Math 314 A1 Fall 2012 Homework 3

Due Thursday Oct. 11
5:30pm (Assignment box CAB 3rd floor)

- Related sections in notes: $\S 1.3-\S 2.2$. Make sure your note is the "updated" version.

Problem 1. ($\mathbf{3} \mathbf{~ p t s) ~ I f ~} x_{n}$ is increasing then there is an extended real number a such that $x_{n} \longrightarrow a$; If x_{n} is decreasing then there is an extended real number a such that $x_{n} \longrightarrow a$.
Problem 2. (4 pts) Let $E:=\left\{(-1)^{n}+e^{-n}: n \in \mathbb{N}\right\}$. Find $\max E, \sup E$, min E, inf E. Justify your answers.
Problem 3. (3 pts) Let $A, B \subseteq \mathbb{R}$. Define their sum as the set $A+B:=\{x+y \mid x \in A, y \in B\}$. Prove that $\sup (A+B)=\sup A+\sup B, \inf (A+B)=\inf A+\inf B$.

Problem 4. (4 pts) Let $\left\{x_{n}\right\},\left\{y_{n}\right\}$ be sequences of real numbers. Which of the following is the most precise relation between $\limsup _{n \longrightarrow \infty}\left(x_{n}+y_{n}\right)$ and $\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$?
a) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
b) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
c) $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leqslant \limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$ and it may happen that $\limsup _{n \rightarrow \infty}\left(x_{n}+\right.$ $\left.y_{n}\right)<\limsup _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$.
Justify your answer.
Problem 5. (2 pts) Use interval notation to represent
a) $\left\{x \in \mathbb{R}: x^{2}-3 x+2>0\right\}$.
b) $\left\{x \in \mathbb{R}: e^{-x^{2}} \geqslant \frac{1}{e}\right\}$.

Problem 6. (4 pts) Let $E \subseteq \mathbb{R}$. Prove that E is closed if and only if for every Cauchy sequence $\left\{x_{n}\right\} \subseteq E, \lim _{n \longrightarrow \infty} x_{n} \in E$.

