
———————————————————————————————————————————

1. R

In this and the next section we are going to study the properties of sequences of real numbers.

Definition 1.1. (Sequence) A sequence is a function with domain N.

Example 1.2. A sequence of real numbers is a function with domain N and range R. We will first construct
real numbers using sequences of rational numbers (functions with domain N and range Q).

Notation. Often when denoting a sequence, we write n not as an argument but as a subscript. That is if
f :N� R is a real sequence, we usually denote it as fn instead of f(n).

1.1. Construction of Real Numbers.

We present the main ingredients of construction of real numbers, without providing all the proofs. The
important thing here is to understand

1. Why do we need to “construct” R.

2. What are the obstacles we need to overcome during this construction.

1.1.1. Why.

Everyone knows:

• Integers Z are needed because one cannot subtract within natural numbers N;

• Rationals Q are needed because one cannot divide within integers Z;

• Complex numbers C are needed because one cannot solve algebraic equations within real numbers R.

One may say that we need R because we would like to solve equations like x2− 2=0. But if we don’t know
anything about R or C, can we really tell that x2 − 2 = 0 and x2 + 2 = 0 are different types of equations?
Not likely.1.1

Fact. Note that if we start from Q and add to it all possible roots of algebraic equations1.2,
as well as linear combinations of these numbers, we still won’t get C. To see why, we can
either follow the hard way, like proving directly e is transcendental – not root to any algebraic
equations; Or follow the easy way, like reading the section about countable/uncountable sets
in any analysis book.

What really makes R necessary is that we would like to “take limit”. To see this, we first need an example
showing that, indeed, the limit of a sequence of numbers in Q may not be in Q.

Lemma 1.3. There is a sequence of rational numbers converging to the irrational number 2
√

.

Proof. (Problematic proof!)

As in the first lecture we have already shown that 2
√

is not rational, we only need a sequence of

rational numbers converging to 2
√

. Let p1=1, p2 =1.4, p3 =1.41... Each pn+1 is determined as follows: Let

pn = 1.41	 an−1. Then pn+1 = 1.41	 an−1an =1+4 · 10−1 +1 · 10−2 +
 + an−1 10
−(n−1)+ an · 10−n with an

such that pn+1
2 < 2 while (1.41	 an−1(an + 1))2 > 2. �

1.1. Pythagoras will try to argue with certain triangles, but wemodern people do not need the help of triangles to understand
the meaning of equations... Furthermore, what about equations like x4 − 1 = 0? It definitely looks more like x2 − 1 = 0 than

x2 + 1= 0 but would still require us to consider complex numbers.

1.2. Polynomial (with rational coefficient) = 0.



The above argument is problematic – in fact the statement of the lemma itself is already problematic.

The problem is that we already assumed the existence of the irrational number 2
√

. Even worse, we also
assumed that this “number” enjoys all the addition/subtraction/multiplication, or even limit... properties of
the good rational numbers!

But if we cannot assume a priori the existence of the limit, how do we know that the sequence should
have a limit? This makes necessary the notion of “Cauchy sequences”.

Definition 1.4. (Cauchy sequence) A sequence of numbers a1,	 ,an,	 (denoted {an}) is called a Cauchy
sequence if the following holds:

∀ε > 0 ∃N ∈N such that ∀m, n > N , |am − an|< ε. (1.1)

Think:

• Why is ∀ε > 0 ∃N ∈N such that ∀n > N , |an+1− an|< ε not enough?

Example 1.5. Show that

• {an}, an = 3 for all n is a Cauchy sequence.

• {an}, an = 1.4142	 as defined in Lemma 1.3 is a Cauchy sequence.

Proof. We give detailed proof of the second claim here. By definition, we need to show that, given any ε>0,
we can find N > 0, such that whenever n,m >N , |an− am|<ε. The key is to find N based on the size of ε.

Given any ε > 0. We can always find a number M such that ε > 10−M. Now take N = M + 1. For any
n,m>N , we know from the construction of the sequence that an, am share the first N digits, in other words

|an − am|6 10−(N−1) = 10−M < ε. (1.2)

Thus the proof ends. �

Example 1.6. Show that an =
1

n
− 1

n +1
is Cauchy.

Proof. Given any ε > 0. Take N such that N2 > 2/ε. Then for every n, m > N , we have

|an − am|6 |an|+ |am|= 1

n (n+ 1)
+

1

m (m + 1)
<

2

N2
< ε. (1.3)

The proof ends. �

So we have shown that an = 1.414	 form a Cauchy sequence. To see that it cannot have a limit a∈Q,
we prove by contradiction, showing that if the limit is in Q, then its square must be 2.

By construction of an, we know that an
2 < 2 while

(

an + 10−(n−1)
)

2 > 2. This means

|2− an
2 |= 2− an

2 <
(

an + 10−(n−1)
)

2− an
2 =2 · 10−(n−1) an + 10−2(n−1) < 10−(n−2). (1.4)

Here the last step follows from the observation that an
2 < 2 implies an < 2. Thus we have an

2� 2. On the
other hand, by assumption an� a, we have

|a2− an
2 |= |a− an| |a + an|< 4 |a− an|→ 0. (1.5)

Putting everything together we have a2 =2. Contradiction.

