4. Differentiation

4.1. Derivatives.

4.1.1. Definition.

Definition 4.1. Let f be a real function. At a point x_{0} inside its domain, if the limit

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{4.1}
\end{equation*}
$$

exists, we say f is differentiable at x_{0}, and call the limit its derivative at x_{0}, denoted $f^{\prime}\left(x_{0}\right)$. If the limit does not exist, we say f is not differentiable at x_{0}. If f is differentiable at all $x \in E$ where $E \subseteq \mathbb{R}$, we say f is differentiable on E. If f is differentiable at every point of its domain, we say f is differentiable.

Remark 4.2. Equivalently, one can define differentiability through the limit

$$
\begin{equation*}
\lim _{\delta \longrightarrow 0} \frac{f\left(x_{0}+\delta\right)-f\left(x_{0}\right)}{\delta} \tag{4.2}
\end{equation*}
$$

That is f is differentiable at x_{0} if the above limit exists.
Remark 4.3. Recall that in the definition of limits, we require $0<\left|x-x_{0}\right|$. This is crucial in the limit (4.1) since at $x=x_{0}$ we have $\frac{0}{0}$.

Example 4.4. Let $f(x)=x^{n}$ with $n \in \mathbb{N} \cup\{0\}$. Study its differetiability.
Solution. When $n=0$ we have $f(x)=1$ for all x. Then for every $x_{0} \in \mathbb{R}$,

So $\left(x^{0}\right)^{\prime}=0$.

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \longrightarrow x_{0}} 0=0 \tag{4.3}
\end{equation*}
$$

When $n=1$ we have $f(x)=x$. For every $x_{0} \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \longrightarrow x_{0}} \frac{x-x_{0}}{x-x_{0}}=\lim _{x \longrightarrow x_{0}} 1=1 \tag{4.4}
\end{equation*}
$$

So $\left(x^{1}\right)^{\prime}=1$.
For $n \geqslant 2$ we have for every $x_{0} \in \mathbb{R}$,

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \longrightarrow x_{0}} \frac{x^{n}-x_{0}^{n}}{x-x_{0}}=\lim _{x \longrightarrow x_{0}}\left(x^{n-1}+x^{n-2} x_{0}+\cdots+x x_{0}^{n-2}+x_{0}^{n-1}\right)=n x_{0}^{n-1} \tag{4.5}
\end{equation*}
$$

Therefore $\left(x^{n}\right)^{\prime}=n x^{n-1}$.
From the above it is easy to obtain
Lemma 4.5. (Derivative of constant functions) Let $f(x)=a$ for all x in its domain. Then $f^{\prime}(x)=0$.
Proof. Left as exercise.
Lemma 4.6. (Differentiable functions are continuous) If $f(x)$ is differentiable at x_{0}, then $f(x)$ is continuous at x_{0}.

Proof. Since $f(x)$ is differentiable at x_{0}, we have by definition

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=L \in \mathbb{R} \tag{4.6}
\end{equation*}
$$

Now write

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right) \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{4.7}
\end{equation*}
$$

and take limit $x \longrightarrow x_{0}$, we have

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)+\left[\lim _{x \rightarrow x_{0}} x-x_{0}\right]\left[\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right]=f\left(x_{0}\right)+0 \cdot L=f\left(x_{0}\right) \tag{4.8}
\end{equation*}
$$

Therefore $f(x)$ is continuous at x_{0}.
Remark 4.7. Note that one can also prove using definition as follows. Since $f(x)$ is differentiable at x_{0}, we have by definition

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=L \in \mathbb{R} \tag{4.9}
\end{equation*}
$$

Take $\delta_{1}>0$ such that for all $0<\left|x-x_{0}\right|<\delta_{1}$,

$$
\begin{equation*}
\left|\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-L\right|<1 \Longrightarrow\left|f(x)-f\left(x_{0}\right)\right|<(|L|+1)\left|x-x_{0}\right| . \tag{4.10}
\end{equation*}
$$

Now for any $\varepsilon>0$, take $\delta=\min \left\{\delta_{1}, \frac{\varepsilon}{|L|+1}\right\}$. We have, for all $0<\left|x-x_{0}\right|<\delta$,

$$
\begin{equation*}
\left|f(x)-f\left(x_{0}\right)\right|<(|L|+1)\left|x-x_{0}\right|<(|L|+1) \delta \leqslant \varepsilon \tag{4.11}
\end{equation*}
$$

4.1.2. Operations of derivatives.

Theorem 4.8. (Arithmetics of derivatives) Let f, g be differentiable at x_{0}. Then
a) $f \pm g$ is differentiable at x_{0} with $(f \pm g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \pm g^{\prime}\left(x_{0}\right)$.
b) (Leibniz rule) $f g$ is differentiable at x_{0} with $(f g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)$.
c) If $g\left(x_{0}\right) \neq 0$, then f / g is differentiable at x_{0} with

$$
\begin{equation*}
\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}} \tag{4.12}
\end{equation*}
$$

Proof.

a) We have

$$
\begin{equation*}
\frac{(f+g)(x)-(f+g)\left(x_{0}\right)}{x-x_{0}}=\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}+\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}} . \tag{4.13}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}}\left[\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}+\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}\right]=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right) \tag{4.14}
\end{equation*}
$$

The limit

$$
\begin{equation*}
\frac{(f+g)(x)-(f+g)\left(x_{0}\right)}{x-x_{0}} \tag{4.15}
\end{equation*}
$$

also exists and equals $f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)$. The case $f-g$ can be proved similarly.
b) We have

$$
\begin{equation*}
\frac{(f g)(x)-(f g)\left(x_{0}\right)}{x-x_{0}}=f(x) \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}+g\left(x_{0}\right) \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} . \tag{4.16}
\end{equation*}
$$

