Math 314 Fall 2012 Midterm Solutions

Oct. 23, 2012 2pm-3:20pm. Total 60 Pts
NAME:
ID \#:

- Please write clearly and show enough work.

Problem 1. (5 pts) A function $f(x): E \mapsto \mathbb{R}$ is said to be Lipschitz continuous if there is $M \in \mathbb{R}$ such that for every $x, y \in E,|f(x)-f(y)| \leqslant M|x-y|$. Write down the logical statement of " $f(x)$ is not Lipschitz continuous".

Solution.

Lipschitz continuous: $\exists M \in \mathbb{R} \forall x, y \in E, \quad|f(x)-f(y)| \leqslant M|x-y|$;
Not Lipschitz continuous: $\forall M \in \mathbb{R} \exists x, y \in E, \quad|f(x)-f(y)|>M|x-y|$

Problem 2. (5 pts) Let $f(x): X \mapsto Y$ satisfy: For any $A, B \subseteq X$, if $A \cap B=\varnothing$ then $f(A) \cap f(B)=\varnothing$. Prove that f is one-to-one.

Proof. Assume the contrary, that is there are $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$. Take $A=\left\{x_{1}\right\}, B=\left\{x_{2}\right\}$, then $A \cap B=\varnothing$ but $f(A) \cap f(B)=\left\{f\left(x_{1}\right)\right\} \neq \varnothing$. Contradiction.
Remark 1. It is equally simple to prove directly. Take $A=\left\{x_{1}\right\}, B=\left\{x_{2}\right\} . x_{1} \neq x_{2} \Longrightarrow A \cap B=\varnothing \Longrightarrow$ $f(A) \cap f(B)=\varnothing \Longrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$.
Remark 2. It is not correct to say: $x_{1} \in A, x_{2} \in B$, because $A \cap B=\varnothing, \ldots$. The reason is you need to show the existence of such A, B (satisfying $x_{1} \in A, x_{2} \in B$, because $A \cap B=\varnothing$).

Problem 3. (10 pts) Find the following limits. Justify your answers. (You can use the convergence/divergence of $x_{n}=n^{a}$ without proof)
a) (3 pts) $\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+4 n}-\sqrt{n^{2}-2 n}\right]$.

Solution. We have

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left[\sqrt{n^{2}+4 n}-\sqrt{n^{2}-2 n}\right] & =\lim _{n \longrightarrow \infty} \frac{\left[\sqrt{n^{2}+4 n}-\sqrt{n^{2}-2 n}\right]\left[\sqrt{n^{2}+4 n}+\sqrt{n^{2}-2 n}\right]}{\left[\sqrt{n^{2}+4 n}+\sqrt{n^{2}-2 n}\right]} \\
& =\lim _{n \longrightarrow \infty} \frac{\left(n^{2}+4 n\right)-\left(n^{2}-2 n\right)}{\sqrt{n^{2}+4 n}+\sqrt{n^{2}-2 n}} \\
& =\lim _{n \longrightarrow \infty} \frac{6 n}{\sqrt{n^{2}+4 n}+\sqrt{n^{2}-2 n}} \\
& =\lim _{n \longrightarrow \infty} \frac{6}{\sqrt{1+4 / n}+\sqrt{1-2 / n}} \\
& =\frac{\lim _{n \rightarrow \infty} 6}{\lim _{n \rightarrow \infty}[\sqrt{1+4 / n}+\sqrt{1-2 / n}]} \\
& =\frac{6}{2}=3 . \tag{1}
\end{align*}
$$

b) $(3 \mathrm{pts}) \lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1}$.

Solution. We have

$$
\begin{align*}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x^{3}-1} & =\lim _{x \longrightarrow 1} \frac{(x+1)(x-1)}{\left(x^{2}+x+1\right)(x-1)} \\
& =\lim _{x \longrightarrow 1} \frac{x+1}{x^{2}+x+1} \\
& =\frac{\lim _{x \rightarrow 1}(x+1)}{\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)} \\
& =\frac{2}{3} \tag{2}
\end{align*}
$$

c) (4 pts) $\lim _{n \rightarrow \infty} \frac{5 x_{n}}{n^{3}+2 n+1}$ where x_{n} satisfies $\left|x_{n}\right| \leqslant 3 n$ for all $n \in \mathbb{N}$.