1.1.2. Construction of R.



Naïvely, we want to simply consider the set of all Cauchy sequences, and call this set R.

However there is a problem here. It is easy to realize that seemingly different Cauchy sequences may “con-
verge” to the same number. For example consider {xn = 1/n} and {yn = 0}. To fix this, we introduce the
following (Of course, the tricky issue here is to tell that two Cauchy sequences converge to the same number
without acknowledging the existence of this number!)

Definition 1.7. (Equivalence of Cauchy sequences) Two Cauchy sequences {an}, {bn} are equivalent
if their “mix-up” {cn}, defined as

cn =

{

ak n = 2 k

bk n = 2 k − 1
(1.6)

is still a Cauchy sequence. We denote this relation as {an}∼ {bn}.

The following lemma makes proving equivalence easier.

Lemma 1.8. {an}∼ {bn} if and only if

∀ε ∃N ∈N such that ∀n >N , |an − bn|< ε. (1.7)

Proof. Recall that “if and only if” means� , which means

{an}∼{bn}� ∀ε ∃N ∈N such that ∀n >N , |an − bn|< ε. (1.8)

and

∀ε ∃N > 0 such that ∀n∈N, |an − bn|<ε� {an}∼ {bn}. (1.9)

Let {cn} be defined as

cn =

{

ak n = 2 k

bk n = 2 k − 1
(1.10)

• � . Consider any ε>0. Since {an}∼{bn}, there is N1∈N such that |cn− cm|<ε for any n,m>N1.
Taking N ∈N satisfying N > N1/2+1. Then for any n > N , we have an = c2n, bn = c2n−1 therefore

|an − bn|= |c2n − c2n−1|< ε (1.11)

as 2n, 2 n− 1 > N1.

• � . Consider any ε > 0. Let N1 ∈N be such that ∀n > N1, |an − bn| < ε. Let N2 ∈N be such that
∀n, m >N2, |an− am|<ε. Let N3∈N be such that ∀n, m >N3, |bn − bm|<ε. Note that such N2,N3

exists because {an}, {bn} are Cauchy sequences.

Now let N =2max {N1, N2, N3}+ 1.

For any n, m > N , we have

|cn− cm|=















|ak − al| n = 2 k, m =2 l

|bk − bl| n = 2 k + 1, m =2 l + 1
|ak − bl| n = 2 k, m =2 l + 1
|bk − al| n = 2 k + 1, m =2 l

. (1.12)

As N = 2 max {N1, N2, N3} + 1, k, l > max {N1, N2, N3} in every case. Therefore |cn − cm|< ε. The
proof ends. �

Lemma 1.9. (∼ is indeed an equivalence relation) Let {an},{bn},{cn} be Cauchy sequences. We have

• {an}∼ {an};



• If {an}∼ {bn} then {bn}∼{an};

• If {an}∼ {bn} and {bn}∼ {cn}, then {an}∼ {cn}.

Proof. We only prove the last claim here. The first two are trivial.

Thanks to Lemma 1.8, to show that {an}∼{cn} we only need to show for any ε>0, there is N ∈N such
that for all n > N , |an − cn|<ε.

Consider any ε > 0. Since {an} ∼ {bn} and {bn} ∼ {cn}, there is N1 ∈ N such that for all n > N1,
|an − bn|< ε/2, and there is N2∈N such that for all n > N2, |bn − cn|< ε/2. Now take N =max {N1, N2}.
We have for any n >N ,

|an − cn|6 |an − bn|+ |bn− cn|<ε/2+ ε/2= ε. (1.13)

The proof ends. �

Now we are ready to define R: We put all equivalent Cauchy sequences together and treat it as one object
– an equivalence class of Cauchy sequences, and call the collection of such equivalence classes R.

Definition 1.10. (Real numbers) The real numbers R is the set of all equivalence classes of Cauchy
sequences.

Example 1.11. For example, any rational number {q} is the equivalence class of Cauchy sequences equiv-

alent to the particular Cauchy sequence {an = q}. 2
√

is the class of all Cauchy sequences equivalent to
{1, 1.4, 1.41,	 }.

1.1.3. Is this R the R we want?.

Put another way, can we naturally do addition, subtraction, multiplication, division, and taking limit in
this newly constructed set R? The answer is yes but the justification is too technical/long to be included
here. Instead we simply state the results without proofs.