Since

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right) ; \quad \lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}=g^{\prime}\left(x_{0}\right) ; \quad \lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right) \tag{4.17}
\end{equation*}
$$

we reach

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} \frac{(f g)(x)-(f g)\left(x_{0}\right)}{x-x_{0}}=f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) g\left(x_{0}\right) \tag{4.18}
\end{equation*}
$$

c) We only prove the last one. In light of b), it suffices to prove

Write

$$
\begin{equation*}
\left(\frac{1}{g}\right)^{\prime}=-\frac{g^{\prime}\left(x_{0}\right)}{g^{2}\left(x_{0}\right)} \tag{4.19}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\frac{1}{g(x)}-\frac{1}{g\left(x_{0}\right)}}{x-x_{0}}=-\frac{\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}}{g(x) g\left(x_{0}\right)} . \tag{4.20}
\end{equation*}
$$

Note that both the denominator and the numerator have limits, and furthermore the limit of the denominator is not 0 . So we have the limit of the ratio exists and

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}}\left[-\frac{\frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}}{g(x) g\left(x_{0}\right)}\right]=-\frac{\lim _{x \longrightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}}{\lim _{x \longrightarrow x_{0}} g(x) g\left(x_{0}\right)}=-\frac{g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}} . \tag{4.21}
\end{equation*}
$$

Thus ends the proof.
Example 4.9. Compute $\left(x^{-n}\right)^{\prime}$ for $n \in \mathbb{N}$.
Solution. Note that the domain of x^{-n} is $\mathbb{R} \backslash\{0\}$. For any $x_{0} \in \mathbb{R} \backslash\{0\}$ we have $x_{0}^{n} \neq 0$, so

$$
\begin{equation*}
\left(x^{-n}\right)^{\prime}\left(x_{0}\right)=\left(\frac{1}{x^{n}}\right)^{\prime}\left(x_{0}\right)=-\frac{\left.\left(x^{n}\right)^{\prime}\right|_{x=x_{0}}}{\left.\left(x^{n}\right)^{2}\right|_{x=x_{0}}}=-n x_{0}^{-n-1} \tag{4.22}
\end{equation*}
$$

So $\left(x^{-n}\right)^{\prime}=-n x^{-n-1}$.
Theorem 4.10. (Chain rule) If f is differentiable at x_{0} and g is differentiable at $f\left(x_{0}\right)$, then the composite function $g \circ f$ is differentiable at x_{0} and satisfy

$$
\begin{equation*}
(g \circ f)^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right) \tag{4.23}
\end{equation*}
$$

Proof. Set

$$
h(y):= \begin{cases}\frac{g(y)-g\left(f\left(x_{0}\right)\right)}{y-f\left(x_{0}\right)} & y \neq f\left(x_{0}\right) \tag{4.24}\\ g^{\prime}\left(f\left(x_{0}\right)\right) & y=f\left(x_{0}\right)\end{cases}
$$

Then we have $h(y)$ satisfying $\lim _{y \longrightarrow f\left(x_{0}\right)} h(y)=h\left(f\left(x_{0}\right)\right)$.
Now write

$$
\begin{equation*}
\frac{(g \circ f)(x)-(g \circ f)\left(x_{0}\right)}{x-x_{0}}=h(f(x)) \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{4.25}
\end{equation*}
$$

By Lemma 4.6 we have $\lim _{x \longrightarrow x_{0}} f(x)=f\left(x_{0}\right)$. Thus taking limit of both sides of (4.25) we reach

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{(g \circ f)(x)-(g \circ f)\left(x_{0}\right)}{x-x_{0}}=\left(\lim _{x \longrightarrow x_{0}} h(f(x))\right)\left(\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\right)=h\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right) \tag{4.26}
\end{equation*}
$$

and the proof ends.
Remark 4.11. Naturally one may want to prove through
and try to show

$$
\begin{equation*}
\frac{(g \circ f)(x)-(g \circ f)\left(x_{0}\right)}{x-x_{0}}=\frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{f(x)-f\left(x_{0}\right)} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{4.27}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{g(f(x))-g\left(f\left(x_{0}\right)\right)}{f(x)-f\left(x_{0}\right)}=g^{\prime}\left(f\left(x_{0}\right)\right) \tag{4.28}
\end{equation*}
$$

However this does not work because it may happen that $f(x)-f\left(x_{0}\right)=0$. The above trick overcomes this difficulty.

Theorem 4.12. (Derivative of inverse function) Let f be differentiable at x_{0} with $f^{\prime}\left(x_{0}\right) \neq 0$. Then if f has an inverse function g, then g is differentiable at $y_{0}=f\left(x_{0}\right)$ and satisfies $g^{\prime}\left(f\left(x_{0}\right)\right)=1 / f^{\prime}\left(x_{0}\right)$ or equivalently $g^{\prime}\left(y_{0}\right)=1 / f^{\prime}\left(g\left(y_{0}\right)\right)$.

Proof. Since f has an inverse function, f is either strictly increasing or strictly decreasing. Furthermore g is continuous, and also strictly increasing or decreasing.

Let $y_{0}=f\left(x_{0}\right)$. We compute

$$
\begin{equation*}
\frac{g(y)-g\left(y_{0}\right)}{y-y_{0}}=\frac{g(y)-g\left(y_{0}\right)}{f(g(y))-f\left(g\left(y_{0}\right)\right)}=\left(\frac{f(g(y))-f\left(g\left(y_{0}\right)\right)}{g(y)-g\left(y_{0}\right)}\right)^{-1} \tag{4.29}
\end{equation*}
$$

Note that as f, g are both strictly increasing/decreasing, all the denominators in the above formula are nonzero. To show that the limit exists, we recall that $\lim F(x)$ exists at x_{0} if for all $x_{n} \longrightarrow x_{0}$ the limit of $F\left(x_{n}\right)$ exists.

