{i}\right]}(-f(x))\right]\left(x_{i}-x_{i-1}\right) \\
& =\sum_{i=1}^{n}\left[-\inf _{x \in\left\{x_{i-1}, x_{i}\right\}} f(x)\right]\left(x_{i}-x_{i-1}\right) \\
& =-L(f, P) . \tag{276}
\end{align*}
$$

From this we have

$$
\begin{equation*}
U(-f) \leqslant-L(f, P) \tag{277}
\end{equation*}
$$

for any partition P so

$$
\begin{equation*}
U(-f) \leqslant-L(f) \Longrightarrow L(f) \leqslant-U(-f) \tag{278}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
L(f, P)=-U(-f, P) \Longrightarrow L(f) \geqslant-U(-f, P) \text { for all } P \Longrightarrow L(f) \geqslant-U(-f) \tag{279}
\end{equation*}
$$

Summarizing, we have

$$
\begin{equation*}
U(-f)=-L(f) \tag{280}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
0=U(f)-L(f) \Longrightarrow U(f)=L(f) \tag{281}
\end{equation*}
$$

so f is integrable.

[^0]: 1. Darboux Theorem actually states that the conclusion holds for any sequence of partitions with $\sup _{i}\left(x_{i}-\right.$ $\left.x_{i-1}\right) \longrightarrow 0$. But the proof in such general case is very similar to the special one here.
