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6. Infinite Series

6.0. Motivating examples.

Example 6.1. (Zeno’s tortoise and Achilles) The story is easy to find (say seach wiki) so omitted.

Example 6.2. (Jack and the beanstalk) Let’s say the beanstalk is 10 meters long originally, and Jack
can climb 1 meter every second. But at the end of each second, the beanstalk grows an extra 5 meters
(assume that this takes no time, or assume Jack stop to take a breath). The question now is, will Jack be
able to reach the top?

Example 6.3. (Quantum Field Theory) The following is adapted from “Quantum Field Theory”
(arXiv:0204014) by R. E. Borcherds.

Life cycle of a theoretical physicist:

1. Write down a Lagrangian density L.

2. Write down the corresponding Feynman path integral.

3. Calculate Feynman path integral by expanding it into an infinite sum: a0 + a1 λ +

4. Work out the integrals and add everything up.

5. Realise that the integrals diverge – that is a0, a1,	 are infinite.

6. Regularize the integrals, make it finite. For example instead of
∫

−∞
∞ 1

x2
dx, use

∫

−∞
−ε dx

x2
+
∫

ε

∞ dx

x2
.

7. Obtain a new infinite sum where ai’s are finite.

8. Realise that the new infinite sum diverges, despite the finiteness of all the ai’s.

9. Ignore Step 8. Take only the first few terms and compare with experiment.

10. Depending on the outcome of Step 9: Collect a Nobel prize or return to Step 1.

Example 6.4. (Definition of functions) We have seen that any infinitely differentiable function
corresponds to an infinite sum of monomials (it’s Taylor series):

f(x)� f(x0) + f ′(x0) (x−x0) +
f ′′(x0)

2!
(x− x0)

2 +
 =
∑

n=0

∞
f (n)(x0)

n!
(x−x0)

n. (6.1)

It turns out that whether we can write

f(x)=
∑

n=0

∞
f (n)(x0)

n!
(x−x0)

n (6.2)

is a very complicated issue. For example, consider

f(x)=

{

e
− 1

x2 x� 0
0 x =0

(6.3)

It can be calculated that f (n)(0)= 0 for all n= 0, 1, 2,	 . Consequently its Taylor series reads

0+ 0 (x− x0)+ 0 (x− x0)
2 +
 (6.4)

whose only reasonable value is 0, different from f(x) except at x= 0.
On the other hand, one can show that the Taylor series of ex:

∑

n=0
∞ xn

n!
indeed add up to ex for every

x∈R.
To understand such phenomena, we need to study infinite sums of functions. But before that we need to

understand infinite sum of numbers, because after all, an infinite sum of functions becomes an infinite sum
of numbers once the variable x is assigned a value.

6.1. Definitions and basics.

6.1.1. Definitions.



Definition 6.5. (Infinite series) Given a sequence {an} of real numbers, the formal sum

∑

n=1

∞
an = a1 + a2 +
 + an +
 (6.5)

is called an “infinite series”.

Remark 6.6. The “summation” of infinitely many real numbers

a1 + a2 +
 + an +
 (6.6)

is “formal” because it is not clear what it means to say s = a1 + a2 +
 + an +
 where s∈R∪{∞,−∞}.

Remark 6.7. Note that
∑

n=1
∞

an is just another way of denoting the formal sum a1 + a2 +
 + an +
 .

Example 6.8. Some examples of infinite series:

∑

n=1

∞
(−1)n =(−1)+ 1 + (−1) +1 +
 (6.7)

∑

n=1

∞
sinn

n
=

sin 1

1
+

sin 2

2
+
 (6.8)

∑

n=1

∞
2n = 1 +2 + 4+
 (6.9)

∑

n=1

∞
1

2n
= 1 +

1

2
+

1

4
+
 (6.10)

It is clear that the value of
∑

n=1
∞ 1

2n
should be 2 while

∑

n=1
∞ 2n should be ∞. It’s not clear whether the

first two sums corresponds to any value.