Take $y_{n} \longrightarrow y_{0}$. By continuity of g we have $g\left(y_{n}\right) \longrightarrow g\left(y_{0}\right)$. The differentiability of f at $g\left(y_{0}\right)$, that is the existence of the limit $\lim _{x \longrightarrow g\left(y_{0}\right)} \frac{f(x)-f\left(g\left(y_{0}\right)\right)}{x-g\left(y_{0}\right)}$, then gives

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \frac{f\left(g\left(y_{n}\right)\right)-f\left(g\left(y_{0}\right)\right)}{g\left(y_{n}\right)-g\left(y_{0}\right)}=f^{\prime}\left(g\left(y_{0}\right)\right)=f^{\prime}\left(x_{0}\right) \neq 0 \tag{4.30}
\end{equation*}
$$

Thus ends the proof.
Example 4.13. Assume that we are given $\tan ^{\prime}(x)=\frac{1}{\cos ^{2} x}$, find arctan' .
Solution. We have

$$
\begin{equation*}
\arctan ^{\prime}(y)=\frac{1}{\tan ^{\prime}(x)}=\cos ^{2}(x) \tag{4.31}
\end{equation*}
$$

What we need now is to represent $\cos ^{2}(x)$ by $y=\tan x$. It is clear that $\cos ^{2} x=\frac{1}{1+y^{2}}$ so $\arctan ^{\prime}(y)=\frac{1}{1+y^{2}}$.
Example 4.14. Assume that we are given $\left(e^{x}\right)^{\prime}=e^{x}$. Find $(\ln x)^{\prime}$.
Solution. We have

$$
\begin{equation*}
(\ln)^{\prime}(y)=\frac{1}{\left(e^{x}\right)^{\prime}}=\frac{1}{e^{x}}=\frac{1}{y} \tag{4.32}
\end{equation*}
$$

since $y=e^{x}$.
Example 4.15. $\left(f^{\prime}\left(x_{0}\right)=0\right)$ Consider $f(x)=x^{3}$. Then $g(y)=y^{1 / 3}$. We see that at $x_{0}=0, g$ is not differentiable.

Theorem 4.16. (A Toy L'Hospital Rule) Let f, g be differentiable at x_{0}, and furthermore $f\left(x_{0}\right)=g\left(x_{0}\right)=$ 0 . Then if $g^{\prime}\left(x_{0}\right) \neq 0$, we have

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \tag{4.33}
\end{equation*}
$$

Proof. We have

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \longrightarrow x_{0}} \frac{\left(f(x)-f\left(x_{0}\right)\right) /\left(x-x_{0}\right)}{\left(g(x)-g\left(x_{0}\right)\right) /\left(x-x_{0}\right)}=\frac{\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}}{\lim _{x \rightarrow x_{0}} \frac{g(x)-g\left(x_{0}\right)}{x-x_{0}}}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \tag{4.34}
\end{equation*}
$$

Thus ends the proof.
Example 4.17. We have

$$
\begin{gather*}
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\frac{\left.\left(x^{2}-1\right)^{\prime}\right|_{x=1}}{\left.(x-1)^{\prime}\right|_{x=1}}=\frac{2}{1}=2 . \tag{4.35}\\
\lim _{x \longrightarrow 0} \frac{\sin x}{x}=\frac{\cos 0}{1}=1 . \tag{4.36}
\end{gather*}
$$

Remark 4.18. The applicability of the above Toy L'Hospital rule is limited. For example, it cannot deal with $\lim _{x \longrightarrow 0} \frac{1-\sin x}{x^{2}}$. We need the real L'Hospital rule for that.

4.2. Mean Value Theorem.

4.2.1. The Theorem.

Definition 4.19. (Local maximum/minimum) Let $f:[a, b] \mapsto \mathbb{R}$ be a real function. We say f has a local maximum at $x_{0} \in(a, b)$ if there exists some $\delta>0$ such that $f(x) \leqslant f\left(x_{0}\right)$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. This x_{0} is said to be a local maximizer. We say f has a local minimum at x_{0} if there exists some $\delta>0$ such that $f(x) \geqslant f\left(x_{0}\right)$ for all $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$. This x_{0} is said to be a local minimizer.

Example 4.20. Let $f(x)=1$ for all $x \in \mathbb{R}$ be the constant function. Then every $x \in \mathbb{R}$ is both a local maximizer and a local minimizer.

Example 4.21. Consider $f(x)=\sin (1 / x)$ defined over $x \neq 0$. Then its local maximums are $\frac{2}{(4 k+1) \pi}, k \in \mathbb{Z}$ while its local minimums are $\frac{2}{(4 k+3) \pi}, k \in \mathbb{Z}$.

Theorem 4.22. If f is differentiable at its local maximizer or minimizer, then the derivative is 0 there.
Proof. Assume x_{0} is a local maximizer. Take $x_{n} \in\left(x_{0}, x_{0}+\delta\right)$ with $\lim _{n \longrightarrow \infty} x_{n}=x_{0}$. Since f is differentiable at x_{0}, we have

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{n \longrightarrow \infty} \frac{f\left(x_{n}\right)-f\left(x_{0}\right)}{x-x_{0}} . \tag{4.37}
\end{equation*}
$$

But as $f\left(x_{n}\right)-f\left(x_{0}\right) \leqslant 0$ for all n, by comparison theorem we reach $f^{\prime}\left(x_{0}\right) \leqslant 0$.
Now take $x_{n} \in\left(x_{0}-\delta, x_{0}\right)$ with $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Similar argument as above gives $f^{\prime}\left(x_{0}\right) \geqslant 0$. Therefore $f^{\prime}\left(x_{0}\right)=0$.

The proof for the local minimizer case is similar and left as exercise.
Remark 4.23. It may happen that f is not differentiable at its maximizer or minimizer. For example $f(x)=|x|$.

Remark 4.24. Theorem 4.22 may be the most useful analysis theorem in real life, where the need for finding maximizer/minimizer of certain functions (representing cost, profit, ...) is ever increasing.

Example 4.25. Consider $f(x)=x \sin (1 / x)$. Then its local maximizers and minimizers can be obtained by solving

$$
\begin{equation*}
0=f^{\prime}(x)=\sin (1 / x)-\frac{x}{x^{2}} \cos (1 / x) \Longrightarrow \tan (1 / x)=1 / x \tag{4.38}
\end{equation*}
$$

The solutions have to be obtained numerically as it is not possible to represent them using elementary functions.

Theorem 4.26. (Rolle's Theorem) Let f be continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$ then there is $\xi \in(a, b)$ such that $f^{\prime}(\xi)=0$.