Lemma 1.12. (Arithmetics in R are well-defined) Let {an}, {bn} be Cauchy sequences. Then so are

{an ± bn}, {an bn}, and {an/bn} if {bn} does not converge to 0. Furthermore, if {ãn},
{

b̃n

}

are another

two sequences that are equivalent to {an}, {bn}, that is {an}∼ {ãn}, {bn}∼
{

b̃n

}

, then

{an± bn}∼
{

ãn ± b̃n

}

; {an bn}∼
{

ãn b̃n

}

; {an/bn}∼
{

ãn/b̃n

}

. (1.14)

Theorem 1.13. R constructed as in the last section satisfies:

1. it is an ordered field;1.3

2. It has the “least upper bound” property: For any subset E ⊆R, if there is an upper bound, that is a∈R

such that a > x for every x∈E, then there is a “least upper bound” amin∈R. In other words, the set
A = {a∈R: a is an upper bound for E} has a minimum element.

We will see soon that the “least upper bound” property guarantees that a Cauchy sequence in R converges
and indeed has a limit again in R.1.4

1.3. We do not go into details here, it suffices to say that one can naturally do all the arithmetics and comparison (<,>)
in an ordererd field.

1.4. That is R is “complete”.



1.2. Limits.
From now on we take the existence of R and all its properties for granted. In particular, we assume that

the “least upper bound” property holds.

1.2.1. Definition.

Definition 1.14. A sequence of real numbers {xn} is said to converge to a real number a∈R if and only if

∀ε > 0 ∃N ∈N such that ∀n > N , |xn − a|< ε. (1.15)

We denote this convergence by xn� a, or limn�∞xn = a.

Think: Suppose we have proved

∀ε > 0 ∃N ∈N such that ∀n > 5N, |xn − a|< 20 ε, (1.16)

can we conclude xn� a? What if we proved

∀m∈N ∃N ∈N such that ∀n > N2, |xn − a|< 1

m
√ , (1.17)

can we conclude xn� a?

Remark 1.15. Definitions and theorems in analysis are unique in the sense that you can make many
harmless changes. However it is not possible to tell whether a change is harmless or not without enough
understanding.

Example 1.16. Show that
{

xn =
∑

k=1
n 1

k (k +1)

}

converges to 1 as n ր∞.

Proof. We need to show that for any ε > 0, there is N ∈N such that for all n > N ,
∣

∣

∣

∑

k=1
n 1

k (k + 1)
− 1

∣

∣

∣ < ε.

To do this we first try to simplify

∑

k=1

n

1

k (k + 1)
=

∑

k=1

n (

1

k
− 1

k +1

)

= 1− 1

2
+

1

2
− 1

3
+
 +

1

n
− 1

n +1
= 1− 1

n + 1
. (1.18)

Now we know how to choose N . Given any ε> 0, choose N such that ε >1/N . Then for all n >N , we have
∣

∣

∣

∣

∣

∑

k=1

n

1

k (k + 1)
− 1

∣

∣

∣

∣

∣

=
1

n + 1
<

1

N
< ε. (1.19)

Thus ends the proof. �

Example 1.17. (Nonexistence of limit) Show that {(−1)n} has no limit.

Proof. (Proof by contradiction) Assume the contrary, that is (−1)n� a for some a. Then for any
ε > 0, there is N ∈N such that for all n >N , |(−1)n− a|< ε.

We take ε =1. There is N ∈N such that for all n > N , |(−1)n− a|< 1. Since this holds for all n >N , in
particular it holds for all odd n > N , thus |−1− a|< 1. On the other hand it also holds for all even n > N ,
which leads to |1− a|< 1. Combining the two together we get

|−1− a|+ |1− a|< 2. (1.20)

But on the other hand we have

|−1− a|+ |1− a|= |1 + a|+ |1− a|> |1 + a + 1− a|= |2|= 2. (1.21)

Therefore 2 < 2. Contradiction! �

Remark 1.18. Note that if we do not use proof by contradiction, things may get a bit complicated, as we
need to show that

∀a∈R ∃ε0 > 0 ∀N ∈N ∃n > N , |(−1)n − a|> ε0. (1.22)



Example 1.19. Show that {log n} has no limit.

Proof. Again we prove by contradiction. Assume the contrary: that is logn� a for some a∈R. Then there
is N ∈N such that for all n > N , |log n − a|< 1. In particular, for all n > N we must have log n < |a| + 1.
Now take N ′∈N such that N ′> exp (|a|+1) and take an n0∈N such that n0>max{N,N ′}. Then we have
log n0 > logN ′ > |a|+1. Contradiction. �

1.2.2. Properties of limits.

Lemma 1.20. A sequence can have at most one limit.

Proof. We prove by contradiction. Assume xn� a and xn� b with a� b. Without loss of generality we
assume b > a.

Take ε=
b − a

2
. There is N1∈N such that |xn−a|<ε for all n>N1; There is N2∈N such that |xn− b|<ε.

Now take N =max {N1, N2}. Now take any n >N , we have n >N1, n > N2 and therefore

|xn − a|< ε, |xn − b|< ε (1.23)

which combined to give

b− a = |b− a|6 |b−xn|+ |xn − a|= |xn − b|+ |xn − a|< 2 ε = b− a. (1.24)

Contradiction! �

Proposition 1.21. (Manipulation of limits) Let xn� a, yn� b. Then

a) xn ± yn� a± b;

b) xn yn� a b;

c) If b� 0, then xn/yn� a/b.

