MATH 217 - Midterm test
 27 October 2011

Name:

Student ID:

\triangleright Time allowed: 50 minutes.
\triangleright Total possible marks: 30. Your four best problems determine your marks.
Bonus marks may be given for your work on the other problems.
\triangleright This is a closed book test!
\triangleright NO calculators, mobile phones, iPods etc.!
\triangleright Good luck!

Problem 1

[7.5 marks]
Given any $t \in \mathbb{R}$, define a sequence $\left(a_{n}\right)$ in \mathbb{R} recursively as

$$
a_{1}:=t \quad \text { and } \quad a_{n+1}:=a_{n}\left(2-a_{n}\right) \quad(n \in \mathbb{N})
$$

(i) Show that $\left(a_{n}\right)$ is convergent whenever $t \in[0,2]$, and find $\lim _{n \rightarrow \infty} a_{n}$ in this case. (The limit may depend on t.)
(ii) What can you say about $\left(a_{n}\right)$ if $t \notin[0,2]$?

Problem 2

Consider the following two statements about any function $f: \mathbb{R} \rightarrow \mathbb{R}$:
(i) f is continuous;
(ii) graph $f:=\left\{x \in \mathbb{R}^{2}: x_{2}=f\left(x_{1}\right)\right\}$ is a closed subset of \mathbb{R}^{2}.

Turn (i) \odot (ii) into a true logical statement by replacing \odot with either \Leftarrow, \Rightarrow, or \Leftrightarrow. If your choice is \Leftarrow $($ resp. $\Rightarrow)$ rather than \Leftrightarrow, give an example for which $\Rightarrow($ resp. $\Leftarrow)$ is false.

Problem 3

Let A, B be two subsets of \mathbb{R}^{d}, and recall that $A+B=\{a+b: a \in A, b \in B\}$. (If A or B are empty then $A+B:=\varnothing$.) Prove or disprove each of the following three statements:
(i) If A and B are closed then $A+B$ is closed;
(ii) If A and B are compact then $A+B$ is compact;
(iii) If A and B are convex then $A+B$ is convex.

Problem 4

Prove Apollonius' identity:

$$
|c-a|^{2}+|b-a|^{2}=\frac{1}{2}|c-b|^{2}+2\left|\frac{b+c}{2}-a\right|^{2} \quad \forall a, b, c \in \mathbb{R}^{d} .
$$

Problem 5

Let $a, b, c \in \mathbb{R}^{d}$. Demonstrate that the following two statements are equivalent:
(i) $|c-a|=|c-b|+|b-a|$;
(ii) b lies on the line segment from a to c, i.e. $b=(1-t) a+t c$ for some $t \in[0,1]$.

Problem 6

Let $A \subset \mathbb{R}^{d}$, and assume that $f: A \rightarrow \mathbb{R}^{m}$ is continuous. Prove or disprove each of the following two statements:
(i) If A is closed then $f(A)$ is closed;
(ii) If A is bounded then $f(A)$ is bounded.

