MATH 217 – Midterm test

27 October 2011

Name:

Student ID:

- \triangleright Time allowed: 50 minutes.
- ▷ Total possible marks: 30. Your *four* best problems determine your marks. Bonus marks may be given for your work on the other problems.
- ▷ This is a closed book test!
- ▷ NO calculators, mobile phones, iPods etc.!
- \triangleright Good luck!

Problem 1

Given any $t \in \mathbb{R}$, define a sequence (a_n) in \mathbb{R} recursively as

 $a_1 := t$ and $a_{n+1} := a_n(2 - a_n)$ $(n \in \mathbb{N})$.

- (i) Show that (a_n) is convergent whenever $t \in [0, 2]$, and find $\lim_{n \to \infty} a_n$ in this case. (The limit may depend on t.)
- (ii) What can you say about (a_n) if $t \notin [0, 2]$?

Problem 2

Consider the following two statements about any function $f : \mathbb{R} \to \mathbb{R}$:

- (i) f is continuous;
- (ii) graph $f := \{x \in \mathbb{R}^2 : x_2 = f(x_1)\}$ is a closed subset of \mathbb{R}^2 .

Turn (i) \odot (ii) into a true logical statement by replacing \odot with either \Leftarrow , \Rightarrow , or \Leftrightarrow . If your choice is \Leftarrow (resp. \Rightarrow) rather than \Leftrightarrow , give an example for which \Rightarrow (resp. \Leftarrow) is false.

Problem 3

Let A, B be two subsets of \mathbb{R}^d , and recall that $A + B = \{a + b : a \in A, b \in B\}$. (If A or B are empty then $A + B := \emptyset$.) Prove or disprove each of the following three statements:

- (i) If A and B are closed then A + B is closed;
- (ii) If A and B are compact then A + B is compact;
- (iii) If A and B are convex then A + B is convex.

[7.5 marks]

[7.5 marks]

[7.5 marks]

Problem 4

[7.5 marks]

[7.5 marks]

Prove *Apollonius' identity*:

$$|c-a|^2 + |b-a|^2 = \frac{1}{2}|c-b|^2 + 2\left|\frac{b+c}{2} - a\right|^2 \quad \forall a, b, c \in \mathbb{R}^d$$

Problem 5

Let $a, b, c \in \mathbb{R}^d$. Demonstrate that the following two statements are equivalent:

- (i) |c-a| = |c-b| + |b-a|;
- (ii) b lies on the line segment from a to c, i.e. b = (1-t)a + tc for some $t \in [0, 1]$.

Problem 6

[7.5 marks]

Let $A \subset \mathbb{R}^d$, and assume that $f : A \to \mathbb{R}^m$ is continuous. Prove or disprove each of the following two statements:

- (i) If A is closed then f(A) is closed;
- (ii) If A is bounded then f(A) is bounded.