Remark 4.27. Before proving the theorem, we illustrate the necessity of the assumptions.

- f is continuous on $[a, b]$. If not, $f(x)=\left\{\begin{array}{ll}x & 0 \leqslant x<1 \\ 0 & x=1\end{array}\right.$.
- $\quad f$ is differentiable on (a, b). If not, $f(x)=|x|$ over $[-1,1]$.

Proof. Since f is continuous on $[a, b]$, there are $x_{\min }, x_{\max } \in[a, b]$ such that $f\left(x_{\min }\right)$ is the minimum and $f\left(x_{\max }\right)$ is the maximum. If one of them is different from a, b, then $f^{\prime}=0$ there due to Theorem 4.22. Otherwise we have $f(a)=f(b)=f\left(x_{\min }\right)=f\left(x_{\max }\right) \Longrightarrow f(x)$ is constant on $[a, b]$, consequently $f^{\prime}(x)=0$ for all $x \in(a, b)$.

Theorem 4.28. (Rolle over \mathbb{R}) Let f be continuous and differentiable on \mathbb{R}. If $\lim _{x \rightarrow+\infty} f(x)=$ $\lim _{x \longrightarrow-\infty} f(x)$, then there is $\xi \in \mathbb{R}$ such that $f^{\prime}(\xi)=0$.

Proof. We discuss three cases. Let $\lim _{x \longrightarrow \infty} f=\lim _{x \longrightarrow-\infty} f=a$. Consider $A:=\sup _{\mathbb{R}} f$ and $B:=\inf _{\mathbb{R}} f$. Since f is continuous on $\mathbb{R}, A, B \in \mathbb{R}$ cannot be infinity.4.1

If $A=B=a$, then f is constant and $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.
Otherwise, we have either $A>a$ or $B<a$ (or both). Assume $A>a$ (the case $B<a$ is similar). Take x_{n} such that $f\left(x_{n}\right) \longrightarrow \sup _{\mathbb{R}} f>a$. Since $\lim _{|x| \longrightarrow \infty} f(x)=a$, there is $M>0$ such that $f(x)<\left(\sup _{\mathbb{R}} f+a\right) / 2$ for all $|x|>M$. Consequently there is $N \in \mathbb{N}$ such that for all $n>N,\left|x_{n}\right| \leqslant M$. Now apply Bolzano-Weierstrass theorem, we have a subsequence $x_{n_{k}} \longrightarrow x_{0} \in \mathbb{R}$. By continuity of f we have

$$
\begin{equation*}
f\left(x_{0}\right)=\lim _{k \longrightarrow \infty} f\left(x_{n_{k}}\right)=\sup _{\mathbb{R}} f(x) \tag{4.39}
\end{equation*}
$$

therefore x_{0} is a maximizer of f. Consequently $f^{\prime}\left(x_{0}\right)=0$.
Theorem 4.29. (Mean Value Theorem) Let f be continuous on $[a, b]$ and differentiable on (a, b). Then there is a point $\xi \in(a, b)$ such that

$$
\begin{equation*}
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} \tag{4.40}
\end{equation*}
$$

Proof. Set $g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$ and apply Rolle's Theorem.
Remark 4.30. When the interval has infinite size, the Mean Value Theorem may not hold (even if we accept $(f(b)-f(a)) / \infty=0)$. An example is $f(x)=\arctan x$.

4.2.2. Applications.

Theorem 4.31. Let f be defined over $[a, b] \subseteq \mathbb{R}$. Here a, b can be extended real numbers. Suppose f is continuous on $[a, b]$ and differentiable on (a, b). Then
a) f is increasing if and only if $f^{\prime}(x) \geqslant 0$ for all $x \in(a, b)$; f is decreasing if and only if $f^{\prime}(x) \leqslant 0$ for all $x \in(a, b)$.
b) f is strictly increasing if $f^{\prime}(x)>0$ for all $x \in(a, b)$; f is strictly decreasing if $f^{\prime}(x)<0$ for all $x \in(a, b)$.
c) f is a constant if and only if $f^{\prime}(x)=0$ for all $x \in(a, b)$.

Proof.

a) We prove the increasing case here.

Let f be increasing, we show $f^{\prime}(x) \geqslant 0$. Take any $x_{0} \in(a, b)$. Since f is increasing, $f(x) \geqslant f\left(x_{0}\right)$ when $x>x_{0}$ and $f(x) \leqslant f\left(x_{0}\right)$ when $x<x_{0}$, thus

$$
\begin{equation*}
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \geqslant 0 \tag{4.41}
\end{equation*}
$$

for all $x \neq x_{0}$. As f is differentiable at x_{0}, taking limit of both sides leads to $f^{\prime}\left(x_{0}\right) \geqslant 0$.
Let $f^{\prime}(x) \geqslant 0$ for all $x \in(a, b)$. Assume f is not increasing. Then there are $x_{1}<x_{2}$ such that $f\left(x_{1}\right)>f\left(x_{2}\right)$. Apply Mean Value Theorem we have there must exist $\xi \in\left(x_{1}, x_{2}\right) \subseteq(a, b)$ such that

$$
\begin{equation*}
f^{\prime}(\xi)=\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}<0 \tag{4.42}
\end{equation*}
$$

[^0]Contradiction.
b) The proof is similar to the corresponding part of a).
c) The proof is left as exercise.

