## Math 314 Fall 2012 Final Practice

- You should also
- review homework problems.
- try the 2011 final (and you should feel most of its problems are easy).
- Most problems in the final will be at the "Basic" and "Intermediate" levels (First 36 problems).


## BASIC

Problem 1. Let

$$
f(x)=\left\{\begin{array}{cc}
-1 & x \leqslant-1  \tag{1}\\
a x^{2}+b x+c & |x|<1, x \neq 0 \\
0 & x=0 \\
1 & x \geqslant 1
\end{array} .\right.
$$

Find $a, b, c \in \mathbb{R}$ such that $f(x)$ is continuous at every $x$.
Problem 2. Calculate the derivatives of the following functions.

$$
\begin{equation*}
f_{1}(x)=\left(\frac{1+x^{2}}{1-x^{2}}\right)^{3} ; \quad f_{2}(x)=\sqrt{1+x+x^{2}} ; \quad f_{3}(x)=\exp [x \ln x] . \tag{2}
\end{equation*}
$$

Problem 3. Calculate the following limits.

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{\sqrt{1+x^{2}}-1} ; \quad \lim _{x \rightarrow 0} \frac{e^{x}-e^{-x}-2 x}{x-\sin x} ; \quad \lim _{x \longrightarrow \infty} \frac{\pi-\arctan x}{\sin (1 / x)} . \tag{3}
\end{equation*}
$$

Problem 4. Calculate Taylor polynomial to degree 2 with Lagrange form of remainder.

$$
\begin{equation*}
f(x)=x \sin (\ln x) ; \quad x_{0}=1 . \tag{4}
\end{equation*}
$$

Problem 5. Let $f(x)=2 x-\sin x$ defined on $\mathbb{R}$. Prove that its inverse function $g$ exists and is differentiable. Then calculate $g^{\prime}(0), g^{\prime}(\pi-1)$.

Problem 6. Which of the following functions is/are differentiable at $x_{0}=0$ ? Justify your answers

$$
f_{1}(x)=\left\{\begin{array}{ll}
x+2 & x>0  \tag{5}\\
x-2 & x \leqslant 0
\end{array} ; \quad f_{2}(x)=\left\{\begin{array}{ll}
x \sin \frac{1}{x} & x \neq 0 \\
0 & x=0
\end{array} ; \quad f_{3}(x)= \begin{cases}x^{2} \sin \frac{1}{x} & x \neq 0 \\
0 & x=0\end{cases}\right.\right.
$$

Problem 7. Let $f(x): \mathbb{R} \mapsto \mathbb{R}$ be continuous and $x_{0} \in E$. Define $F(x):=\left\{\begin{array}{ll}\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} & x \neq x_{0} \\ c & x=x_{0}\end{array}\right.$. Prove that $f$ is differentiable at $x_{0}$ if and only if there is $c \in \mathbb{R}$ such that $F(x)$ is continuous for all $x \in \mathbb{R}$.

Problem 8. Calculate the following integrals:

$$
\begin{equation*}
I_{1}=\int_{e}^{e^{2}} \frac{\mathrm{~d} x}{x(\ln x)^{4}} ; \quad I_{2}=\int_{0}^{4} e^{-\sqrt{x}} \mathrm{~d} x ; \quad I_{3}=\int_{1}^{e} x^{3} \ln x \mathrm{~d} x \tag{6}
\end{equation*}
$$

Problem 9. Prove that the following improper integrals exist and calculate their values:

$$
\begin{equation*}
J_{1}=\int_{0}^{\infty} e^{-2 x} \cos (3 x) \mathrm{d} x ; \quad J_{2}=\int_{-1}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x^{2}}} ; \quad J_{3}=\int_{0}^{1}(\ln x)^{2} \mathrm{~d} x \tag{7}
\end{equation*}
$$

Problem 10. Prove by definition that $f(x)=\left\{\begin{array}{ll}1 & x=0 \\ 0 & x \neq 0\end{array}\right.$ is integrable over $[-1,1]$ and find the value of $\int_{-1}^{1} f(x) \mathrm{d} x$.