Definition 6.9. (Partial sum and convergence) The nth partial sum of an infinite series
∑

n=1
∞

an is

defined as sn =
∑

m=1
n

am. If the sequence {sn} converges to some real number s, then we say the infinite

series converges, and say its sum is s, and simply write

∑

n=1

∞
an = s. (6.11)

If s� ∞ or −∞, we say the infinite series diverges to ∞ or −∞ respectively and write

∑

n=1

∞
an =∞ or −∞. (6.12)

Recalling theorems for the convergence of sequences, we have

Theorem 6.10.

• ∑

n=1
∞

an = s if and only if for any ε > 0, there is N ∈N such that for all n > N,
∣

∣

∣

∣

∣

s−
∑

m=1

n

am

∣

∣

∣

∣

∣

< ε; (6.13)

• ∑

n=1
∞

an =∞ if and only if for any M ∈R, there is N ∈N such that for all n >N,

∑

m=1

n

am >M ; (6.14)

• ∑

n=1
∞

an =−∞ if and only if for any M ∈R, there is N ∈N such that for all n >N,

∑

m=1

n

am < M. (6.15)



Proof. Left as exercises. �

Theorem 6.11. (Cauchy) A infinite series
∑

n=1
∞

an converges if and only if for any ε> 0 there is N ∈N

such that for all m > n > N,
∣

∣

∣

∣

∣

∑

k=n+1

m

ak

∣

∣

∣

∣

∣

< ε. (6.16)

Proof. Left as exercise. �

Corollary 6.12. If
∑

n=1
∞

an converges to s∈R then limn�∞an =0. Equivalently, if limn→∞an does not

exist, or exists but is not 0, then
∑

n=1
∞

an does not converge to any real number.

Proof. For any ε > 0, since
∑

n=1
∞

an converges, it is Cauchy and there exists N1 ∈ N such that for all
m > n >N1,

∣

∣

∣

∣

∣

∑

k=n+1

m

ak

∣

∣

∣

∣

∣

< ε. (6.17)

Now take N =N1 + 1. Then for any n > N , we have n > n− 1 > N1 which gives

|an − 0|=
∣

∣

∣

∣

∣

∑

k=n

n

ak

∣

∣

∣

∣

∣

< ε. (6.18)

Thus by definition of convergence of sequence limn�∞an = 0. �

Remark 6.13. Corollary 6.12 is very useful, however we should keep in mind that:

1. The converse is not true. That is limn→∞an =0 does not imply the convergence of
∑

n=1
∞

an.

2. It cannot be applied to conclude
∑

n=1
∞

an�∞ or −∞.

Example 6.14. Let an = rn−1 for r∈R. Then

a) If |r |< 1, then
∑

n=1
∞

an = 1+ r + r2 +
 =
1

1− r
.

b) If r > 1, then
∑

n=1
∞

an =∞.

c) If r 6−1, then
∑

n=1
∞

an does not exist (as extended real number).

Proof.

a) We have
∑

m=1

n

am = 1+
 + rn−1 =
1− rn

1− r
. (6.19)

For any ε > 0, take N ∈N such that N > log|r| [ε (1− r)], then for any n >N ,

∣

∣

∣

∣

∣

1

1− r
−
∑

m=1

n

am

∣

∣

∣

∣

∣

=
|r |n
1− r

<
|r |N
1− r

< ε. (6.20)

b) For any M ∈R. Take N ∈N such that N > |M |. Then for every n > N we have

∑

m=1

n

am >
∑

m=1

n

1= n >N > |M |> M. (6.21)

c) Since r 6−1, |an|> 1. Therefore by Corollary 6.12
∑

n=1
∞

an does not converge to any real number.