Remark 4.32. Note that $f(x)$ strictly increasing $\nRightarrow f^{\prime}(x)>0$ everywhere. An examples is $f(x)=x^{3}$.
Example 4.33. Prove that $e^{x}>1+x$ for all $x>0$.
Proof. Let $f(x)=e^{x}-1-x$. We see that $f(0)=0$. To show $f(x)>0$ it suffices to show f is strictly increasing. Calculate

$$
\begin{equation*}
f^{\prime}(x)=e^{x}-1>0 \tag{4.43}
\end{equation*}
$$

for all $x>0$. Therefore f is strictly increasing and consequently $f(x)>0$ for all $x>0$.
Example 4.34. Prove

$$
\begin{equation*}
\frac{x}{1+x} \leqslant \ln (1+x) \leqslant x \tag{4.44}
\end{equation*}
$$

for all $x>-1$.
Proof. For the first inequality let $f(x)=\ln (1+x)-\frac{x}{1+x}$. We have $f(0)=0$ so all we need to show is $f(x) \geqslant f(0)$. Calculate

$$
\begin{equation*}
f^{\prime}(x)=\frac{x}{(1+x)^{2}} . \tag{4.45}
\end{equation*}
$$

Thus $f(x) \geqslant 0$ when $x>0$ and $f(x) \leqslant 0$ when $x<0$. Consequently $f(x) \geqslant f(0)$.
For the second inequality let $g(x)=x-\ln (1+x)$. We have $g(0)=0$ and need to show $g(x) \geqslant g(0)$ for all x. Calculate

$$
\begin{equation*}
g^{\prime}(x)=\frac{x}{1+x} \tag{4.46}
\end{equation*}
$$

For $x>-1$ we have $g^{\prime}(x)>0$ if $x>0$ and <0 if $x<0$.
Example 4.35. Prove

$$
\begin{equation*}
\arctan \frac{1+x}{1-x}=\arctan x+\frac{\pi}{4} \tag{4.47}
\end{equation*}
$$

for $-1<x<1$.

Proof. Set $x=0$ we have

$$
\begin{equation*}
\arctan \frac{1+0}{1-0}=\arctan 0+\frac{\pi}{4} \tag{4.48}
\end{equation*}
$$

Therefore all we need to show is

$$
\begin{equation*}
h(x):=\arctan \frac{1+x}{1-x}-\arctan x \tag{4.49}
\end{equation*}
$$

is a constant for $-1<x<1$. Once this is shown, we have $h(x)=h(0)=\frac{\pi}{4}$.
Taking derivative, we have

$$
\begin{equation*}
h^{\prime}(x)=\frac{\left(\frac{1+x}{1-x}\right)^{\prime}}{1+\left(\frac{1+x}{1-x}\right)^{2}}-\frac{1}{1+x^{2}}=\frac{\frac{1 \cdot(1-x)-(-1) \cdot(1+x)}{(1-x)^{2}}}{\frac{(1-x)^{2}+(1+x)^{2}}{(1-x)^{2}}}-\frac{1}{1+x^{2}}=0 . \tag{4.50}
\end{equation*}
$$

Thus ends the proof.

4.2.3. L'Hospital's Rule.

We have seen that if f, g are differentiable at x_{0} and $g^{\prime}\left(x_{0}\right) \neq 0$, then

$$
\begin{equation*}
\lim \frac{f}{g}=\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)} \tag{4.51}
\end{equation*}
$$

More generally, we have
Theorem 4.36. (L'Hospital's Rule) Let $x_{0} \in(a, b)$ and $f(x), g(x)$ be differentiable on $(a, b) \backslash\left\{x_{0}\right\}$. Assume that $\lim _{x \longrightarrow x_{0}} f(x)=\lim _{x \longrightarrow x_{0}} g(x)=0$. Then if $\lim _{x \longrightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists and $g^{\prime}(x) \neq 0$ for $x \in(a, b)$, the following holds.

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)}{g(x)}=\lim _{x \longrightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)} \tag{4.52}
\end{equation*}
$$

To prove it, we need the following
Theorem 4.37. (Cauchy's extended mean value theorem) Let f, g be continuous over $[a, b]$ and differentiable over (a, b). Then there is $\xi \in(a, b)$ such that

$$
\begin{equation*}
\frac{f(a)-f(b)}{g(a)-g(b)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \tag{4.53}
\end{equation*}
$$

Proof. Take

$$
\begin{equation*}
h(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)} g(x) \tag{4.54}
\end{equation*}
$$

we have $h(a)-h(b)=0 \Longrightarrow h(a)=h(b)$. Application of the mean value theorem gives the desired result.
Proof. (of L'Hospital's Rule) Since $\lim _{x \longrightarrow x_{0}} f(x)=\lim _{x \longrightarrow x_{0}} g(x)=0$ we can define $f\left(x_{0}\right)=g\left(x_{0}\right)=0$. After such definition f, g becomes continuous over (a, b). Now for any $x \in(a, b)$, we have

$$
\begin{equation*}
\frac{f(x)}{g(x)}=\frac{f(x)-f\left(x_{0}\right)}{g(x)-g\left(x_{0}\right)}=\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} \tag{4.55}
\end{equation*}
$$

for some ξ between x, x_{0}, thanks to the extended mean value theorem. Now taking limit $x \longrightarrow x_{0}$, we have $\xi \longrightarrow x_{0}$ and the conclusion follows.

Example 4.38. Find $\lim _{x \longrightarrow 0} \frac{x \sin x}{x^{2}}$.
We see that the conditions for L'Hospital's rule is satisfied. Therefore

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{x \sin x}{x^{2}}=\lim _{x \longrightarrow 0} \frac{\sin x+x \cos x}{2 x}=\lim _{x \longrightarrow 0} \frac{2 \cos x-x \sin x}{2}=1 \tag{4.56}
\end{equation*}
$$

Remark 4.39. L'Hospital's rule still holds when $x_{0}= \pm \infty, \lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)}{g^{\prime}(x)}= \pm \infty$, or $\lim _{x \longrightarrow x_{0}} f, \lim _{x \longrightarrow x_{0}} g=$ $\pm \infty$. The proofs for these generalizations are not required.

Example 4.40. Find $\lim _{x \longrightarrow 0} x \ln x$. We have

$$
\begin{equation*}
\lim _{x \longrightarrow 0} x \ln x=\lim _{x \longrightarrow 0} \frac{\ln x}{1 / x}=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / x^{2}}=\lim _{x \longrightarrow 0}(-x)=0 \tag{4.57}
\end{equation*}
$$

Remark 4.41. L'Hospital's rule only applies to the situations $0 / 0,(\pm \infty) /(\pm \infty)$.

