MATH 217 - Final exam
 19 December 2011

Name:

Student ID:

\triangleright Time allowed: 3 hours.
\triangleright Total possible marks: 40. All problems have equal weight. Your six best problems determine your marks. Bonus marks may be given for your work on the other problems.
\triangleright This is a closed book exam!
\triangleright NO calculators, mobile phones, iPods etc.!
\triangleright Good luck!

Problem 1

Consider the set $A:=\left\{x \in \mathbb{R}^{3}: \sqrt{\left|x_{1}\right|}+\sqrt{\left|x_{2}\right|}+\sqrt{\left|x_{3}\right|} \leq 1\right\}$.
(i) Show that A is compact and star-shaped, but not convex.
(ii) Explain why A is a Jordan set, i.e. $A \in \mathcal{J}^{3}$, and determine $\mu(A)$.

Problem 2

For $d \in \mathbb{N} \backslash\{1\}$, consider the following two statements about any set $B \subset \mathbb{R}^{d}$:
(i) B is path-connected;
(ii) For every continuous function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, the set $f(B)$ is path-connected.

Turn (i)\&(ii) into a true logical statement by replacing \& with either \Leftarrow, \Rightarrow, or \Leftrightarrow. If your choice is \Leftarrow (resp. $\Rightarrow)$ rather than \Leftrightarrow, give an example for which $\Rightarrow($ resp. $\Leftarrow)$ is false.

Problem 3

Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous, and define $g:(0,1) \rightarrow \mathbb{R}$ as

$$
g(r):=\int_{r}^{1} \frac{f(x)}{x} \mathrm{~d} x .
$$

(i) Demonstrate that $\lim _{r \rightarrow 0} g(r)$ may not exist.
(ii) Show that $\lim _{r \rightarrow 0} \frac{g(r)}{\ln r}$ exists and determine its value.

Problem 4

For the set $C=\left\{x \in \mathbb{R}^{3}: x_{3}=1-x_{1}^{2}-x_{2}^{2} \geq 0\right\}$ determine $\alpha:=\min _{x \in C}|x|$ and $\beta:=\max _{x \in C}|x|$, and identify the sets $\{x \in C:|x|=\alpha\}$ and $\{x \in C:|x|=\beta\}$.

Problem 5

Prove or disprove: If $D \subset \mathbb{R}^{d}$ is compact and $f: D \rightarrow \mathbb{R}^{m}$ is continuous and one-to-one, then

$$
h:\left\{\begin{array}{rll}
f(D) & \rightarrow & D \\
f(x) & \mapsto & x
\end{array}\right.
$$

is a continuous function.

Problem 6

Evaluate the following two integrals:
(i) $\int_{E} x_{1} \mathrm{~d} x$ where $E=\left\{x \in \mathbb{R}^{3}: 4 \leq x_{1}^{2}+x_{2}^{2} \leq 9,0 \leq x_{3} \leq 5+x_{1}+x_{2}\right\}$;
(ii) $\int_{E} \frac{\sin x_{1}}{x_{1}} \mathrm{~d} x$ where $E \subset \mathbb{R}^{2}$ is the triangle with vertices $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}\pi \\ 0\end{array}\right]$, and $\left[\begin{array}{l}\pi \\ 1\end{array}\right]$.

Problem 7

Consider the following two statements about any Jordan set $F \subset \mathbb{R}^{d}$:
(i) $\mu(F)>0$;
(ii) There exists a non-empty open set $U \subset \mathbb{R}^{d}$ with $U \subset F$.

Turn (i) \subseteq (ii) into a true logical statement by replacing \bigcirc with either \Leftarrow, \Rightarrow, or \Leftrightarrow. If your choice is \Leftarrow (resp. $\Rightarrow)$ rather than \Leftrightarrow, give an example for which \Rightarrow (resp. \Leftarrow) is false.

Problem 8

Show that there exist uniquely determined numbers $\alpha, \beta \in \mathbb{R}$ that make the integral

$$
I(\alpha, \beta):=\int_{0}^{1}(\sin (\pi x)-\alpha-\beta x)^{2} \mathrm{~d} x
$$

minimal. Find these minimising α, β.

Problem 9

Is the function $f: \mathbb{R} \rightarrow \mathbb{R}$ with $f(x)=\sin \left(\pi x^{2}\right)$ uniformly continuous? Justify your answer.

