Math 314 A1 Fall 2012 Homework 7

Due Friday Nov. 30.

5:30pm (Assignment box CAB 3rd floor)

- Related sections in notes: $\S 5.3-\S 6.2$.

Problem 1. (5 pts) Let $r<0$. Consider the function $f(x)=x^{r}:(0, \infty) \mapsto(0, \infty)$.
a) ($2 \mathbf{p t s}$) For what values of r is $f(x)$ improperly integrable on $(0,1)$? Justify your answer.
b) (2 pts) For what values of r is $f(x)$ improperly integrable on $(1, \infty)$? Justify your answer.
c) ($\mathbf{1} \mathbf{p t}$) For what values of r is $f(x)$ improperly integrable on $(0, \infty)$? Justify your answer.

Problem 2. ($\mathbf{3} \mathbf{~ p t s}$) Let $g(x)$ be improperly integrable on $[0, \infty)$ and $f(x)$ be integrable on $[0, b]$ for every $0<b$. Furthermore $0 \leqslant f(x) \leqslant g(x)$.
a) ($\mathbf{2} \mathbf{~ p t s}$) Prove that $f(x)$ is improperly integrable on $[0, \infty)$ and

$$
\begin{equation*}
\int_{0}^{\infty} f(x) \mathrm{d} x \leqslant \int_{0}^{\infty} g(x) \mathrm{d} x . \tag{1}
\end{equation*}
$$

(Hint: You may want to use the "Cauchy" statement for limits of functions in midterm review)
b) ($\mathbf{1} \mathbf{~ p t}$) Does the conclusion still hold if we drop $0 \leqslant$? Justify your answer.

Problem 3. ($\mathbf{3}$ pts) Let $\sum_{n=1}^{\infty} a_{n}$ be a infinite series. Let $\sum_{n=1}^{\infty} b_{n}$ be the series obtained from $\sum_{n=1}^{\infty} a_{n}$ by dropping all the zero terms (For example if $a_{n}=\frac{(-1)^{n}+1}{n}$, then $b_{n}=\frac{1}{n}$). Prove that $\sum_{n=1}^{\infty} a_{n}$ converges $\Longleftrightarrow \sum_{n=1}^{\infty} b_{n}$ converges.

Problem 4. ($\mathbf{3} \mathbf{~ p t s)}$ Let $\sum_{n=1}^{\infty} a_{n}, \sum_{n=1}^{\infty} b_{n}$ be non-negative series with $a_{n}>0, b_{n}>0$ for all $n \in \mathbb{N}$.
a) (2 pts) If there is $N_{0} \in \mathbb{N}$ such that for all $n \geqslant N_{0}, \frac{a_{n+1}}{a_{n}} \leqslant \frac{b_{n+1}}{b_{n}}$, then $\sum_{n=1}^{\infty} b_{n}$ converges $\Longrightarrow \sum_{n=1}^{\infty} a_{n}$ converges;
b) ($\mathbf{1} \mathbf{~ p t}$) Use a) to prove convergence for $\sum_{n=1}^{\infty} a_{n}$ with $a_{1}=1$ and

$$
\begin{equation*}
a_{n}=\frac{1}{4} \frac{2}{5} \cdots \frac{n-1}{n+2} \tag{2}
\end{equation*}
$$

(Hint: use $b_{n}=\frac{1}{n(n+1)}$.)
Problem 5. ($\mathbf{3} \mathbf{~ p t s)}$
a) ($\mathbf{1} \mathbf{p t)}$) Show that $\sum_{n=1}^{\infty}\left(a_{n} b_{n}\right)$ converges if $A_{n}:=\sum_{k=1}^{n} a_{k}$ is bounded (that is there is $M \in \mathbb{R}$ such that $\left|A_{n}\right| \leqslant M$ for all $n \in \mathbb{N}$) and $b_{n} \geqslant 0$ is decreasing with $\lim _{n \rightarrow \infty} b_{n}=0$.
b) (2 pts) Study the convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\cos (n \alpha)}{n} \tag{3}
\end{equation*}
$$

for $\alpha \in[0, \pi)$.
Problem 6. ($\mathbf{3} \mathbf{~ p t s) ~ P r o v e ~ t h e ~ f o l l o w i n g ~ " i n t e g r a l ~ t e s t " : ~ F o r ~ a n ~ i n f i n i t e ~ s e r i e s ~} \sum_{n=1}^{\infty} a_{n}$ with $a_{n} \geqslant 0$, if there is a decreasing function $f(x) \geqslant 0$ such that $a_{n}=f(n)$, then $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the improper integral $\int_{1}^{\infty} f(x) \mathrm{d} x$ exists and is finite. Furthermore

$$
\begin{equation*}
\int_{1}^{\infty} f(x) \mathrm{d} x<\sum_{n=1}^{\infty} a_{n}<\int_{1}^{\infty} f(x) \mathrm{d} x+a_{1} \tag{4}
\end{equation*}
$$