4.3. Taylor Expansion.

4.3.1. Derivative from approximation point of view.

Recall the definition of derivative:

We can re-write it as

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right) \tag{4.58}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}{x-x_{0}}=0 \tag{4.59}
\end{equation*}
$$

Now consider the following problem: Given $f(x)$ differentiable at x_{0}. Find the best first order polynomial $g(x)=a+b\left(x-x_{0}\right)$ to approximate $f(x)$.
Theorem 4.42. The function $G(x):=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ is the best first order polynomial approximate of f at x_{0}, in the following sense: Let $g(x)=a+b\left(x-x_{0}\right)$ be any other first order polynomial, then

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-G(x)}{f(x)-g(x)}=0 \tag{4.60}
\end{equation*}
$$

Proof. First if $a \neq f\left(x_{0}\right)$, we have
so (4.60) holds.

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}}[f(x)-G(x)]=0, \quad \lim _{x \longrightarrow x_{0}}[f(x)-g(x)]=f\left(x_{0}\right)-a \neq 0 \tag{4.61}
\end{equation*}
$$

Now consider $g(x)=f\left(x_{0}\right)+b\left(x-x_{0}\right)$. We have

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} f(x)-G(x)=\lim _{x \longrightarrow x_{0}} f(x)-g(x)=0 \tag{4.62}
\end{equation*}
$$

therefore can apply L'Hospital's rule to reach

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-G(x)}{f(x)-g(x)}=\lim _{x \longrightarrow x_{0}} \frac{f^{\prime}(x)-f^{\prime}\left(x_{0}\right)}{f^{\prime}(x)-b} \tag{4.63}
\end{equation*}
$$

which equals 0 unless $b=f^{\prime}\left(x_{0}\right)$.
Remark 4.43. Note that Theorem 4.42 can also be proved directly, without using L'Hospital's rule:

$$
\begin{equation*}
\frac{f(x)-G(x)}{f(x)-g(x)}=\frac{f(x)-f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)}{f(x)-f\left(x_{0}\right)-b\left(x-x_{0}\right)}=\frac{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-f^{\prime}\left(x_{0}\right)}{\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}-b} \tag{4.64}
\end{equation*}
$$

Taking limit gives the desired result.

4.3.2. Higher order derivatives.

Let $f(x)$ be differentiable on (a, b). Then $f^{\prime}(x)$ is defined for all (a, b) and we can talk about its differentiability and define second order derivative $f^{\prime \prime}(x)$. Similarly we can define $f^{\prime \prime \prime}(x)$ and higher order derivatives. In short, we define $f^{(n)}(x)=\left(f^{(n-1)}(x)\right)^{\prime}$.

Example 4.44. Let $f(x)=e^{3 x}$. Compute $f^{(3)}(x)$.
We have

$$
\begin{equation*}
f^{(3)}(x)=\left(\left(f^{\prime}\right)^{\prime}\right)^{\prime}=\left(\left(3 e^{3 x}\right)^{\prime}\right)^{\prime}=\left(9 e^{3 x}\right)^{\prime}=27 e^{3 x} \tag{4.65}
\end{equation*}
$$

Note that for $f^{(n)}\left(x_{0}\right)$ to exist, $f^{(n-1)}(x)$ must exist over $\left(x_{0}-\delta, x_{0}+\delta\right)$ for some $\delta>0$.

4.3.3. Taylor expansion.

Theorem 4.45. Let f be such that $f^{(k)}(x)$ exists on (a, b) for $k=1,2, \ldots, n-1$, and $f^{(n)}\left(x_{0}\right)$ exists for $x_{0} \in(a, b)$. Denote $P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$. Then $P_{n}(x)$ is the best approximate polynomial for f at x_{0} in the sense that for any other polynomial $Q_{n}(x)$ of order n, we have

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-P_{n}(x)}{f(x)-Q_{n}(x)}=0 \tag{4.66}
\end{equation*}
$$

Proof. Let $Q_{n}(x)=q_{0}+q_{1}\left(x-x_{0}\right)+\cdots+q_{n}\left(x-x_{0}\right)^{n}$. First observe that if $q_{0} \neq f\left(x_{0}\right)$, then

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-P_{n}(x)}{f(x)-Q_{n}(x)}=\frac{0}{f\left(x_{0}\right)-q_{0}}=0 . \tag{4.67}
\end{equation*}
$$

If $q_{0}=f\left(x_{0}\right)$ but $q_{1} \neq f^{\prime}\left(x_{0}\right)$, we have a $\frac{0}{0}$ type ratio and can apply L'Hospital's rule:

$$
\begin{equation*}
\lim _{x \longrightarrow x_{0}} \frac{f(x)-P_{n}(x)}{f(x)-Q_{n}(x)}=\lim _{x \rightarrow x_{0}} \frac{f^{\prime}(x)-\left[f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)+\cdots\right]}{f^{\prime}(x)-\left[q_{1}+q_{2}\left(x-x_{0}\right)+\cdots\right]}=\frac{0}{f^{\prime}\left(x_{0}\right)-q_{1}}=0 . \tag{4.68}
\end{equation*}
$$

Doing this repeatedly, we see that the limit is 0 unless $Q_{n}=P_{n}$.
If f has better differentiability, we can write $f(x)-P_{n}(x)$ out more explicitly.
Theorem 4.46. (Lagrange form of the remainder) Let f be such that $f^{(k)}(x)$ exists on (a, b). Then for every $x, x_{0} \in(a, b)$ the following holds:
$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1}$
where ξ is between x, x_{0}.
Remark 4.47. It is important to understand that ξ depends on x, that is when x changes, so does ξ. For any fixed x, it is clear that there is $r \in \mathbb{R}$ such that

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+r\left(x-x_{0}\right)^{n+1} \tag{4.70}
\end{equation*}
$$

Thus what the theorem actually says is: $\exists \xi$ between x, x_{0} such that $r=\frac{f^{(n+1)}(\xi)}{(n+1)!}$.
Proof. In the following x is fixed. Take $r \in \mathbb{R}$ such that