Problem 11. (USTC) Is the following calculation correct? Justify your answer.

$$
\begin{equation*}
\int_{0}^{\pi} \cos ^{2} x \mathrm{~d} x=\int_{0}^{0} \frac{\mathrm{~d} t}{\left(1+t^{2}\right)^{2}}=0 \tag{8}
\end{equation*}
$$

where the change of variable is $t=\tan x$.
Problem 12. Let $F(x):=\int_{\sin x}^{x^{2}+2} e^{t} \mathrm{~d} t$. Calculate $F^{\prime}(x)$ and $F^{\prime \prime}(x)$.
Problem 13. Prove the convergence/divergence of (can use convergence/divergence of $\sum n^{a}$ and $\sum r^{n}$ ).

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{2^{n}+n}{3^{n}+5 n+4}, \quad \sum_{n=1}^{\infty} \frac{n^{2}+n}{n^{5}-4}, \quad \sum_{n=1}^{\infty} \frac{\sqrt{n^{2}+1}}{\left(n^{1 / 3}+19\right)^{5}} \tag{9}
\end{equation*}
$$

Problem 14. Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+3)}$ converges and find its sum.
Problem 15. Prove: If $\sum_{n=1}^{\infty} a_{n}^{2}$ converges then $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges. (Hint: $\frac{a^{2}+b^{2}}{2} \geqslant a b$ )
Problem 16. Study the convergence/divergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{(1+1 / n)}} \tag{10}
\end{equation*}
$$

Problem 17. Prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2 n+1}=\infty \tag{11}
\end{equation*}
$$

You can use the divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$.
Problem 18. Consider $\sum_{n=1}^{\infty} n r^{n}$. Identify the values of $r \in \mathbb{R}$ such that it is convergent. Justify your answer. You can use the fact that $\lim _{n \longrightarrow \infty} n r^{n}=0$ when $|r|<1$.

## INTERMEDIATE

Problem 19. Let $f, g$ be continuous at $x_{0} \in \mathbb{R}$. Then so are

$$
\begin{equation*}
F(x):=\max \{f(x), g(x)\}, \quad G(x):=\min \{f(x), g(x)\} \tag{12}
\end{equation*}
$$

Problem 20. Prove the following.
a) There is exactly one $x \in(0,1)$ such that

$$
\begin{equation*}
x^{1 / 2} e^{x}=1 \tag{13}
\end{equation*}
$$

b) There are infinitely many $x \in \mathbb{R}$ satisfying

$$
\begin{equation*}
x \sin x=1 \tag{14}
\end{equation*}
$$

Problem 21. Let $f(x)$ be differentiable at $x_{0}$ with derivative $f^{\prime}\left(x_{0}\right)=3$. Calculate

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(3 n^{2}+2 n-1\right)\left[f\left(x_{0}+\frac{2}{n^{2}}\right)-f\left(x_{0}\right)\right] \tag{15}
\end{equation*}
$$

Problem 22. Let $f, g$ be differentiable on $(a, b)$ and continuous on $[a, b]$. Further assume $f(a)=g(b)$, $f(b)=g(a)$. Prove that there is $\xi \in(a, b)$ such that $f^{\prime}(\xi)=-g^{\prime}(\xi)$.

Problem 23. Prove the following inequalities
a) $|\cos x-\cos y| \leqslant|x-y|$ for all $x, y \in \mathbb{R}$;
b) $|\arctan x-\arctan y| \leqslant|x-y|$ for all $x, y \in \mathbb{R}$;
c) $\frac{a-b}{a}<\ln \frac{a}{b}<\frac{a-b}{b}, 0<b<a$.

## Problem 24.

a) Let $a \in(0,1)$. Prove that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left[(n+1)^{a}-n^{a}\right]=0 . \tag{16}
\end{equation*}
$$

You can use $\left(x^{a}\right)^{\prime}=a x^{a-1}$.
b) Prove that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left[\sin \left((n+1)^{1 / 3}\right)-\sin \left(n^{1 / 3}\right)\right]=0 \tag{17}
\end{equation*}
$$

Problem 25. (USTC) Let $f$ be differentiable on $\mathbb{R}, f(0)=0$ and $f^{\prime}(x)$ is strictly increasing. Prove that $\frac{f(x)}{x}$ is strictly increasing on $(0, \infty)$.