Solution. Since $\left|x_{n}\right| \leqslant 3 n$, we have $-15 n \leqslant 5 x_{n} \leqslant 15 n$. Therefore

$$
\begin{equation*}
\frac{-15 n}{n^{3}+2 n+1} \leqslant \frac{5 x_{n}}{n^{3}+2 n+1} \leqslant \frac{15 n}{n^{3}+2 n+1} \tag{3}
\end{equation*}
$$

This simplifies to

$$
\begin{equation*}
\frac{-15 / n^{2}}{1+2 / n^{2}+1 / n^{3}} \leqslant \frac{5 x_{n}}{n^{3}+2 n+1} \leqslant \frac{15 / n^{2}}{1+2 / n^{2}+1 / n^{3}} . \tag{4}
\end{equation*}
$$

Taking limit $n \longrightarrow \infty$, by Squeeze Theorem we obtain

$$
\begin{equation*}
\frac{5 x_{n}}{n^{3}+2 n+1} \longrightarrow 0 \tag{5}
\end{equation*}
$$

Problem 4. (10 pts) Let $A=\left\{x \in \mathbb{R}: e^{x^{2}}>e\right\}, B=\{x \in \mathbb{R}: x>0, \ln x \leqslant 0\}$.
a) (4 pts) Express $A, B, A \cap B, A \cup B$ using intervals.
b) (6 pts) Among the four sets above, which is/are open? Which is/are closed? Justify your answers.

Solution.

a) $A=(-\infty,-1) \cup(1, \infty) ; B=(0,1] ; A \cap B=\varnothing ; A \cup B=(-\infty,-1) \cup(0, \infty)$.
b) $A, A \cup B$ are open since they are unions of open intervals. $A \cap B$ is both open and closed by definition. B is neither.
B is not open: Take $x_{0}=1 \in B$. Then for any (a, b) containing $x_{0}, b>x_{0}=1$. Thus $(a, b) \ni \frac{b+1}{2}>1$ which means $\frac{b+1}{2} \notin B$. That is $(a, b) \nsubseteq B$.
B is not closed: We have $B^{c}=(-\infty, 0] \cup(1, \infty)$. We have $0 \in B^{c}$. For any (a, b) containing $0, a<0$ so $(a, b) \ni \frac{a}{2} \notin B^{c}$. So B^{c} is not open therefore B is not closed.

Remark 3. Since in my notes there is a lemma saying "half-open half-closed intervals are neither open nor closed", it's OK to simply say " B is neither because it is half-open half-closed."

Problem 5. (10 pts) Let $x_{n}=(-1)^{n}-e^{-n}$ and $E=\left\{x_{n}: n \in \mathbb{N}\right\} .(\mathbb{N}=\{1,2,3, \ldots\})$
a) (6 pts) Find $\max E, \sup E, \min E, \inf E$. Justify your answers.
b) (4 pts) Calculate $\limsup _{n \longrightarrow \infty} x_{n}$ and $\liminf _{n \longrightarrow \infty} x_{n}$.

Solution.

a)

- max E does not exist. Assume the contrary, that is $x_{n_{0}}=\max E$. Then we have $x_{n_{0}+2}>x_{n_{0}}$. Contradiction.
- $\sup E=1$. Since $1 \geqslant(-1)^{n} \geqslant(-1)^{n}-e^{-n}$ for all $n \in \mathbb{N}, 1$ is a upper bound. Now for any upper bound b, we have

$$
\begin{equation*}
b \geqslant(-1)^{2 k}-e^{-2 k}=1-e^{-2 k} \tag{6}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Taking limit $k \longrightarrow \infty$, by comparison theorem we have $b \geqslant 1$.