We still need to show that
∑

n=1
∞

an�∞,−∞. To do this, we show that sn =
∑

m=1
n

an satisfies sn >0
when n is odd and sn 6 0 when n is even. Clearly s1 = 1> 0, s2 = 1+ r 6 0. For n> 3, calculate

sn =
∑

m=1

n−1

rm−1 + rn =
1− rn−1

1− r
+ rn. (6.22)



As r 6−1, 1− r > 2 which gives
∣

∣

∣

∣

1− rn−1

1− r

∣

∣

∣

∣

6
1+ |r |n−1

2
6 |r |n−1 6 |r |n. (6.23)

Therefore, sn and rn cannot take opposite signs. �

Example 6.15. We have
∑

n=1

∞
1

2n−1
=

1

1− 1

2

=2;
∑

n=1

∞
1

5n−1
=

5

4
. (6.24)

Example 6.16. Consider
∑

n=1

∞
sinn

n
=

sin 1

1
+

sin 2

2
+
 (6.25)

We show that it actually converges.
In light of Theorem 6.11, we need to understand

∑

k=n+1

m
sin k

k
. (6.26)

Denote Ak =
∑

l=1
k sin l, and Bk =

1

k
. Then we have

∑

k=n+1

m
sin k

k
=

∑

k=n+1

m

(Ak −Ak−1) Bk

= [An+1 Bn+1−An Bn+1] + [An+2 Bn+2−An+1 Bn+2] +

+[Am Bm −Am−1 Bm]

= [Am Bm−An Bn+1] +

+[An+1 (Bn+1−Bn+2)+ An+2 (Bn+2−Bn+3) +
 + Am−1 (Bm−1−Bm)]

= [Am Bm−An Bn+1] +
∑

k=n+1

m−1

[Ak (Bk −Bk+1)]

=

[

Am

m
− An

n +1

]

+
∑

k=n+1

m−1 [

Ak

(

1

k
− 1

k +1

)]

. (6.27)

Now notice that {An} is in fact a bounded sequence:

An = sin 1 + sin 2+
 + sinn

=
sin 1 [sin 1 + sin 2+
 + sinn]

sin 1

=
cos (1− 1)− cos (1 +1)+ cos (2− 1)− cos (2 + 1) +
 + cos (n− 1)− cos (n + 1)

2 sin 1

=
[cos0 + cos 1+
 + cos (n− 1)]− [cos 2 + cos 3+
 + cos (n + 1)]

2 sin 1

=
cos 0+ cos 1− cosn− cos (n + 1)

2 sin 1
. (6.28)

Now it is clear that |An|6 2

sin 1
for all n∈N.

Back to (6.27):
∣

∣

∣

∣

∣

∑

k=n+1

m
sin k

k

∣

∣

∣

∣

∣

6

∣

∣

∣

∣

Am

m

∣

∣

∣

∣

+

∣

∣

∣

∣

An

n + 1

∣

∣

∣

∣

+
∑

k=n+1

m−1

|Ak|
(

1

k
− 1

k + 1

)

6
2

sin 1

[

1

m
+

1

n+ 1
+
∑

k=n+1

m−1 (

1

k
− 1

k +1

)

]

=
2

sin 1

[

2

n + 1

]

=
4

(n +1) sin 1
. (6.29)



Now we are ready to show the series is Cauchy:

For any ε > 0, take N ∈N such that N + 1>
4

ε sin 1
, then for any m > n > N , we have

∣

∣

∣

∣

∣

∑

k=n+1

m
sin k

k

∣

∣

∣

∣

∣

6
4

(n + 1) sin 1
<

4

(N + 1) sin 1
6 ε. (6.30)

Therefore the series converges.

6.1.2. Operations of infinite series.

Theorem 6.17. (Arithmetics) If
∑

n=1
∞

an = s,
∑

n=1
∞

bn = t with s, t extended numbers. Then

• For any c∈R, if c s is defined,
∑

n=1
∞

(c an) = c s.

• If s + t is defined,
∑

n=1
∞

(an + bn)= s+ t.

Remark 6.18. Note that when c = 0 and s = ∞ or −∞, although the product c s is not defined, we can
easily prove using definition that

∑

n=1
∞ (c an)=

∑

n=1
∞ 0= 0.