Problem 26. Let $f(x)$ be differentiable on $(-\infty, 0)$ and $(0, \infty)$. Assume that

$$
\begin{equation*}
\lim _{x \longrightarrow 0-} f^{\prime}(x)=A, \quad \lim _{x \longrightarrow 0+} f^{\prime}(x)=B . \tag{18}
\end{equation*}
$$

Prove that if $A \neq B$ then $f(x)$ is not differentiable at $x=0$.
Problem 27. Let $a>1$. Assume $f(x)$ satisfies $|f(x)-f(y)| \leqslant|x-y|^{a}$ for all $x, y \in \mathbb{R}$. Prove that $f$ is constant.

Problem 28. (USTC) Let $f, g$ be differentiable on $[a, \infty)$, and $\left|f^{\prime}(x)\right| \leqslant g^{\prime}(x)$ for all $x \in[a, \infty)$. Prove that

$$
\begin{equation*}
|f(x)-f(a)| \leqslant g(x)-g(a) \tag{19}
\end{equation*}
$$

for all $x>a$. (Hint: Cauchy's generalized mean value theorem.)
Problem 29. Let $f$ be continuous and $g$ be integrable on $[a, b]$. Further assume that $g(x)$ doesn't change sign in $[a, b]$. Prove that there is $\xi \in[a, b]$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(\xi) \int_{a}^{b} g(x) \mathrm{d} x \tag{20}
\end{equation*}
$$

Does the conclusion still hold if we drop " $g(x)$ doesn't change sign in $[a, b]$ "?
Problem 30. Prove the following inequalities:
a) $\int_{0}^{1} e^{-x^{2}} \mathrm{~d} x>\int_{1}^{2} e^{-x^{2}} \mathrm{~d} x$;
b) $\int_{0}^{\pi / 2} \frac{\sin x}{x} \mathrm{~d} x>\int_{0}^{\pi / 2} \frac{\sin ^{2} x}{x^{2}} \mathrm{~d} x$;

Problem 31. (USTC) Prove

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[\int_{x}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t\right] \mathrm{d} x=0 \tag{21}
\end{equation*}
$$

(Hint: Set $u(x)=\int_{x}^{2 \pi} \frac{\sin t}{t} \mathrm{~d} t$ then integrate by parts)
Problem 32. Let $f$ be continuous on $\mathbb{R}$. Let $a, b \in \mathbb{R}, a<b$. Then

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \int_{a}^{b} \frac{f(x+h)-f(x)}{h} \mathrm{~d} x=f(b)-f(a) . \tag{22}
\end{equation*}
$$

Problem 33. (USTC) Let $f$ be integrable. Prove that

$$
\begin{equation*}
\int_{0}^{\pi} x f(\sin x) \mathrm{d} x=\frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \mathrm{d} x \tag{23}
\end{equation*}
$$

(Hint: Change of variable: $t=\pi-x$.)
Problem 34. Apply Ratio/Root tests to determine the convergence/divergence of the following series (You need to decide which one is more convenient to use).

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}}(1+1 / n)^{n^{2}} ; \quad \sum_{n=1}^{\infty}(n!) x^{n} ; \quad \sum_{n=1}^{\infty} \frac{(n!)}{n^{n}} x^{n} \tag{24}
\end{equation*}
$$

You can use the fact $(1+1 / n)^{n} \longrightarrow e$, and the Stirling's formula

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{n!}{\sqrt{2 \pi n}(n / e)^{n}}=1 \tag{25}
\end{equation*}
$$

without proof.
Problem 35. $a_{n} \geqslant 0, \sum_{n=1}^{\infty} a_{n}$ converges. Prove that $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges. On the other hand, if $a_{n}$ furthermore is decreasing, then $\sum_{n=1}^{\infty} \sqrt{a_{n} a_{n+1}}$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges. Any example of if $a_{n}$ is not decreasing then not true? (Take $a_{n}=0$ for all $n$ even)

Problem 36. Let $a_{n} \geqslant 0$. Prove that $\sum_{n=1}^{\infty} a_{n}$ converges then $\sum_{n=1}^{\infty} a_{n}^{2}$ converges. Is the converse true? Justify your answer.