Proof. We only give detailed proof for b). Other cases are left as exercises.
To show xn yn� a b, all we need is for any given ε>0, find N ∈N such that for all n>N , |xn yn−a b|<ε.

First assume that a, b� 0.
Let N1∈N be such that |yn − b|< |b|. Now for any given ε > 0, let N2 be such that |xn − a|< ε

4 |b|
, and

N3 be such that |yn − b|< ε

2 |a|
.

Take N =max {N1, N2, N3}. For any n > N , we have

|xn yn − a b| = |(xn − a) yn + a (yn − b)|
6 |(xn − a)| |yn|+ |a| |yn− b|
<

ε

4 |b| 2 |b|+ |a| ε

2 |a|
= ε.

When either a or b is (or both are) 0, all we need to show is xn yn� 0. The method is the same and the
argument is simpler so omitted. �

Theorem 1.22. (Comparison of limits) Suppose {xn} and {yn} are convergent sequences. If there is
N0∈N such that xn 6 yn for all n > N0, then

lim
n�∞

xn 6 lim
n�∞

yn. (1.25)

Proof. Let x� a, y� b. We prove by contradiction. Assume a > b. Set ε =
a − b

2
. Then there is N1 ∈N

such that |xn−a|<ε for all n>N1, while N2∈N such that |yn−b|<ε for all n>N2. Take n>max{N1,N2}.
Then we have

xn > a− |xn − a|> a− ε =
a + b

2
; (1.26)

yn 6 b + |yn − b|< b+ ε =
a + b

2
. (1.27)



But this combined with xn 6 yn gives
a + b

2
<

a + b

2
, contradiction. �

Example 1.23. (Important!) Show by an counterexample that the following is false:

Suppose {xn}, {yn} are convergent sequences. If there is N0∈N such that xn < yn for all
n > N0, then limn�∞ xn < limn�∞yn.

The simplest example is xn = 1/n, yn =−1/n.

Theorem 1.24. (Squeeze Theorem) Let xn→a and yn� a. Let {wn} be a sequence. Assume that there
is N0∈N such that for all n > N0,

xn 6wn 6 yn, (1.28)

then

a) wn converges.

b) wn� a.

Remark 1.25. Of course proving wn� a suffices. However we would like to emphasize that, the significance
of this theorem is that the relation (1.28) “forces” wn to converge.

Proof. For any given ε > 0, let N1 ∈N be such that |xn − a| < ε for all n > N1; Let N2 ∈N be such that
|yn− a|< ε for all n >N2. Now let N =max {N1, N2}. For all n > N , we have

|wn − a|6max {|xn − a|, |yn − a|}< ε. (1.29)

Thus ends the proof. �

Corollary 1.26. Let {wn} be a sequence. If there is another sequence xn� 0 such that |wn| 6 xn, then
wn� 0. In particular, if |wn|� 0, then wn� 0.

The proof is left as exercise.

Example 1.27. Find limn�∞2−n sin (n8).

We simply apply the above corollary: 2−n� 0,

|2−n sin (n8)|6 2−n (1.30)

therefore the limit is also 0.

1.2.3. Relation to Cauchy sequences.

In general, to prove convergence for {xn} with formulas for xn given, we need to do two things:

1. Guess the limit a.

2. Prove that indeed xn� a using either definition or properties (see Section 1.2.2 below) or both.

On the other hand, there are many situations where we do not have explicit formulas for xn and cannot
guess what the limit is. The following is the most useful result in those situations.

Theorem 1.28. (Relation to Cauchy sequences) Let {xn} be a sequence. Then {xn} converges to
some real number a∈R if and only if it is a Cauchy sequence.

Proof. It’s “if and only if”, so we need to show the “only if”:

xn� a for some a∈R� {xn} is Cauchy (1.31)



and the “if”:

{xn} is Cauchy�xn� a for some a∈R. (1.32)

• ”Only if”. Given any ε>0, we need to find N ∈N such that for all n,m>N , |xn−xm|<ε. We proceed
as follows. For the given ε > 0, since xn� a, there is N ∈N such that

|xn − a|< ε/2 (1.33)

for all n > N . Now for any n, m > N , we have

|xn− a|< ε/2, |xm− a|< ε/2 (1.34)

which combined to give

|xn− xm|= |(xn − a)+ (a−xm)|6 |xn − a|+ |a− xm|= |xn − a|+ |xm− a|< ε. (1.35)

• ”If”. For this part we need to use the least upper bound property of R. Intuitively, {xn} is Cauchy
means they cluster around something, but to show that “something” is a real number, we need the
property that R has no “holes”.

Let the set A={a∈R:∃N ∈N, such that a<xn for all n>N }. We first show that A has an upper
bound. Since {xn} is Cauchy, there is N1∈N such that |xn−xm|< 1 for all n,m >N1. In particular
we have

xn < xN1+1 + 1 (1.36)

for all n > N1. Now take

b =max {x1 +1, x2 + 1,	 , xN1
+ 1, xN1+1 + 1} (1.37)

we have b > xn for all n∈N and clearly b > a for every a∈A. Using the same method one can show
that A is not empty.