Example 6.19. Let an = c rn−1 for r∈R and c∈R. Then

a) If |r |< 1, then
∑

n=1
∞

an = 1+ r + r2 +
 =
c

1− r
.

b) If r > 1 and c� 0, then
∑

n=1
∞

an = c ·∞=

{

∞ c > 0
−∞ c < 0

.

c) If r 6−1 and c� 0, then
∑

n=1
∞

an does not exist (as extended real number).

d) If c = 0 then
∑

n=1
∞

an = 0 no matter what value r takes.

a),b),d) clearly follow from Theorem 6.17. We prove c) by contradiction: If
∑

n=1
∞

an = s ∈R ∪ {−∞, ∞},
then since c−1� 0, we have

∑

n=1

∞
rn−1 =

∑

n=1

∞
(c−1 an)= c−1 s∈R∪{−∞,∞}. (6.31)

Contradiction.

Example 6.20. We have
∑

n=1

∞
1

5n
=

1

5

∑

n=1

∞
1

5n−1 =
1

5

5

4
=

1

4
. (6.32)

Remark 6.21. In general there is no relation between
∑

n=1
∞

an bn and
∑

n=1
∞

an,
∑

n=1
∞

bn. On the other

hand, with some extra assumption we can define the product
(

∑

n=1

∞
an

)(

∑

n=1

∞
bn

)

=
∑

n=1

∞ [

∑

k=1

n

ak bn+1−k

]

= (a1 b1)+ (a1 b2 + a2 b1)+ (a1 b3 + a2 b2 + a3 b1)+
 (6.33)

This will be discussed in Math414.

6.1.3. Forbidden operations.

Example 6.22. (Grouping) Unless an > 0 (or all 60) and
∑

n=1
∞

an converges, the order of summation

cannot be changed. For example let an =(−1)n+1. If we are allowed to group terms together and sum them
first, we would have both

∑

n=1

∞
an = 1+ (−1)+ 1+
 = 1+ [(−1)+ 1] + [(−1) +1] +
 = 1 +0 + 0+
 =1; (6.34)

∑

n=1

∞
an = 1+ (−1)+ 1+
 = [1+ (−1)] + [1 + (−1)] +
 = 0+ 0 +0 +
 = 0. (6.35)



Definition 6.23. (Rearrangement) A rearrangement of an infinite series
∑

n=1
∞

an is another infinite
series

∑

m=1
∞

an(m) where m:�n(m) is a bijection from N to N.

Example 6.24. An example of rearrangement of a1 + a2 + a3 +
 is a2 + a4 + a7 + a1 + a5 + a3 + a6 +
 .

Example 6.25. (Rearrangement) Consider the sequence
∑

n=1
∞

an with an =
(−1)n+1

n
. If we are allowed

to freely rearrange (that is choose the order of summation), then for any s ∈ R ∪ {−∞, ∞}, there is a
rearrangement such that it converges to s.

Proof. Consider the case s∈R. The cases s =∞,−∞ are left as exercises.
Consider the rearrangement

∑

n=1
∞

bn defined as follows:

• Let k0 be such that 1+
1

3
+
 +

1

2 k0− 1
> s but 1+

1

3
+
 +

1

2 k0− 3
<s. Set

b1 = 1, b2 =
1

3
,	 , bk0

=
1

2 k0− 1
; (6.36)

The case k0 =1 is when 1 > s. Then we just set b1 = 1 and turn to the next step.

• Let k1 be such that

∑

k=1

k0

bk −
(

1

2
+
 +

1

2 k1− 2

)

> s,
∑

k=1

k0

bk −
(

1

2
+
 +

1

2 k1

)

< s (6.37)

and set

bk0+1 =−1

2
, bk0+k1

=− 1

2 (k1 + 1)
. (6.38)

• Let k2 be such that

∑

k=1

k0+k1

bk+

(

1

2 k0 + 1
+
 +

1

2 k0 + 2 k2− 1

)

>s,
∑

k=1

k0+k1

bk+

(

1

2 k0 + 1
+
 +

1

2 k0 + 2 k2− 3

)

<s (6.39)

and set

bk0+k1+1 =
1

2 k0 +1
,	 , bk0+k1+k2

=
1

2 k0 + 2 k2 +1
, (6.40)

• And so on.

