MATH 314 A1 FALL 2012 HOMEWORK 1

DUE THURSDAY SEP. 20

5:30pm (Assignment box CAB 3rd floor)

Problem 1. Suppose we need to prove uniform boundedness of a function f(x) – that is $|f(x)| \leq \text{some } M > 0$ for all x - by contradiction, what should the starting assumption be? Explain in formal logic. (Hint: You should first write uniform boundedness into formal expression using \forall and \exists)

Problem 2. Prove that $x > 0 \iff x^2 > 0$ is false.

Problem 3. Construct the truth table for (A and B) or B and determine its relation to B. Justify your answer.

Problem 4. Let A, B, X be sets. Prove $X \setminus (A \cap B) = (X \setminus A) \cup (X \setminus B)$.

Problem 5. Find infinitely many nonempty sets of natural numbers

$$\mathbb{N} \supset S_1 \supset S_2 \supset \cdots \tag{1}$$

such that $\bigcap_{n=1}^{\infty} S_n = \emptyset$. You need to rigorously justify your claim.

Problem 6. Let $f: X \mapsto Y$ be a function. Let $A, B \subseteq X$ and $S, T \subseteq Y$. Prove

- a) If $A \subseteq B$ then $f(A) \subseteq f(B)$.
- b) If $S \subseteq T$ then $f^{-1}(S) \subseteq f^{-1}(T)$.
- c) Is it true that $A \subset B$ implies $f(A) \subset f(B)$? Justify your answer.
- d) Is it true that $S \subset T$ implies $f^{-1}(S) \subset f^{-1}(T)$? Justify your answer.

Problem 7. Let $A \subseteq X, B \subseteq Y$ and $f: X \mapsto Y$. Prove that

- a) $f(f^{-1}(B)) \subseteq B$.
- b) $f^{-1}(f(A)) \supseteq A$.
- c) If $B \subseteq f(X)$, then $f(f^{-1}(B)) = B$.