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+r\left(x-x_{0}\right)^{n+1} . \tag{4.71}
\end{equation*}
$$

holds for this particular x.
Now set

$$
\begin{equation*}
g(t)=f(t)-\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(t-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(t-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(t-x_{0}\right)^{n}+r\left(t-x_{0}\right)^{n+1}\right] \tag{4.72}
\end{equation*}
$$

then we have $g\left(x_{0}\right)=g(x)=0$. Applying Rolle's theorem, we obtain ξ_{1} between x_{0}, x such that $g^{\prime}\left(\xi_{1}\right)=0$. On the other hand clearly $g^{\prime}\left(x_{0}\right)=0$. Thus we have ξ_{2} between ξ_{1} and x_{0} (thus also between $\left.x, x_{0}\right)$ such that $g^{\prime \prime}\left(\xi_{2}\right)=0$. Apply this n times we conclude that there is ξ such that $g^{(n+1)}(\xi)=0$, which gives

$$
\begin{equation*}
r=\frac{f^{(n+1)}(\xi)}{(n+1)!} \tag{4.73}
\end{equation*}
$$

Remark 4.48. Note that the case $n=0$ is exactly Rolle's theorem. Also note that one cannot prove the above theorem through induction.

Definition 4.49. (Taylor Polynomial) The polynomial

$$
\begin{equation*}
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(t-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(t-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(t-x_{0}\right)^{n} \tag{4.74}
\end{equation*}
$$

is called the Taylor polynomial of the function f, the term

$$
\begin{equation*}
R_{n}:=\frac{f^{(n+1)}(\xi)}{(n+1)!}\left(x-x_{0}\right)^{n+1} \tag{4.75}
\end{equation*}
$$

is called the Lagrange form of the remainder.

Example 4.50. Calculate Taylor polynomial with Lagrange form of remainder (to degree 2 - that is $n=2$) of the following functions at $x_{0}=0$.

Solution.

$$
\begin{equation*}
f(x)=\sin (\sin x) ; \quad f(x)=x^{4}+x+1 ; \quad f(x)=\frac{1}{1+x^{2}} \tag{4.76}
\end{equation*}
$$

- $\quad f(x)=\sin (\sin x)$. We calculate:

$$
\begin{gather*}
f^{\prime}(x)=[\cos (\sin x)] \cos x \Longrightarrow f^{\prime}(0)=1 \tag{4.77}\\
f^{\prime \prime}(x)=[-\sin (\sin x) \cos x] \cos x-[\cos (\sin x)] \sin x \Longrightarrow f^{\prime \prime}(0)=0 \tag{4.78}\\
f^{\prime \prime \prime}(x)=\left\{[-\sin (\sin x)] \cos ^{2} x\right\}^{\prime}-\{[\cos (\sin x)] \sin x\}^{\prime} \\
=-\cos (\sin x) \cos ^{3} x+2 \sin (\sin x) \cos x \sin x \\
\\
\quad+\sin (\sin x) \sin x \cos x-\cos (\sin x) \cos x \tag{4.79}\\
=-\cos x\left[\left(\cos ^{2} x+1\right) \cos (\sin x)-3 \sin x(\sin (\sin x))\right]
\end{gather*}
$$

Thus the Taylor polynomial at $x_{0}=0$ to degree 2 reads:

$$
\begin{equation*}
0+1 \cdot(x-0)+\frac{0}{2}(x-0)^{2}+\frac{f^{\prime \prime \prime}(\xi)}{6}(x-0)^{3} \tag{4.80}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
\sin (\sin x)=x+\frac{-\cos \xi\left[\left(\cos ^{2} \xi+1\right) \cos (\sin \xi)-3 \sin \xi(\sin (\sin \xi))\right]}{6} x^{3} \tag{4.81}
\end{equation*}
$$

Here ξ lies between 0 and x.

- $f(x)=x^{4}+x+1$. We calculate:

$$
\begin{equation*}
f(0)=1, f^{\prime}(x)=4 x^{3}+1 \Longrightarrow f^{\prime}(0)=1, f^{\prime \prime}(x)=12 x^{2} \Longrightarrow f^{\prime \prime}(0)=0 \tag{4.82}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime \prime \prime}(x)=24 x \tag{4.83}
\end{equation*}
$$

Therefore the Taylor polynomial at $x_{0}=0$ to degree 2 reads

$$
\begin{equation*}
x^{4}+x+1=1+x+(4 \xi) x^{3} \tag{4.84}
\end{equation*}
$$

where ξ lies between 0 and x.

- $\quad f(x)=\frac{1}{1+x^{2}}$. We calculate:

$$
\begin{gather*}
f(0)=1 ; \quad f^{\prime}(x)=-\frac{2 x}{\left(1+x^{2}\right)^{2}} \Longrightarrow f^{\prime}(0)=0 \tag{4.85}\\
f^{\prime \prime}(x)=-\frac{2\left(1+x^{2}\right)^{2}-8 x^{2}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{4}}=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}} \Longrightarrow f^{\prime \prime}(0)=-2 \tag{4.86}\\
f^{\prime \prime \prime}(x)=\frac{12 x\left(1+x^{2}\right)^{3}-6 x\left(1+x^{2}\right)^{2}\left(6 x^{2}-2\right)}{\left(1+x^{2}\right)^{6}}=\frac{24 x\left(1-x^{2}\right)}{\left(1+x^{2}\right)^{4}} \tag{4.87}
\end{gather*}
$$

Therefore the Taylor polynomial at $x_{0}=0$ to degree 2 reads

$$
\begin{equation*}
\frac{1}{1+x^{2}}=1-x^{2}+\frac{4 \xi\left(1-\xi^{2}\right)}{\left(1+\xi^{2}\right)^{4}} x^{3} \tag{4.88}
\end{equation*}
$$

where ξ lies between 0 and x.
Example 4.51. Calculate Taylor polynomial (to degree 2) of the following functions at the specified x_{0} 's.

$$
\begin{equation*}
f(x)=\sin x, x_{0}=\frac{\pi}{2} ; \quad f(x)=x^{4}+x+1, x_{0}=1 ; \quad f(x)=e^{x}, x_{0}=2 \tag{4.89}
\end{equation*}
$$

Solution.