Now set

Sl =
∑

k=1

k0+k1+
+kl

bk. (6.41)

Then we see that if n∈ [k0 +
 + kl, k0 +
 + kl+1], then

sn =
∑

m=1

n

bm (6.42)

is always between Sl and Sl+1.
Finally notice that by construction, |Sl− s|< 1

l
. Thus for any ε > 0, take L∈N such that L >ε−1. Now

set N =k0+
 +kL. For any n>N , there is l>L such that n∈ [k0+
 +kl,k0+
 +kl+1]. Therefore we have

|sn − s|6max {|Sl − s|, |Sl+1− s|}6
1

l
6

1

L
< ε. (6.43)

That is
∑

n=1
∞

bn� s by definition. �

Remark 6.26. Note that the above proof depends on the fact that

∑

k=1

∞
1

2 k − 1
=∞,

∑

k=1

∞ (

− 1

2 k

)

=−∞. (6.44)

These two facts are left as exercises.



6.2. Non-negative series.
An infinite series

∑

n=1
∞

an is called “non-negative” if an > 0 for all n∈N.

6.2.1. The importance of non-negative series.

Theorem 6.27. Let
∑

n=1
∞

an and
∑

n=1
∞

bn be two infinite series. Assume that there are c >0 and N0∈N

such that |an|6 c bn for all n > N0. Then

a)
∑

n=1
∞

bn converges� ∑

n=1
∞

an converges.

b)
∑

n=1
∞

an diverges� ∑

n=1
∞

bn diverges.

Proof. Note that a) and b) are equivalent logical statements, so we only need to prove a). We show that
∑

n=1
∞

an is Cauchy. For any ε > 0, since
∑

n=1
∞

bn converges, it is Cauchy and there is N1∈N such that for

all m > n > N1,
∣

∣

∣

∣

∣

∑

k=n+1

m

bk

∣

∣

∣

∣

∣

<
ε

c
. (6.45)

Take N =max {N1, N0}. Then for any m >n > N ,
∣

∣

∣

∣

∣

∑

k=n+1

m

ak

∣

∣

∣

∣

∣

6
∑

k=n+1

m

|ak|6 c

∣

∣

∣

∣

∣

∑

k=n+1

m

bk

∣

∣

∣

∣

∣

<ε. (6.46)

So
∑

n=1
∞

an is Cauchy and therefore converges. �

Example 6.28. It is clear by Theorem 6.27 that if
∑

n=1
∞ |an| converges, so does

∑

n=1
∞

an. The converse

is not true, as can be seen from the following example:

Take an =
(−1)n+1

n
. Then we clearly see that

S2n = 1− 1

2
+

1

3
− 1

4
+
 +

1

2 n− 1
− 1

2 n
=

1

1 · 2 +
1

3 · 4 +
 +
1

(2n− 1) (2 n)
(6.47)

converges. On the other hand, we have S2n+1−S2n� 0 so S2n+1 converges to the same limit. From here
it is easy to prove by definition that Sn� to the same limit, which turns out to be ln 2.

Remark 6.29. A sequence
∑

n=1
∞

an that converges but with
∑

n=1
∞ |an| = ∞ is called conditionally

convergent. It turns out that the phenomenon we have seen in Example 6.25 is quite generic for conditionally
convergent series. More specifically, if

∑

n=1
∞

an is conditionally convergent, then it can be re-arranged to

converge to any extended real number.
On the other hand, a sequence

∑

n=1
∞

an such that
∑

n=1
∞ |an| converges is said to be absolutely convergent .

Absolutely convergent sequences can undergo any re-arrangement and still converge to the same sum.

6.2.2. Typical non-negative series and their implications.
In light of Theorem 6.27, it is important to understand the convergence/divergence of non-negative

infinite series. Once a non-negative sequence
∑

n=1
∞

bn is shown to be convergent, we know that any
∑

n=1
∞

an satisfying |an| 6 c bn for some constant c is also convergent. It is further possible to make

this comparison “intrinsic”, that is design some criterion involving an only and guarantees the relation
|an|6 c bn. Such criteria are usually called “tests”. We will study some simple tests now.

