Math 314 A1 Fall 2012 Homework 5

Due Friday Nov. 9.

5:30pm (Assignment box CAB 3rd floor)

- Related sections in the notes: $\S 4.1-\S 4.3$.

Problem 1. (4 pts)
a) (2 pts) Prove by definition that $f(x)=|x|$ is not differentiable at $x_{0}=0$ but differentiable at all $x_{0} \neq 0$. Find $f^{\prime}(x)$ for $x \neq 0$.
b) ($\mathbf{1} \mathbf{p t)}$) Prove that if f is differentiable at x_{0}, then

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}=f^{\prime}\left(x_{0}\right) . \tag{1}
\end{equation*}
$$

c) $(\mathbf{1} \mathbf{~ p t})$ Is it true that if

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}-h\right)}{2 h}=L \in \mathbb{R} \tag{2}
\end{equation*}
$$

then f is differentiable at x_{0} ? Justify your answer.

Problem 2. ($\mathbf{3} \mathbf{~ p t s) ~ C a l c u l a t e ~ d e r i v a t i v e s ~ o f ~ t h e ~ f o l l o w i n g ~ f u n c t i o n s . ~ Y o u ~ c a n ~ u s e ~}\left(e^{x}\right)^{\prime}=e^{x},(\cos x)^{\prime}=$ $-\sin x,(\sin x)^{\prime}=\cos x,(\ln x)^{\prime}=\frac{1}{x}$.

$$
\begin{equation*}
f_{1}(x)=\cos \left[\frac{e^{x}(x-2)}{\sin x}\right] \quad x \neq 0 ; \quad f_{2}(x)=\ln |x| \quad x \neq 0 ; \quad f_{3}(x)=\arccos x \tag{3}
\end{equation*}
$$

Problem 3. (4 pts)
a) (2 pt) Apply L'Hospital's rule to prove $\lim _{t \rightarrow \infty} t^{n} e^{-t}=0$ for all $n \in \mathbb{N}$.
b) (2 pts) Prove that $f(x)=\left\{\begin{array}{ll}\exp \left[-\frac{1}{x}\right] & x>0 \\ 0 & x \leqslant 0\end{array}\right.$ is differentiable at all $x \in \mathbb{R}$. Find $f^{\prime}(x)$.

Problem 4. (3 pts) Prove

$$
\begin{equation*}
3 \arccos x-\arccos \left(3 x-4 x^{3}\right)=\pi, \quad|x|<1 / 2 . \tag{4}
\end{equation*}
$$

Problem 5. (3 pts) Prove

$$
\begin{equation*}
\frac{2}{\pi} \leqslant \frac{\sin x}{x} \leqslant 1 \tag{5}
\end{equation*}
$$

for all $0 \leqslant x \leqslant \pi / 2$. (Hint: Show $f(x)=\frac{\sin x}{x}$ is decreasing).
Problem 6. (3 pts) Let $f(x)=\sin 2 x$.
a) ($\mathbf{1} \mathbf{~ p t}$) Calculate its Taylor polynomial of degree 3 at $x_{0}=0$ with Lagrange remainder;
b) (2 pts) Denote this polynomial by $T_{3}(x)$ (does not include the remainder term). Prove that $\left|\sin 2 x-T_{3}(x)\right|<\frac{1}{120}$ for all $-\frac{1}{2}<x<\frac{1}{2}$.