Thanks to the least upper bound property, we have bmin ∈R such that bmin > a for every a ∈ A

while for every b < bmin there is a∈A with a >b. We prove the xn� bmin.

Given any ε > 0. We know that there is a ∈ A such that a > bmin− ε. Therefore there is N1 ∈N

such that bmin− ε < xn for all n > N1;

Now we show the existence of N2 ∈ N such that bmin + ε > xn for all n > N2. We prove by
contradiction. Assume that for every N ∈N, there is n > N such that xn > bmin + ε. Since {xn} is a
Cauchy sequence, there is N3 ∈N such that for all n, m > N3, |xn − xm| < ε/2. For this N3 we can
find l > N3 with xl > bmin+ ε. Consequently, for all n >N3, we have

xn > xl − |xn −xl|>bmin+ ε/2. (1.38)

But this means bmin+ ε/2∈A, contradicting bmin> a for every a∈A.

Finally take N =max {N1, N2}. For every n > N , we have

bmin− ε < xn < bmin + ε� |xn − bmin|< ε. (1.39)

Therefore xn� bmin and the proof for “if” ends. �

The above theorem is most useful when the sequence is given iteratively.

Example 1.29. Let x0 > 2. Define xn iteratively by

xn+1 = xn − xn
2 − 2

2 xn

. (1.40)

Prove that xn� 2
√

.

Proof. The idea is to show that it is Cauchy. Once this is done, we can take limits of both sides to reach
(denote the limit by a):

a = a− a2− 2

2 a
� a2 = 2� a =± 2

√
. (1.41)



From this we see that we need to prove the following:

• First show that xn > 0. We use mathematical induction. Let P (n) denote the statement “xn > 0”.
Mathematical induction consists of two steps:

1. P (0) is true.1.5 We have x0 > 2 > 0.

2. If P (m) is true then P (m + 1) is true. We have

xm+1 = xm − xm
2 − 2

2 xm

=
xm

2 +2

2 xm

. (1.42)

Therefore if xm > 0, xm+1 > 0.

• Since a ratio is involved, we need to show xn � 0 and a � 0. We do this through showing xn
2 > 2 for

all n∈N. This can be done directly as follows:

xn
2 − 2=

(

xn−1− xn−1
2 − 2

2 xn−1

)

2

− 2 =

(

xn−1
2 + 2

2xn−1

)

2

− 2 =

(

xn−1
2 − 2

2xn−1

)

2

> 0. (1.43)

• xn is Cauchy. The basic idea is to show that |xn − xn+1|6 M rn for some 0 < r < 1 and some M > 0
(Why this is enough is left as exercise). Taking difference of

xn+1 = xn − xn
2 − 2

2xn

=
xn

2
+

1

xn

and xn = xn−1− xn−1
2 − 2

2 xn−1
=

xn−1

2
+

1

xn−1
(1.44)

we have

xn+1− xn =

[

1

2
− 1

xn xn−1

]

(xn −xn−1). (1.45)

Therefore

|xn+1− xn|=
∣

∣

∣

∣

1

2
− 1

xn xn−1

∣

∣

∣

∣

|xn− xn−1|. (1.46)

As xn > 2
√

we have xn xn−1 > 2 so
∣

∣

∣

1

2
− 1

xn xn−1

∣

∣

∣
6

1

2
. This leads to

|xn+1− xn|6 1

2
|xn −xn−1|6 1

22
|xn−1− xn−2|6
 6

(

1

2

)

n

|x1−x0|. (1.47)

Since xn is Cauchy, there is a∈R such that xn� a. By (1.41) we have a=± 2
√

. Since xn >0, we conclude

a= 2
√

(using Comparison Theorem 1.22). �

Remark 1.30. The above is a very effective way to compute 2
√

.

1.2.4. Understanding convergence.

In this section we understand what convergence means. Or more precisely, we understand what happens
when a sequence is not convergent. Turns out, there are only two situations where a sequence does not
converge:

1. The sequence is unbounded.

2. The sequence is oscillating and the amplitude does not tend to 0.

Definition 1.31. (Boundedness) A sequence {xn} is said to be

• bounded above if there is a number M ∈R such that xn 6 M for all n,

• bounded below if there is a number M ∈R such that xn >M for all n,

• bounded if there is a number M ∈R such that |xn|6 M for all n.

1.5. Because we start from x0.



Lemma 1.32. (Relation between boundedness) {xn} is bounded if and only if it is bounded above and
below.

Proof.

• ”If”. If {xn} is bounded above and below, then there are M1, M2∈R such that M1 6 xn 6 M2 for all
n∈N. Now take M =max {|M1|, |M2|}. We have

−M 6−|M1|6M1 6 xn 6M2 6 |M2|6 M (1.48)

for all n∈N.