- $f(x)=\sin x, x_{0}=\frac{\pi}{2}$.

We have

$$
\begin{gather*}
f\left(x_{0}\right)=\sin \left(\frac{\pi}{2}\right)=1 ; \tag{4.90}\\
f^{\prime}(x)=\cos x \Longrightarrow f^{\prime}\left(x_{0}\right)=0 ; \tag{4.91}\\
f^{\prime \prime}(x)=-\sin x \Longrightarrow f^{\prime \prime}\left(x_{0}\right)=-1 ; \tag{4.92}\\
f^{\prime \prime \prime}(x)=-\cos x . \tag{4.93}
\end{gather*}
$$

Therefore the answer is

$$
\begin{equation*}
\sin x=1-\frac{1}{2}\left(x-\frac{\pi}{2}\right)^{2}-\frac{\cos \xi}{6}\left(x-\frac{\pi}{2}\right)^{3} \tag{4.94}
\end{equation*}
$$

where ξ is between x and $\pi / 2$.

- $f(x)=x^{4}+x+1, x_{0}=1$.

We have

$$
\begin{gather*}
f\left(x_{0}\right)=3 ; \quad f^{\prime}(x)=4 x^{3}+1 \Longrightarrow f^{\prime}\left(x_{0}\right)=5 \tag{4.95}\\
f^{\prime \prime}(x)=12 x^{2} \Longrightarrow f^{\prime \prime}\left(x_{0}\right)=12 ; \quad f^{\prime \prime \prime}(x)=24 x . \tag{4.96}
\end{gather*}
$$

So the answer is

$$
\begin{equation*}
x^{4}+x+1=3+5(x-1)+6(x-1)^{2}+4 \xi(x-1)^{3} \tag{4.97}
\end{equation*}
$$

where ξ is between x and 1 .

- $f(x)=e^{x}, x_{0}=2$.

We have

$$
\begin{equation*}
f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)=e^{2}, \quad f^{\prime \prime \prime}(x)=e^{x} . \tag{4.98}
\end{equation*}
$$

So the answer is

$$
\begin{equation*}
e^{x}=e^{2}+e^{2}(x-2)+\frac{e^{2}}{2}(x-2)^{2}+\frac{e^{\xi}}{6}(x-2)^{3} \tag{4.99}
\end{equation*}
$$

where ξ is between x and 1 .
Remark 4.52. Note that the Taylor polynomial is just the best approximation at x_{0}. Therefore are naturally different when x_{0} changes.

Example 4.53. Prove the following.
a) $e^{x}>1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$ for all $x>0$.
b) $\left|\cos x-\left(1-\frac{x^{2}}{2}\right)\right|<\frac{1}{24}$ for all $x \in(-1,1)$.

Proof.

a) The Taylor polynomial with Lagrange remainder for e^{x} at 0 is

$$
\begin{equation*}
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\frac{e^{\xi}}{24} x^{4} . \tag{4.100}
\end{equation*}
$$

Since $x>0, \xi$ (note that it depends on x, that is $\xi=\xi(x)$ is in fact a function of x) is also positive. Consequently $\frac{e^{\xi}}{24} x^{4}>0$ for all x. So $e^{x}>1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$ holds for all $x>0$.
b) The Taylor polynomial with Lagrange remainder for $\cos x$ at 0 is (up to degree 2):

$$
\begin{equation*}
\cos x=1-\frac{x^{2}}{2}+\frac{\sin \xi}{6} x^{3} \tag{4.101}
\end{equation*}
$$

with ξ between 0 and x. Thus we have

$$
\begin{equation*}
\left|\cos x-\left(1-\frac{x^{2}}{2}\right)\right|=\frac{|\sin \xi|}{6}|x|^{3}<\frac{1}{6} . \tag{4.102}
\end{equation*}
$$

for all $x \in(-1,1)$. This is not enough so we expand one more term:

$$
\begin{equation*}
\cos x=1-\frac{x^{2}}{2}+\frac{\cos \xi}{24} x^{4} \tag{4.103}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left|\cos x-\left(1-\frac{x^{2}}{2}\right)\right|=\frac{|\cos \xi|}{24}|x|^{4}<\frac{1}{24} \tag{4.104}
\end{equation*}
$$

Definition 4.54. (Taylor series) If $f^{(n)}(x)$ exists for all $n \in \mathbb{N}$ over (a, b), then for any $x_{0} \in(a, b)$ one can write down an infinite series (polynomial of infinite degree):

$$
\begin{equation*}
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(t-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}\left(t-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(t-x_{0}\right)^{n}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} . \tag{4.105}
\end{equation*}
$$

This is called the Taylor series of f at x_{0}.
Remark 4.55. Note that $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}$ may not hold. A counterexample is $f(x)=$ $\left\{\begin{array}{ll}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$ whose Taylor series is $\sum_{n=0}^{\infty} 0 \cdot\left(x-x_{0}\right)^{n}$.

Example 4.56. We can calculate the Taylor series $e^{x}, \cos x$.

$$
\begin{equation*}
e^{x} \sim \sum_{n=0}^{\infty} \frac{x^{n}}{n!} ; \quad \cos x \sim \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} \tag{4.106}
\end{equation*}
$$

[^0]: 4.1. If $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\infty$, then there is $N \in \mathbb{N}$ such that for all $n>N, f\left(x_{n}\right)>a+1$. On the other hand, since $\lim _{x \rightarrow \infty} f=\lim _{x \rightarrow-\infty} f(x)=a$, there are M_{1}, M_{2} such that $|f(x)-a|<1$ when $x>M_{1}$ or $x<M_{2}$. Consequently $x_{n} \in\left[M_{2}, M_{1}\right]$ for all $n>N$. since $\left[M_{2}, M_{1}\right]$ is a bounded interval, there is subsequence $x_{n_{k}} \longrightarrow \xi \in\left[M_{2}, M_{1}\right]$. As a consequence of f^{\prime} s continuity we have $f(\xi)=\infty$. Contradiction.

