Math 314 A1 Fall 2012 Homework 6 Solutions

Due Thursday Nov. 22.
5:30pm (Assignment box CAB 3rd floor)

- Related sections in notes: $\S 5.1-\S 5.2$. Note that improper integral is not covered in this homework.

Problem 1. ($2 \mathbf{p t s}$) Are the following functions integrable on $[0,1]$? Justify your answers.

$$
f_{1}(x)=\left\{\begin{array}{ll}
x^{-1 / 3} & 0<x \leqslant 1 \tag{1}\\
0 & x=0
\end{array}, \quad f_{2}(x)=\left\{\begin{array}{ll}
\frac{\sin x}{x} & 0<x \leqslant 1 \\
1 & x=0
\end{array} .\right.\right.
$$

Problem 2. (3 pts) Let $f(x)$ be integrable on $[a, b]$. Let $c \in \mathbb{R}$. Prove by definition that $c f(x)$ is integrable and $\int_{a}^{b}(c f)(x) \mathrm{d} x=c \int_{a}^{b} f(x) \mathrm{d} x$. (Note that you need to discuss the sign of c)

Problem 3. (2 pts) Let $f(x), g(x)$ be integrable functions on $[a, b]$. Prove by definition that if $f(x) \leqslant g(x)$ for all $x \in[a, b]$, then $\int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x$.

Problem 4. (3 pts) Prove that
a) If $f(x)$ is integrable then so is $|f(x)|$
b) and $\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leqslant \int_{a}^{b}|f(x)| \mathrm{d} x$.
c) It is true that $|f(x)|$ is integrable $\Longrightarrow f(x)$ is integrable? Justify your answer.

Problem 5. (6 pts) Calculate the following integrals.

$$
\begin{equation*}
I_{1}=\int_{0}^{\pi} e^{x} \sin x \mathrm{~d} x ; \quad I_{2}=\int_{1}^{e} x \ln x \mathrm{~d} x ; \quad I_{3}=\int_{1}^{2} \frac{\mathrm{~d} x}{e^{x}+e^{-x}} \tag{2}
\end{equation*}
$$

Problem 6. (2 pts) Let $m \in \mathbb{N} \cup\{0\}=\{0,1,2,3, \ldots\}$. Calculate

$$
\begin{equation*}
I_{m}=\int_{0}^{\pi / 2}(\sin x)^{m} \mathrm{~d} x \text { and } J_{m}=\int_{0}^{\pi / 2}(\cos x)^{m} \mathrm{~d} x \tag{3}
\end{equation*}
$$

(Hint: First show $I_{m}=J_{m}$ through change of variable. Then apply integration by parts).

Problem 7. (2 pts) Let f be continuous on $[a, b]$. Let $F(x)=\int_{-x}^{2 x} f(t) \mathrm{d} t$. Calculate $F^{\prime}(x)$. Justify your answer. (Hint: define $G(x)=\int_{0}^{x} f(t) \mathrm{d} t$ and use G to represent $F(x)$.)