## Advanced

Problem 37. A function $f(x): E \mapsto \mathbb{R}$ is called "uniformly continuous" if for any $\varepsilon>0$, there is $\delta>0$ such that for all $x, y \in E$ satisfying $|x-y|<\delta,|f(x)-f(y)|<\varepsilon$.
a) Prove that if $f$ is uniformly continuous, then it is continuous.
b) Give an example of a continuous function that is not uniformly continuous. Justify your answer.
c) If $f: E \mapsto \mathbb{R}$ is continuous with $E$ a bounded closed set, then $f$ is uniformly continuous.
d) Prove that if $f$ is continuous on $[a, b]$, then it is integrable on $[a, b]$.

Problem 38. Let $f(x)$ be continuous over $\mathbb{R}$, and satisfies $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. Prove that there is $a \in \mathbb{R}$ such that $f(x)=a x$.

Problem 39. (USTC) Let $f(x)$ be differentiable. Assume that there are $a<b$ such that $f(a)=f(b)=0$, $f^{\prime}(a) f^{\prime}(b)>0$. Prove that there is $\xi \in(a, b)$ such that $f(\xi)=0$.

Problem 40. Let $f(x)$ be continuous on $(a, b)$. Assume there is $x_{0} \in(a, b)$ such that $f^{\prime \prime \prime}\left(x_{0}\right)$ exists. Prove that there are constants $A, B, C, D$ such that

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{A f\left(x_{0}+h\right)+B f\left(x_{0}\right)+C f\left(x_{0}-h\right)+D f\left(x_{0}-2 h\right)}{h^{3}}=f^{\prime \prime \prime}\left(x_{0}\right) \tag{26}
\end{equation*}
$$

and find their values. (Hint: L'Hospital)
Problem 41. (USTC) Let $f(x)$ be differentiable at $x_{0}$ with $f\left(x_{0}\right) \neq 0$ and $f^{\prime}\left(x_{0}\right)=5$. Take for granted $\lim _{h \longrightarrow 0}(1+h)^{1 / h}=e$. Calculate

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left|\frac{f\left(x_{0}+\frac{1}{n}\right)}{f\left(x_{0}\right)}\right|^{n} \tag{27}
\end{equation*}
$$

Problem 42. (USTC) Let $f$ be twice differentiable over $\mathbb{R}$, with $f(0)=f(1)=0$. Let $F(x)=x^{2} f(x)$. Prove that there is $\xi \in(0,1)$ such that $F^{\prime \prime}(\xi)=0$.

Problem 43. Let $f$ be differentiable over $\mathbb{R}$. Then $f^{\prime}(x)$, though may be not continuous, always satisfies the Intermediate Value Property:

For any $s$ between $f^{\prime}(a)$ and $f^{\prime}(b)$, there is $\xi \in[a, b]$ such that $f^{\prime}(\xi)=s$.
Then use this to prove: If $f$ is differentiable in $(a, b)$ and $f^{\prime} \neq 0$, then $f$ is either increasing or decreasing.

Problem 44. (USTC) Calculate

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \sum_{k=1}^{n} \sin \left(\frac{k a}{n^{2}}\right) \tag{28}
\end{equation*}
$$

(Hint: Write $\sum_{k=1}^{n} \sin \left(\frac{k a}{n^{2}}\right)=\sum_{k=1}^{n} \frac{k a}{n^{2}}+\sum_{k=1}^{n}\left[\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right]$, try to estimate $\left|\sin \left(\frac{k a}{n^{2}}\right)-\frac{k a}{n^{2}}\right|$ using Taylor polynomial)

Problem 45. Let $f$ be differentiable on ( $0, \infty$ ) with $\lim _{x \rightarrow \infty}\left[f(x)+f^{\prime}(x)\right]=0$. Prove that $\lim _{x \rightarrow \infty} f(x)=0$. (Hint: Let $F(x)=e^{x} f(x), G(x)=e^{x}$. Apply Cauchy's generalized mean value theorem.)