First we note that non-negative series converges if and only if it is bounded above.

Theorem 6.30. Let
∑

n=1
∞

an be a non-negative series. Then it converges� it is bounded above.

Proof. Note that the partial sum sn =
∑

n=1
∞

an is increasing. The rest is left as exercise. �

Example 6.31. (Geometric series) We have seen that
∑

n=1
∞

rn−1 converges when 0 6 r < 1. As a

consequence, if another series
∑

n=1
∞

an satisfies

|an|6 c rn−1 (6.48)



for some c > 0 and for all n > some N0∈N, then
∑

n=1
∞

an converges.

The following two intrinsic “convergence tests” based on comparison with geometric series are the simplest
and most popular tests for convergence/divergence.

Theorem 6.32. (Ratio test) Let
∑

n=1
∞

an a infinite series. Further assume that an� 0 for all n∈N (see
Remark 6.34 though). Then

• If limsupn�∞
∣

∣

∣

an+1

an

∣

∣

∣< 1, the series converges.

• If liminfn�∞
∣

∣

∣

an+1

an

∣

∣

∣> 1, the series diverges.

Proof.

• Assume limsupn�∞
∣

∣

∣

an+1

an

∣

∣

∣=L < 1. Set r =
L + 1

2
and ε0 =

1− L

2
. By definition

limsup
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n�∞

{

sup
k>n

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

}

(6.49)

therefore there is N ∈N such that for all n >N ,
∣

∣

∣

∣

∣

sup
k>n

∣

∣

∣

∣

ak+1

ak

∣

∣

∣

∣

−L

∣

∣

∣

∣

∣

< ε0 (6.50)

which gives
∣

∣

∣

∣

sup
n>N

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

∣

∣

∣

∣

< L + ε0 = r < 1� 0 <

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

< r < 1. (6.51)

This gives, for all n > N + 1,

|an|< |aN+1| rn−N−1 =
|aN+1|

rN
rn−1. (6.52)

Note that since N is fixed, we have

|an|< c rn−1 (6.53)

for all n > N and consequently
∑

n=1
∞

an converges.

• Assume liminfn�∞
∣

∣

∣

an+1

an

∣

∣

∣ = L > 1. Set ε0 = L − 1. Then by definition, similar to the limsup case

above, there is N ∈N such that for all n > N ,
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

> 1 (6.54)

which means for all n > N +1

|an|> |aN+1| (6.55)

As a consequence an�0. By Corollary 6.12 we know that
∑

n=1
∞

an diverges. �

Example 6.33. Prove that
∑

n=1
∞ 1

n!
√ converges.

Proof. We have
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
1

n+ 1
√ (6.56)

therefore

limsup
n�∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= 0 < 1. (6.57)

So the series converges. �

Remark 6.34. Theorem 6.32 is applicable to non-negative infinite series – we just need to first drop all the
zero terms!



Theorem 6.35. (Root test) Let
∑

n=1
∞

an be a infinite series. Then

• If limsupn�∞ |an|1/n < 1, then the series converges.

• If liminfn�∞ |an|1/n > 1, then the series diverges.

Proof.

• Assume limsupn�∞ |an|1/n =L < 1. Set r =
L + 1

2
and ε0 =

1− L

2
. Then by definition, as in the proof

of the above ratio test, there is N ∈N such that for all n > N ,

|an|1/n < r < 1� |an|< rn. (6.58)

Therefore
∑

n=1
∞

an converges.

• Assume liminfn�∞ |an|1/n > 1. The proof is left as exercise. �

Remark 6.36. Recall Problem 29 of Midterm Practice, for xn > 0

liminf
n�∞

xn+1

xn

6 liminf
n�∞

(xn)1/n 6 limsup
n�∞

(xn)1/n 6 limsup
n�∞

xn+1

xn

. (6.59)

Therefore the root test is sharper than the ratio test, in the sense that any series that passes the ratio test
for convergence will also pass the root test.

