MATH 314 A1 FALL 2012 HOMEWORK 7

DUE FRIDAY NOV. 30.

5:30pm (Assignment box CAB 3rd floor)

• Related sections in notes: §5.3 - §6.2.

Problem 1. (5 pts) Let r < 0. Consider the function $f(x) = x^r : (0, \infty) \mapsto (0, \infty)$.

- a) (2 pts) For what values of r is f(x) improperly integrable on (0,1)? Justify your answer.
- b) (2 pts) For what values of r is f(x) improperly integrable on $(1, \infty)$? Justify your answer.
- c) (1 pt) For what values of r is f(x) improperly integrable on $(0, \infty)$? Justify your answer.

Problem 2. (3 pts) Let g(x) be improperly integrable on $[0, \infty)$ and f(x) be integrable on [0, b] for every 0 < b. Furthermore $0 \le f(x) \le g(x)$.

a) (2 pts) Prove that f(x) is improperly integrable on $[0, \infty)$ and

$$\int_0^\infty f(x) \,\mathrm{d}x \leqslant \int_0^\infty g(x) \,\mathrm{d}x. \tag{1}$$

(Hint: You may want to use the "Cauchy" statement for limits of functions in midterm review)

b) (1 pt) Does the conclusion still hold if we drop $0 \leq ?$ Justify your answer.

Problem 3. (3 pts) Let $\sum_{n=1}^{\infty} a_n$ be a infinite series. Let $\sum_{n=1}^{\infty} b_n$ be the series obtained from $\sum_{n=1}^{\infty} a_n$ by dropping all the zero terms (For example if $a_n = \frac{(-1)^n + 1}{n}$, then $b_n = \frac{1}{n}$). Prove that $\sum_{n=1}^{\infty} a_n$ converges $\iff \sum_{n=1}^{\infty} b_n$ converges.

Problem 4. (3 pts) Let $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ be non-negative series with $a_n > 0$, $b_n > 0$ for all $n \in \mathbb{N}$.

- a) (2 pts) If there is $N_0 \in \mathbb{N}$ such that for all $n \ge N_0$, $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$, then $\sum_{n=1}^{\infty} b_n$ converges; $\Longrightarrow \sum_{n=1}^{\infty} a_n$ converges;
- b) (1 pt) Use a) to prove convergence for $\sum_{n=1}^{\infty} a_n$ with $a_1 = 1$ and

$$a_n = \frac{1}{4} \frac{2}{5} \cdots \frac{n-1}{n+2} \tag{2}$$

(Hint: use $b_n = \frac{1}{n(n+1)}$.)

Problem 5. (3 pts)

- a) (1 pt) Show that $\sum_{n=1}^{\infty} (a_n b_n)$ converges if $A_n := \sum_{k=1}^n a_k$ is bounded (that is there is $M \in \mathbb{R}$ such that $|A_n| \leq M$ for all $n \in \mathbb{N}$) and $b_n \geq 0$ is decreasing with $\lim_{n \to \infty} b_n = 0$.
- b) (2 pts) Study the convergence of

$$\sum_{n=1}^{\infty} \frac{\cos\left(n\,\alpha\right)}{n} \tag{3}$$

for $\alpha \in [0, \pi)$.

Problem 6. (3 pts) Prove the following "integral test": For an infinite series $\sum_{n=1}^{\infty} a_n$ with $a_n \ge 0$, if there is a decreasing function $f(x) \ge 0$ such that $a_n = f(n)$, then $\sum_{n=1}^{\infty} a_n$ converges if and only if the improper integral $\int_1^{\infty} f(x) dx$ exists and is finite. Furthermore

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x < \sum_{n=1}^{\infty} a_n < \int_{1}^{\infty} f(x) \, \mathrm{d}x + a_1 \tag{4}$$