Problem 46. Let $f$ be continuous on $[0, \infty)$ and satisfy $\lim _{x \longrightarrow \infty} f(x)=a$. Prove

$$
\begin{equation*}
\lim _{x \longrightarrow \infty} \frac{1}{x} \int_{0}^{x} f(t) \mathrm{d} t=a \tag{29}
\end{equation*}
$$

Problem 47. (USTC) Let

$$
\begin{equation*}
F(x)=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t, \quad x \in(0, \infty) \tag{30}
\end{equation*}
$$

Prove that $\max _{x \in \mathbb{R}} F=F(\pi)$.
Problem 48. $a_{n} \geqslant 0, \sum_{n=1}^{\infty} a_{n}$ converges. Let $b_{n}=\frac{a_{n}}{\sum_{n}^{\infty} a_{k}}$. Prove that $\sum_{n=1}^{\infty} b_{n}$ diverges.
Problem 49. (Alternating series) Let $b_{n} \geqslant 0$ with $\lim _{n \longrightarrow \infty} b_{n}=0$. Assume there is $N \in \mathbb{N}$ such that for all $n>N, b_{n} \geqslant b_{n+1}$.
a) Prove that $\sum_{n=1}^{\infty}(-1)^{n+1} b_{n}$ converges.
b) Apply this criterion to prove the convergence of $1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}$ and $\sum_{n=1}^{\infty}(-1)^{n} \frac{3^{n}}{n!}$.
c) Show that the condition " $b_{n}$ is decreasing" cannot be dropped.

## Really Advanced

Problem 50. Let $f$ be defined on $(a, b)$ and $x_{0} \in(a, b)$. Assume that $f^{(n+1)}(x)$ exists and is continuous on $(a, b)$ with $f^{(n+1)}\left(x_{0}\right) \neq 0$. Consider the Taylor polynomial with Lagrange remainder:

$$
\begin{equation*}
f(x)=\cdots+\frac{f^{(n)}(\xi)}{n!}\left(x-x_{0}\right)^{n} \tag{31}
\end{equation*}
$$

Recall that $\xi$ can be viewed as a function of $x$. If we define (naturally) $\xi\left(x_{0}\right)=x_{0}$, prove that $\xi(x)$ is differentiable at $x_{0}$ with

$$
\begin{equation*}
\xi^{\prime}\left(x_{0}\right)=\frac{1}{n+1} . \tag{32}
\end{equation*}
$$

Problem 51. (USTC) Let $f$ be differentiable. $a b>0$. Then there is $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{1}{a-b}[a f(b)-b f(a)]=f(\xi)-\xi f^{\prime}(\xi) \tag{33}
\end{equation*}
$$

(Hint: Use Cauchy's Generalized Mean Value Theorem).
Problem 52. (USTC) Let $f(x)$ be differentiable on $[0,1] . f(0)=0, f(1)=1$. Then for any $n \in \mathbb{N}$ and $k_{1}, \ldots, k_{n}>0$, there are $n$ distinct numbers $x_{1}, \ldots, x_{n} \in(0,1)$, such that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{k_{i}}{f^{\prime}\left(x_{i}\right)}=\sum_{i=1}^{n} k_{i} \tag{34}
\end{equation*}
$$

Remark 1. Note that when $k=1$, this is simply mean value theorem. Also if we do not require $x_{1}, \ldots$, $x_{n}$ to be distinct, the problem is trivial since we can take $x_{1}=\cdots=x_{n}=\xi$ with $f^{\prime}(\xi)=1$.
(Hint: Take $y_{1}<y_{2}<\cdots<y_{n-1}$ such that $f\left(y_{i}\right)=\frac{k_{1}+\cdots+k_{i}}{k_{1}+\cdots+k_{n}}$. Set $y_{0}=0, y_{1}=1$. Then define $g(x)$ to be linear on each $\left[y_{i}, y_{i+1}\right]$ with $g\left(y_{i}\right)=f\left(y_{i}\right), g\left(y_{i+1}\right)=f\left(y_{i+1}\right)$. Apply Cauchy's generalized mean value theorem.)

