MATH 217 – Final exam

19 December 2011

Name:

Student ID:

- \triangleright Time allowed: 3 hours.
- ▷ Total possible marks: 40. All problems have equal weight. Your *six* best problems determine your marks. Bonus marks *may* be given for your work on the other problems.
- \triangleright This is a closed book exam!
- ▷ NO calculators, mobile phones, iPods etc.!
- \triangleright Good luck!

Problem 1

Consider the set $A := \{ x \in \mathbb{R}^3 : \sqrt{|x_1|} + \sqrt{|x_2|} + \sqrt{|x_3|} \le 1 \}.$

- (i) Show that A is compact and star-shaped, but not convex.
- (ii) Explain why A is a Jordan set, i.e. $A \in \mathcal{J}^3$, and determine $\mu(A)$.

Problem 2

For $d \in \mathbb{N} \setminus \{1\}$, consider the following two statements about any set $B \subset \mathbb{R}^d$:

- (i) *B* is path-connected;
- (ii) For every continuous function $f : \mathbb{R}^d \to \mathbb{R}$, the set f(B) is path-connected.

Turn (i) \clubsuit (ii) into a true logical statement by replacing \clubsuit with either \Leftarrow , \Rightarrow , or \Leftrightarrow . If your choice is \Leftarrow (resp. \Rightarrow) rather than \Leftrightarrow , give an example for which \Rightarrow (resp. \Leftarrow) is false.

Problem 3

Let $f:[0,1] \to \mathbb{R}$ be continuous, and define $g:(0,1) \to \mathbb{R}$ as

$$g(r) := \int_{r}^{1} \frac{f(x)}{x} \,\mathrm{d}x$$

- (i) Demonstrate that $\lim_{r\to 0} g(r)$ may not exist.
- (ii) Show that $\lim_{r\to 0} \frac{g(r)}{\ln r}$ exists and determine its value.

Problem 4

For the set $C = \{x \in \mathbb{R}^3 : x_3 = 1 - x_1^2 - x_2^2 \ge 0\}$ determine $\alpha := \min_{x \in C} |x|$ and $\beta := \max_{x \in C} |x|$, and identify the sets $\{x \in C : |x| = \alpha\}$ and $\{x \in C : |x| = \beta\}$.

Problem 5

Prove or disprove: If $D \subset \mathbb{R}^d$ is compact and $f: D \to \mathbb{R}^m$ is continuous and one-to-one, then

$$h: \left\{ \begin{array}{rrr} f(D) & \to & D \\ f(x) & \mapsto & x \end{array} \right.$$

is a continuous function.

Problem 6

r

Evaluate the following two integrals:

(i)
$$\int_{E} x_1 \, \mathrm{d}x \text{ where } E = \left\{ x \in \mathbb{R}^3 : 4 \le x_1^2 + x_2^2 \le 9, 0 \le x_3 \le 5 + x_1 + x_2 \right\};$$

(ii)
$$\int_{E} \frac{\sin x_1}{x_1} \, \mathrm{d}x \text{ where } E \subset \mathbb{R}^2 \text{ is the triangle with vertices } \begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} \pi\\0 \end{bmatrix}, \text{ and } \begin{bmatrix} \pi\\1 \end{bmatrix}$$

Problem 7

Consider the following two statements about any Jordan set $F \subset \mathbb{R}^d$:

- (i) $\mu(F) > 0;$
- (ii) There exists a non-empty open set $U \subset \mathbb{R}^d$ with $U \subset F$.

Turn (i) \heartsuit (ii) into a true logical statement by replacing \heartsuit with either \Leftarrow , \Rightarrow , or \Leftrightarrow . If your choice is \Leftarrow (resp. \Rightarrow) rather than \Leftrightarrow , give an example for which \Rightarrow (resp. \Leftarrow) is false.

Problem 8

Show that there exist uniquely determined numbers $\alpha,\beta\in\mathbb{R}$ that make the integral

$$I(\alpha,\beta) := \int_0^1 \left(\sin(\pi x) - \alpha - \beta x\right)^2 dx$$

minimal. Find these minimising α, β .

Problem 9

Is the function $f : \mathbb{R} \to \mathbb{R}$ with $f(x) = \sin(\pi x^2)$ uniformly continuous? Justify your answer.