Example 6.37. Consider the infinite series
1

2
+

1

3
+

1

22
+

1

32
+
 =

∑

n=1
∞

an where an =

{

2−k n= 2 k − 1

3−k n= 2 k
.

It can be easily verified that

liminf
n�∞

an+1

an

=0; limsup
n�∞

an+1

an

=∞ (6.60)

so the ratio test does not apply. On the other hand

limsup
n�∞

(an)1/n =
1

2
√ (6.61)

so the root test tells us that the series converges.

Example 6.38. (Generalized harmonic series) The series
∑

n=1
∞ 1

n
, which we know diverges, is called

the harmonic series, allegedly from the length strings in a harp. We can generalize it to
∑

n=1
∞ 1

na
for a > 0.

It turns out that this series converges when a > 1 and diverges when a6 1.

Proof. When a 6 1, we have
1

na
>

1

n
therefore the divergence of

∑

n=1
∞ 1

n
gives the divergence of

∑

n=1
∞ 1

na

for 0 <a < 1.
When a > 1, we use the following trick:

1

na
=

∫

n−1

n 1

na
dx 6

∫

n−1

n dx

xa
. (6.62)

Thus
∑

n=1

∞
1

na
= 1+

∑

n=2

∞
1

na
6 1 +

∑

n=2

∞ ∫

n−1

n dx

xa
=1 +

∫

1

∞ dx

xa
=1 +

1

a− 1
=

a

a− 1
. (6.63)

We see that the series is bounded above and therefore converges. �

Remark 6.39. Recall that weeks ago we proved the convergence of the a = 2 case through the trick
1

n (n − 1)
>

1

n2
, however for more exotic a such tricks are not available anymore.

Remark 6.40. Also note that neither the ratio test nor the root test works for the generalized harmonic
series.

Remark 6.41. It is also possible to design convergence/divergence tests using generalized harmonic series
as the gauge. Since

1

na
converges to 0 slower than rn (in the sense that limn�∞na rn = 0 if |r |< 1), these

tests will be more refined than either the ratio test or the root test. One of such test is the following



(Raabe’s test) an > 0. Then

• ∑

n=1
∞

an converges if

liminf
n�∞

n

(

an

an+1
− 1

)

> 1 (6.64)

• ∑

n=1
∞

an diverges if

limsup
n�∞

n

(

an

an+1
− 1

)

< 1. (6.65)

Note that the “convergent” part of Raabe’s test can be turned into a convergence test for general series as

liminf
n�∞

n

(

|an|
|an+1|

− 1

)

> 1�∑

n=1

∞
an converges (6.66)

but the divergent part cannot, that is

limsup
n�∞

n

(

|an|
|an+1|

− 1

)

< 1�∑

n=1

∞
an diverges (6.67)

is not true due to the existence of convergent sequences such as
∑

n=1
∞ (−1)n+1

n
.

If we consider even slower convergent series, such as

∑

n=1

∞
1

n (log n)α
,

∑

n=1

∞
1

n (log n) (log (logn))
 (log (
 log n))α
(6.68)

for α > 1 (the proof of convergence of these series is similar to that of the generalized harmonic series), we
will obtain even sharper tests (Gauss’ test from the former, Bertrand’s test from the latter), but the formulas
become quite baroque and few can remember them.

Finally let’s look at a fun example.

Example 6.42. We know that the harmonic series
∑

n=1
∞ 1

n
diverges to ∞. Now consider the sequence

obtained by dropping all terms involving 9:

1+
1

2
+
 +

1

8
+

1

9
+

1

10
+
 +

1

18
+

1

19
+
 +

1

88
+

1

89
+

1

90
+

1

91
+

1

92
+
 (6.69)

Does this series converge?

As it is a non-negative sequence, we only need to check whether it’s bounded above (Theorem 6.30). We
have,

1 +
 +
1

8
< 8, (6.70)

(

1

10
+
 +

1

18

)

+
 +

(

1

80
+
 1

88

)

< 8 · 9

10
(6.71)

In general, there are 8 · 9k terms between 10−k and
1

10k+1− 1
, so their sum is bounded above by 8 ·

( 9

10

)

k.
Overall the sum is bounded above by

∑

n=0

∞
8 ·
(

9

10

)n

=8 · 1

1− 9

10

= 80. (6.72)

Therefore the new series converges.