Problem 53. (USTC) Let $f, g$ be continuous on $[-1,1]$, infinitely differentiable on $(-1,1)$, and

$$
\begin{equation*}
\left|f^{(n)}(x)-g^{(n)}(x)\right| \leqslant n!|x| \quad n=0,1,2, \ldots \tag{35}
\end{equation*}
$$

Prove that $f=g$. (Hint: Show first $f^{(n)}(0)=0$ for all $n$. Then use Taylor polynomial with Lagrange form of remainder)
Problem 54. Define $\gamma_{n}$ through $\sum_{k=1}^{n-1} \frac{1}{k}=\ln n+\gamma_{n}$
a) Show that $\gamma_{n} \geqslant 0, \gamma_{n}$ is increasing with respect to $n$.
b) Show that $\gamma_{n} \longrightarrow \gamma \in \mathbb{R}$.
c) Show that $\sum_{1}^{\infty}(-1)^{n+1} / n=\ln 2$.

Problem 55. (Bonar2006)
a) Let $\sum_{n=1}^{\infty} a_{n}$ be any convergent non-negative series, then there is another convergent non-negative series $\sum_{n=1}^{\infty} A_{n}$ satisfying $\lim _{n \longrightarrow \infty}\left(A_{n} / a_{n}\right)=\infty ;\left(\right.$ Hint: Set $A_{n}=\frac{a_{n}}{\sqrt{a_{n}+a_{n+1}+\cdots}}$ )
b) Let $\sum_{n=1}^{\infty} D_{n}$ be any divergent non-negative series, then there is another divergent non-negative series $\sum_{n=1}^{\infty} d_{n}$ satisfying $\lim _{n \longrightarrow \infty}\left(d_{n} / D_{n}\right)=0$ 。(Hint: Set $\left.d_{n}=D_{n} /\left(D_{1}+\cdots+D_{n-1}\right)\right)$

## Really Really Advanced

Problem 56. (USTC) Let $f(x)$ be continuous on $[0, \infty)$ and be bounded. Then for every $\lambda \in \mathbb{R}$, there is $x_{n} \longrightarrow \infty$ such that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left[f\left(x_{n}+\lambda\right)-f\left(x_{n}\right)\right]=0 \tag{36}
\end{equation*}
$$

Problem 57. Let $f(x)$ be differentiable with $f\left(x_{0}\right)=0$. Further assume $\left|f^{\prime}(x)\right| \leqslant|f(x)|$ for all $x>x_{0}$. Prove that $f(x)=0$ for all $x \geqslant x_{0}$.

Problem 58. (Darboux's Theorem) ${ }^{1}$ Let $f(x)$ be a bounded function over a finite interval $[a, b]$. Let $P_{n}=\left\{x_{0}=a, x_{1}=a+\frac{b-a}{n}, \ldots, x_{n}=b\right\}$. Then

$$
\begin{equation*}
U\left(f, P_{n}\right) \longrightarrow U(f) ; \quad L\left(f, P_{n}\right) \longrightarrow L(f) \tag{37}
\end{equation*}
$$

Problem 59. (Claesson1970) Let $f(x)$ be a bounded function over a finite interval $[a, b]$. Let $U(f)$ denote its upper integral. Prove: $f$ is integrable $\Longleftrightarrow$ For any bounded function $g(x)$,

$$
\begin{equation*}
U(f+g)=U(f)+U(g) \tag{38}
\end{equation*}
$$

[^0]
[^0]:    1. Darboux Theorem actually states that the conclusion holds for any sequence of partitions with $\sup _{i}\left(x_{i}-\right.$ $\left.x_{i-1}\right) \longrightarrow 0$. But the proof in such general case is very similar to the special one here.