• ”Only if”. If {xn} is bounded, then there is M ∈R such that −M 6 xn 6 M . Thus {xn} is bounded
both above and below. �

Lemma 1.33. If xn� a, then xn is bounded. That is every convergent sequence is bounded.

Proof. Take ε=1. Since xn� a, there is N ∈N such that for all n>N , we have |xn− a|<ε. Thus for all
n > N , we have

|xn|6 |a|+ |xn − a|< |a|+ 1. (1.49)

Now set

M =max {|x1|,	 , |xN |, |a|+ 1}. (1.50)

We have |xn|6 M for all n∈N. Thus ends the proof. �

Note. Spot the mistake in the following proof:
Take ε = |a|. Since xn� a, ... (the remaining the same as that in the above proof)

Definition 1.34. (Subsequence) A subsequence of a sequence {xn}n∈N is a sequence of the form
{xnk

}k∈N, where each nk ∈N with n1 <n2 < n3 <
 .

It is clear that a subsequence of a subsequence is a subsequence of the original sequence.

Lemma 1.35. If xn� a, then every of its subsequences also converge to a.

Proof. Let {xnk
} be one subsequence. Given any ε > 0, let N ∈N be such that for all n > N , |xn − a|< ε.

Now let K ∈N be such that for all k > K, nk > N . With such K we see that for all k > K, we have

|xnk
− a|< ε. (1.51)

Thus ends the proof. �

On the other hand, we have the following:

Lemma 1.36. Let {xn} be a sequence. If all its subsequences converge to the same a∈R, then xn� a.

Proof. Assume {xn} does not converge to a. All we need to do is to find one subsequence which does not
converge to a1.6. As {xn} does not converge to a, we have

∃ε0 > 0 ∀N ∈N ∃n > N , |xn − a|> ε0. (1.52)

Now first take N =1. There is n1 > 1 such that |xn1
− a|> ε0. Next take N = n1. There is n2 >N =n1 such

that |xn2
− a|> ε0. Next take N =n2 and do the same and so on. This way we obtain a subsequence {xnk

}
satisfying |xnk

− a|> ε0 for all k ∈N. This subsequence does not converge to a. �

We need one more result to fully understand convergence of sequences.

1.6. Whether it converges to something else or does not converge at all does not matter here.



1.3. Bolzano-Weierstrass.

1.3.1. The theorem and its consequences.

We first state the theorem and discuss its significance. The proof is postponed to Section 1.3.3.

Theorem 1.37. (Bolzano-Weierstrass) Let {xn} be bounded a sequence of real numbers. Then there is
a converging subsequence.

Remark 1.38. The theorem not only tell us something about simple cases, such as (−1)n for which we
can easily get a convergent subsequence, it also tell us sequences like {sin n} also has convergent subse-
quence(s).1.7

Theorem 1.39. (Classification of sequences) Let {xn} be a sequence of real numbers. Then one of the
following is true:

a) xn converges;

b) {xn} is not bounded.

c) There are two convergent subsequences with different limits.

Remark 1.40. a) and b),c) are clearly mutually exclusive. On the other hand both b) c) may be true for

a single sequence. For example let an =















1 n = 4 k + 1
n n = 4 k + 2
−1 n = 4 k + 3
−n n = 4 k + 4

for k ∈N.

Proof. It is clear that a) and b) are mutually exclusive. The only thing left to show is that if {xn} is bounded
and does not converge, then it has two converging subsequences with different limits.

Since {xn} is bounded, by the Bolzano-Weierstrass theorem there is a converging subsequence. We denote
its limit by a. Since xn�a, by definition there must be ε0 > 0 such that for every N ∈N there is n > N

with |xn − a|> ε0. From this we can get a subsequence satisfying |xnk
− a|> ε0 as follows:

i. Take N =1. There is |xn1
− a|> ε0;

ii. Take N =n1. Find |xn2
− a|> ε0;

iii. Take N =n2, ...

Now apply the Bolzano-Weierstrass theorem to this subsequence. We see that there is a converging subse-
quence (to this subsequence), called

{

xnkl

}

(l = 1, 2, 3,	 ). Let xnkl
� a′ as l� ∞. We show that a′� a.

Assume the contrary. Then xnkl
� a. By definition there is N ∈N such that

∣

∣xnkl
− a

∣

∣ < ε0 for all l > N .

But this contradicts the fact that xnkl
are chosen from xnk

which satisfies |xnk
− a|> ε0 for all k ∈N. �

1.3.2. Monotone sequences.

To prove the Bolzano-Weierstrass theorem, we first study monotone sequences.

Definition 1.41. A sequence {xn} is increasing if xn+1 >xn for all n (strictly increasing of xn+1 > xn for
all n∈N); A sequence is decreasing if xn+1 6xn for all n (strictly decreasing if xn+1 <xn for all n∈N); A
sequence is monotone if it is either increasing or decreasing.

Convergence results when monotonicity meets boundedness.

1.7. In fact, for every −1 6a 61, there is a subsequence of {sinn} convergent to a.



Lemma 1.42. Let {xn} be monotone increasing (decreasing) and bounded above (below). Then xn� a for
some a∈R.