Remark 6.43. Obviously we can try to study the sequence resulted from deleting all terms involving other

digits, or sequence of numbers. For example we can delete all terms involving the combination 43, that is
1

4352

is deleted while
1

4537
is not. We can even play some silly games such as deleting all terms involving 121221,

or someone’s birthday. The resulting sequences are all convergent.



Example 6.44. (Fermat’s Last Theorem) This is taken from the blog of Terence Tao of UCLA6.1. We
all know that Fermat’s Last Theorem claims that

xn + yn = zn, x, y, z ∈N (6.73)

does not have any solution when n > 3. On the other hand, it is well-known that when n = 2, there are
infinitely many solutions. But why? What’s the difference between n = 2 and n > 2? It turns out that we
can realize some difference through knowledge of convergence/divergence of infinite series.

Let’s consider the chance of three numbers a, b, a + b are all the nth power of a natural number. If we
treat a as a typical number of size a, then it’s chance of being an nth power is roughly a1/n/a. Ignoring the
relation between a, b, a + b, we have the following probability for a, b, a+ b solving the equation (6.73):

a
1

n
−1

b
1

n
−1

(a + b)
1

n
−1

. (6.74)

Now consider all numbers a, b, we sum up the probabilities:

I7∑

a=1

∞
∑

b=1

∞
[

a
1

n
−1

b
1

n
−1

(a + b)
1

n
−1
]

(6.75)

and apply the following intuition based on the so-called Borel-Cantelli Lemma in probability:

If I <∞, then the chance of (6.73) having a solution is very low, while if I =∞, the chance
is very high.

We notice that I has perfect symmetry between a and b, which means

I = 2
∑

a=1

∞
∑

b=1

a−1
[

a
1

n
−1

b
1

n
−1

(a + b)
1

n
−1
]

+
∑

a=1

∞
a

2

n
−2

(2 a)
1

n
−1

. (6.76)

It is clear that the second series converges for all n > 2 so can be ignored for our purpose.
Now consider

J =
∑

a=1

∞
∑

b=1

a−1
[

a
1

n
−1

b
1

n
−1

(a + b)
1

n
−1
]

. (6.77)

When 1 6 b6 a− 1, we have a < a + b < 2 a therefore

∑

a=1

∞
∑

b=1

a−1

a
1

n
−1

b
1

n
−1

(2 a)
1

n
−1

<J <
∑

a=1

∞
∑

b=1

a−1

a
1

n
−1

b
1

n
−1

(a)
1

n
−1

(6.78)

which gives

2
1

n
−1
∑

a=1

∞
∑

b=1

a−1

a
2

n
−2

b
1

n
−1

<J <
∑

a=1

∞
∑

b=1

a−1

a
2

n
−2

b
1

n
−1

. (6.79)

So finally all we need to study is the convergence/divergence of

K =
∑

a=1

∞
∑

b=1

a−1

a
2

n
−2

b
1

n
−1

=
∑

a=1

∞ [

a
2

n
−2
∑

b=1

a−1

b
1

n
−1

]

. (6.80)

We have (see HW7 Prob. 6)
∑

b=1

a−1

b
1

n
−1∼

∫

1

a−1

x
1

n
−1

dx∼ a
1

n. (6.81)

Therefore

K ∼
∑

a=1

∞
a

3

n
−2

(6.82)

which is convergent when n > 4 while divergent when n= 2.

6.1. The probabilistic heuristic justification of the ABC conjecture, link at http://terrytao.wordpress.com/2012/09/18/the-
probabilistic-heuristic-justification-of-the-abc-conjecture/



Remark 6.45. The case n = 3 is a bit tricky here. The series
∑

a=1
∞

a
3

n
−2

becomes the Harmonic series
∑

a=1
∞

a−1 which is the borderline between convergence and divergence. Our argument does not provide any

insight on why x3 + y3 = z3 should not have solutions.