- $\min E=x_{1}=-1-e^{-1}$. We have

$$
\begin{equation*}
x_{1}=-1-e^{-1} \leqslant(-1)^{n}-e^{-n} \tag{7}
\end{equation*}
$$

for all $n \in \mathbb{N}$ since $-1 \leqslant(-1)^{n}, e^{-1} \geqslant e^{-n} \Longrightarrow-e^{-1} \leqslant-e^{-n}$.

- Since $\min E$ exists, $\inf E=\min E=-1-e^{-1}$.
b) We have

$$
\begin{equation*}
\sup \left\{x_{n}, x_{n+1}, \ldots\right\} \geqslant x_{2 n}=1-e^{-2 n} \tag{8}
\end{equation*}
$$

On the other hand $\sup \left\{x_{n}, \ldots\right\} \leqslant \sup E=1$. Therefore comparison theorem gives

We have

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(1-e^{-2 n}\right) \leqslant \limsup _{n \longrightarrow \infty} x_{n} \leqslant \lim _{n \longrightarrow \infty} 1 \Longrightarrow \limsup _{n \longrightarrow \infty} x_{n}=1 . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\inf \left\{x_{n}, x_{n+1}, \ldots\right\} \leqslant x_{2 n+1}=-1-e^{-2 n-1} \tag{10}
\end{equation*}
$$

On the other hand for any $k \geqslant n$, we have

$$
\begin{equation*}
x_{k}=(-1)^{k}-e^{-k} \geqslant-1-e^{-k} \geqslant-1-e^{-n} . \tag{11}
\end{equation*}
$$

Thus comparison theorem gives

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(-1-e^{-2 n-1}\right) \leqslant \liminf _{n \longrightarrow \infty} x_{n} \leqslant \lim _{n \longrightarrow \infty}\left(-1-e^{-n}\right) \Longrightarrow \liminf _{n \longrightarrow \infty} x_{n}=-1 \tag{12}
\end{equation*}
$$

Problem 6. ($\mathbf{1 0} \mathbf{~ p t s}$) Let $x_{0}=25$ and define x_{n} through

$$
\begin{equation*}
x_{n+1}=\frac{3 x_{n}}{7}-8 . \tag{13}
\end{equation*}
$$

Prove that $\left\{x_{n}\right\}$ converges and find its limit. (You can use the formula $1+r+\cdots+r^{k}=\frac{1-r^{k+1}}{1-r}$ without proof) Proof. We have

$$
\begin{equation*}
\left|x_{n+1}-x_{n}\right|=\frac{3}{7}\left|x_{n}-x_{n-1}\right|=\cdots=\left(\frac{3}{7}\right)^{n}\left|x_{1}-x_{0}\right| \tag{14}
\end{equation*}
$$

For any $\varepsilon>0$, take $N \geqslant \log _{(7 / 3)}\left[\frac{7\left|x_{1}-x_{0}\right|}{4 \varepsilon}\right]$. Then for any $m>n>N$, we have

$$
\begin{align*}
\left|x_{m}-x_{n}\right| & =\left[\left(\frac{3}{7}\right)^{m-1}+\cdots+\left(\frac{3}{7}\right)^{n}\right]\left|x_{1}-x_{0}\right| \\
& =\left(\frac{3}{7}\right)^{n}\left[1+\frac{3}{7}+\cdots+\left(\frac{3}{7}\right)^{m-n-1}\right]\left|x_{1}-x_{0}\right| \\
& =\left(\frac{3}{7}\right)^{n} \frac{1-(3 / 7)^{m-n}}{1-3 / 7}\left|x_{1}-x_{0}\right| \\
& \leqslant\left(\frac{3}{7}\right)^{n} \frac{7}{4}\left|x_{1}-x_{0}\right|<\varepsilon . \tag{15}
\end{align*}
$$

Therefore $\left\{x_{n}\right\}$ is Cauchy and consequently converge to some $a \in \mathbb{R}$.
Taking limit of both sides of $x_{n+1}=\frac{3 x_{n}}{7}-8$ we have $a=\frac{3 a}{7}-8 \Longrightarrow a=-14$.
Remark 4. There are many alternative methods. To list a few:

- Guess $a=-14$. Then we have $x_{n+1}+14=\frac{3}{7}\left(x_{n}+14\right)$. Can prove directly $x_{n} \longrightarrow-14$.
- Show x_{n} decreasing by math induction. Show $x_{n}+14 \geqslant 0$ for all n that is -14 is a lower bound. Then x_{n} converges.
- Write

$$
\begin{equation*}
x_{n+1}=\frac{3 x_{n}}{7}-8=\left(\frac{3}{7}\right)^{2} x_{n-1}-\left[\frac{3}{7}+1\right] \cdot 8=\cdots=\left(\frac{3}{7}\right)^{n+1} x_{0}-\left[\left(\frac{3}{7}\right)^{n}+\cdots+1\right] \cdot 8 \tag{16}
\end{equation*}
$$

then take limit directly.

Problem 7. (5 pts) Is $f(x)=\left\{\begin{array}{ll}\frac{(\cos x)\left(\sin x^{2}\right)}{x^{2}} & x \neq 0 \\ 1 & x=0\end{array}\right.$ continuous for all $x \in \mathbb{R}$? Justify your answer. (You can use $\lim _{x \longrightarrow 0} \frac{\sin x}{x}=1$ without proof).

Solution. Yes.
Since $\sin x, x^{2}$ are continuous everywhere, the composite function $\sin x^{2}$ is continuous everywhere. Together with the continuity of $\cos x$ and x^{2}, we see that $f(x)$ is continuous at every $x \neq 0$.

At $x=0$, we have $\lim _{x \rightarrow 0} \cos x=1$. So all we need to show is $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}}=1$. Let $g(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & x \neq 0 \\ 1 & x=0\end{array}\right.$ then $g(x)$ is continuous at 1 . Therefore so does the composite function $g\left(x^{2}\right)$ which means $\lim _{x \rightarrow 0} \frac{\sin x^{2}}{x^{2}}=1$.

Remark 5. No point is deducted for the misunderstanding of $\sin x^{2}$ as $(\sin x)^{2}$.

Problem 8. (5 pts) Let $f: \mathbb{R} \mapsto \mathbb{R}, g: \mathbb{R} \mapsto \mathbb{R}$ be continuous functions. Assume $f(x)>0$ for all $x \in \mathbb{R}$.
a) ($4 \mathbf{p t s}$) Prove that for any closed interval $[a, b]$ with $a, b \in \mathbb{R}$, there is $\delta_{0}>0$ such that for all $0 \leqslant \delta<\delta_{0}$, $f(x)+\delta g(x)>0$ for all $x \in[a, b]$.
b) ($1 \mathbf{p t}$) Is the claim still true when $a=-\infty$ or $b=\infty$ (or both)?

Proof.

a) For any closed interval $[a, b]$, we have

$$
\begin{equation*}
\min _{x \in[a, b]} f(x)=f\left(x_{1}\right), \quad \min _{x \in[a, b]} g(x)=g\left(x_{2}\right) \tag{17}
\end{equation*}
$$

for some $x_{1}, x_{2} \in[a, b]$ due to the fact that f, g are continuous. Since $f>0$ we have $f\left(x_{1}\right)>0$. Take

$$
\delta_{0}= \begin{cases}-\frac{f\left(x_{1}\right)}{g\left(x_{2}\right)} & g\left(x_{2}\right)<0 \tag{18}\\ 1 & g\left(x_{2}\right) \geqslant 0\end{cases}
$$

then for any $0 \leqslant \delta<\delta_{0}$,

$$
f(x)+\delta g(x)> \begin{cases}f(x)+\delta_{0} g(x) \geqslant \min f(x)+\delta_{0} \min g(x)=f\left(x_{1}\right)-\frac{f\left(x_{1}\right)}{g\left(x_{2}\right)} g\left(x_{2}\right)=0 & \min g<0 \tag{19}\\ f(x) \geqslant \min f(x)>0 & \min g \geqslant 0\end{cases}
$$

b) Not true anymore. Take $f(x)=e^{-x^{2}}$ and $g(x)=1$.