Proof. Since {xn} is bounded above. There is M ∈R such that xn 6 M for all n∈N.

We now show that xn is Cauchy through proof by contradiction. Assume xn is not Cauchy, then there
is ε0 > 0 such that for every N ∈N, there are n, m >N with |xn −xm|> ε0.

Now take N = 1. We find n2 > n1 > 1 with |xn2
− xn1

| > ε0. Next take N = n2, we have n4 > n3 > n2

with |xn4
− xn3

| > ε0. Doing this repeatedly, we obtain a (still increasing) subsequence xnk
such that

|xn2k
− xn2k−1

|> ε0. Since this subsequence is still increasing,

xn2k
> (xn2k

− xn2k−1
)+ (xn2k−2

− xn2k−3
)+
 + (xn2

− xn1
)+ xn1

> kε0 + xn1
. (1.53)

Taking k > (M −xn1
)/ε0 we reach xn2k

>M . Contradiction. �

Remark 1.43. An alternative proof is as follows: Let A={a∈R:a<xn for some n∈N}. We can show that
A has an upper bound and is nonempty. Applying the least upper bound property of R, there is bmin ∈R

such that bmin>a for all a∈A, and for every b<bmin, there is a∈A satisfying a>b. Then prove xn� bmin.
This approach is left as exercise.

1.3.3. Proof of Bolzano-Weierstrass.

All we need to do is to find a monotone subsequence from {xn}.

Proof. (of Bolzano-Weierstrass) Consider the following subsequences of {xn}: xm,xm+1,xm+2,	 . There
are only two cases:

• For every such sequence, there is a smallest element: xn1
= x1,

xnk
: =min {xnk−1+1, xnk−1+2,	 }. (1.54)

In this case we know that {xnk
} is a subsequence of {xn} and it is increasing and bounded above.

Applying Lemma 1.42 to this subsequence we see that it converges to some a∈R.

• There is one m, such that there is no smallest element in {xnm+1, xnm+2,	 }. Set x̃n1
= xnm+1. Set

n2 to be the smallest number that x̃n2
< x̃n1

, that is x̃i > x̃n1
for all n1 6 i < n2. This can be done

because there is no smallest number. Set n3 to be the smallest number that x̃n3
< x̃n2

, and so on.
This way we obtained a decreasing subsequence which is bounded below. Applying Lemma 1.42 to
this subsequence we see that it converges to some a∈R. �



1.4. Infinity Limits.
We have seen that a sequence has to be in exactly one of the following three situations:

1. It converges to a real number;

2. It oscillates with non-vanishing amplitude;

3. It is unbounded.

In this section we take a closer look at the third situation.

Example 1.44. Consider the following two sequences

xn = n; yn = n sin (n ). (1.55)

Both are unbounded. However they are different: {xn} has a very predictable behavior as n� ∞ while
{yn} does not.

Definition 1.45. A sequence {xn} is said to diverge to +∞, denoted xn� +∞, if for any M ∈R there
is N ∈N such that for all n >N, xn > M. Or in formal logic

∀M ∈R ∃N ∈N such that ∀n > N , xn > M. (1.56)

Similarly, a sequence {xn} is said to diverge to −∞, denoted xn� −∞, if

∀M ∈R ∃N ∈N such that ∀n > N , xn < M. (1.57)

Note. Often the + in +∞ is omitted.

Definition 1.46. R together with ±∞ is called “extended real numbers”. That is extended real numbers is
the set R∪ {∞,−∞}.

Most results involving finite limits can be readily extended to include the cases →±∞, as long as these
rules are followed:

x+∞=∞, x−∞=−∞, x∈R (1.58)

x ·∞=∞, x · (−∞)=−∞, x > 0 (1.59)

x ·∞=−∞, x · (−∞)=∞, x < 0 (1.60)

∞+∞=∞, −∞−∞=−∞ (1.61)

∞·∞= (−∞) · (−∞)=∞ ∞· (−∞)= (−∞) · (∞) =−∞ (1.62)

and the following are not involved: ∞−∞ or 0 · (+∞) or 0 · (−∞).

Proposition 1.47. (Extension of Proposition 1.21) Let xn� a, yn� b where a, b are extended real
numbers. Then

a) xn ± yn� a± b;

b) xn yn� a b;

c) If b� 0, then xn/yn� a/b.

Proof. We only prove the product case and leave other cases as exercises.
When both a, b ∈R, the proof has been done in Proposition 1.21. Here we need to study the two new

cases: a, b =±∞ and a∈R, b =±∞ or a =±∞, b∈R.

• Case 1. We only prove for a = b = ∞. (The other three sub-cases can be proved similarly.) As
∞·∞=∞, we need to show that for every M ∈R, there is N ∈N such that for all n>N , xn yn >M .

