Math 314 A1 Fall 2012 Homework 1

Due Thursday Sep. 20

5:30pm (Assignment box CAB 3rd floor)

Problem 1. Suppose we need to prove uniform boundedness of a function $f(x)$ - that is $|f(x)| \leqslant$ some $M>0$ for all x - by contradiction, what should the starting assumption be? Explain in formal logic. (Hint: You should first write uniform boundedness into formal expression using \forall and \exists)
Problem 2. Prove that $x>0 \Longleftrightarrow x^{2}>0$ is false.
Problem 3. Construct the truth table for $(A$ and $B)$ or B and determine its relation to B. Justify your answer.

Problem 4. Let A, B, X be sets. Prove $X \backslash(A \cap B)=(X \backslash A) \cup(X \backslash B)$.
Problem 5. Find infinitely many nonempty sets of natural numbers

$$
\begin{equation*}
\mathbb{N} \supset S_{1} \supset S_{2} \supset \cdots \tag{1}
\end{equation*}
$$

such that $\cap_{n=1}^{\infty} S_{n}=\varnothing$. You need to rigorously justify your claim.
Problem 6. Let $f: X \mapsto Y$ be a function. Let $A, B \subseteq X$ and $S, T \subseteq Y$. Prove
a) If $A \subseteq B$ then $f(A) \subseteq f(B)$.
b) If $S \subseteq T$ then $f^{-1}(S) \subseteq f^{-1}(T)$.
c) Is it true that $A \subset B$ implies $f(A) \subset f(B)$? Justify your answer.
d) Is it true that $S \subset T$ implies $f^{-1}(S) \subset f^{-1}(T)$? Justify your answer.

Problem 7. Let $A \subseteq X, B \subseteq Y$ and $f: X \mapsto Y$. Prove that
a) $f\left(f^{-1}(B)\right) \subseteq B$.
b) $f^{-1}(f(A)) \supseteq A$.
c) If $B \subseteq f(X)$, then $f\left(f^{-1}(B)\right)=B$.