For every given M ∈ R, since xn� ∞, there is N1 ∈ N such that for all n > N1, xn > |M |
√

;

Similarly there is N2∈N such that for all n >N2, yn > |M |
√

. Now take N =max {N1, N2}. For any
n > N , we have xn yn > |M |

√

|M |
√

= |M |> M .

• Case 2. We only prove for a >0, b=∞ (The other seven sub-cases can be proved similarly). We need
to show that for every M ∈R, there is N ∈N such that for all n > N , xn yn > M .



Since xn� a > 0, there is N1 ∈ N such that for all n > N1, xn > a/2. On the other hand, as
yn� ∞, there is N2 ∈N such that for all n > N2, yn > 2 |M |/a. Now take N = max {N1, N2}, for
every n > N we have xn yn > (a/2) (2 |M |/a)= |M |> M . �

Example 1.48. The reason why ∞−∞ or 0 · (+∞) or 0 · (−∞) should not be involved is that in those cases
the results depend on how ∞ is approached and consequently differ case by case. For example, 1/n2� 0,
n� ∞, n3� ∞ but (1/n2) ·n� 0 while (1/n2) ·n3� ∞. So 0 ·∞ cannot be defined.

As an exercise, examples should be constructed for other cases.

Theorem 1.49. (Extension of Comparison Theorem 1.22) Let xn� a, yn� b with a, b extended
real numbers. If there is N0∈N such that xn 6 yn for all n > N0, then

lim
n�∞

xn 6 lim
n�∞

yn. (1.63)

Proof. Here we only need to deal with three cases: a =−∞, a∈R, a = +∞.

• a =−∞. As −∞6 b for every extended real number b, the proof ends.

• a ∈R. If b ∈R, the conclusion follows from Theorem 1.22. If b =∞, the conclusion holds. We only
need to show that b = −∞ cannot happen. Assume the contrary. As xn� a ∈R, there is N1 ∈N

such that for all n >N1, xn > a− 1. On the other hand, as yn� −∞, there is N2∈N such that for
all n > N2, yn < a − 1. Take N =max {N1, N2, N0}. For every n > N , we have yn < a − 1 < xn while
at the same time by assumptions in the theorem, xn 6 yn. Contradiction.

• a=∞. We need to show that b=−∞ or b∈R would lead to contradiction. The proof is very similar
to that of the previous case and is left as exercise. �

Theorem 1.50. (Extension of “Squeeze Theorem” 1.24) Let xn→a and yn� a where a is an extended
real number. Let {wn} be a sequence. Assume that there is N0∈N such that for all n > N0,

xn 6wn 6 yn. (1.64)

then wn� a.

Proof. We only need to prove the following two cases: a =∞ and a =−∞.

• a=∞. For any M ∈R, there is N1∈N such that xn >M for all n>N1. Now take N =max{N0,N1}.
Then we have for all n >N , wn > xn > M . Therefore wn� ∞.

• a=−∞. For any M ∈R there is N1∈N such that yn <M for all n>N1. Now take N =max{N0,N1}.
Then we have for all n >N , wn 6 yn <M . Therefore wn� −∞. �

Theorem 1.51. (Extension of Subsequence Lemmas 1.35, 1.36) Let {xn} be a sequence.

a) If xn� a, then every subsequence�a;

b) If every subsequence converges to the same a, then xn� a.

Proof. Since a∈R has already been settled in Lemmas 1.35, 1.36, we only need to deal with a=±∞. We
only prove for a=∞ here. The case a =−∞ can be proved similarly and is left as exercise.

a) For any given M ∈ R, there is N ∈ N such that for all n > N , xn > M . Let {xnk
} be an arbitrary

subsequence. Since n1 <n2<n3<
 there is K ∈N such that for all k >K, nk >N , and consequently
xnk

> M for all k >K.

b) We prove by contradiction. Assume that all of its subsequences�∞ but xn�∞. Then there is
M0∈R such that for every N ∈N there is n>N such that xn 6M0. Take N =1, we obtain xn1

6M0.
Now take N =n1, we obtain n2>n1 with xn2

6M0. Doing this again and again we obtain a subsequence
xnk

with xnk
6 M0. There are two cases:

• There is M ∈R such that xnk
>M for all k. In this case we can apply Bolzano-Weierstrass to

obtain a convergent subsequence xnkl
. As M 6 xnkl

6 M0, the comparison theorem 1.22 leads

to xnkl
� b for some M 6 b 6 M0.



• For every M ∈R there is k ∈N such that xnk
< M . Take M =−1. We have xnk1

< −1. Now

take M = xnk1
− 1, we have xnk2

< xnk1
− 1 <−2. Continue doing this we have a subsequence

xnkl
satisfying xnkl

<−l. Thus xnkl
� −∞. �

Think: There is no way to extend “Relation to Cauchy sequence” theorem 1.28 here.

Putting all the things we understood so far together, we reach

Theorem 1.52. (Extension of Classification Theorem 1.39) Let {xn} be a sequence. Then

• either xn� a for some extended real number a, or

• there are two subsequences xnk

1 � b1, xnk

2 � b2 for extended real numbers b1� b2.


