Table of contents

Numbers	1
Main references	1
Natural Numbers	1
Definition of \mathbb{N}	2
Addition	3
Ordering	4
Multiplication	5
(Positive) Rational Numbers	6
Definition	6
Dedekind cuts	7
Addition of cuts	8
Multiplication of cuts	9
Real numbers	10
Definition of real numbers	10
Order	11
Addition and subtraction	12
Multiplication and division	12
Dedekind's fundamental theorem	13
Properties of real numbers	14
\mathbbm{R} is an ordered field \hfill	14
\mathbb{R} has least upper bound property \ldots	16
Archimedean	18
${\mathbb R}$ is unique	18

Numbers

"...my daughter have been studying (Chemistry) at the University for several semesters already and think that they have learned the differential and integral calculus in College; and yet they still don't know why

 $x \cdot y = y \cdot x."$

— Edmund Landau, Berlin, December 28, 1929.¹

Main references

- (Landau:Foundation) Landau, Edmund, Foundations of Analysis, translated by F. Steinhardt, AMS Chelsea Publishing, 3rd edition, 1966. Chapters 1 4.
- (Baby Rudin) Rudin, Walter, *Principles of Mathematical Analysis*, McGraw-Hill Companies, Inc., 3rd edition, 1976. Chapter 1.

Natural Numbers

Notation. We will use \mathbb{N} to denote natural numbers.²

^{1.} Preface for the student, Foundations of Analysis, translated by F. Steinhardt, AMS Chelsea Publishing, 3ed, 1966.

Definition of $\mathbb N$

- Axiom 1. $1 \in \mathbb{N}$;
- Axiom 2. For each $x \in \mathbb{N}$ there exists exactly one $x' \in \mathbb{N}$, called the "successor" of x;
- Axiom 3. $\forall x \in \mathbb{N}, x' \neq 1;$
- Axiom 4. If x' = y' then x = y;
- Axiom 5. (Axiom of Induction): Let $\mathfrak{M} \subseteq \mathbb{N}$ satisfy
 - 1. $1 \in \mathfrak{M};$
 - 2. If $x \in \mathfrak{M}$ then $x' \in \mathfrak{M}$.

Then $\mathfrak{M} = \mathbb{N}$.

Remark 1. John von Neumann suggested the following construction of \mathbb{N} :

Define

$$1 := \{ \varnothing \}, \qquad 2 := 1 \cup \{1\}, \qquad 3 := 2 \cup \{2\}, \dots$$
 (1)

Note that this does not establish the existence of \mathbb{N} . The existence of \mathbb{N} is in fact an axiom:

We accept that there is at least one set S satisfying

i.
$$1 \in S$$
;
ii. $x \in S \Longrightarrow x \cup \{x\} \in S$.

Now let W be a collection of all such sets. Define $\mathbb{N} := \bigcap_{S \in W} S$.

Theorem 2. $x' \neq x$.

Proof. Let $\mathfrak{M} := \{x \in \mathbb{N} | x' \neq x\}$. Then by Axiom 3, $1 \in \mathfrak{M}$. Now we show that $x \in \mathfrak{M} \Longrightarrow x' \in \mathfrak{M}$. Once this is done the conclusion follows from Axiom 5.

Assume there is $x \in \mathfrak{M}$ such that $x' \notin \mathfrak{M}$. That is $x' \neq x$, but (x')' = x'. However by Axiom 4 we have $(x')' = x' \Longrightarrow x' = x$. Contradiction.

Lemma 3. If $x \neq y$ then $x' \neq y'$.

Exercise 1. Prove Lemma 3.

Lemma 4. If $x \neq 1$, then there is exactly one u such that u' = x.

Exercise 2. Prove Lemma 4 (Hint: Let $\mathfrak{M} = \{1\} \cup \{\text{all numbers with this property}\}$.

^{2.} There is much debate whether 0 should be included in natural numbers. My personal opinion is that 0 is definitely not as "natural" as $1, 2, 3, \ldots$ and therefore shouldn't be included. Thus in this note 0 does not belong to \mathbb{N} .

Addition

We need to define x + y for every pair of $x, y \in \mathbb{N}$.

- First define this for y = 1: x + 1 := x';
- Now assume that this is done for y. We define x + y' := (x + y)'. This way addition is defined for each ordered pair (x, y).

Theorem 5. The way of defining x + y such that x + 1 = x', x + y' = (x + y)' is unique.

Proof. Let $+, \oplus$ be two ways of defining addition. Fix an arbitrary $x \in \mathbb{N}$, let $\mathfrak{M} = \{y \in \mathbb{N} | x + y = x \oplus y\}$. Then $1 \in \mathfrak{M}$. Now for every $y \in \mathfrak{M}$, we have

$$x + y' = (x + y)' = (x \oplus y)' = x \oplus y'.$$
(2)

By Axiom of induction $\mathfrak{M} = \mathbb{N}$. Thus such definition, if it exists, is unique.

Similarly we can prove that such definition indeed exists. Left as exercise. \Box

Exercise 3. Use induction to prove that x + y can be defined for all $x, y \in \mathbb{N}$.

Theorem 6. (x+y) + z = x + (y+z).

Proof. For any $x, y \in \mathbb{N}$, let $\mathfrak{M} := \{z \in \mathbb{N} | (x+y) + z = x + (y+z)\}$. Then we check

$$(x+y) + 1 = (x+y)' = x + y' = x + (y+1)$$
(3)

so $1 \in \mathfrak{M}$.

For every $z \in \mathfrak{M}$, we have

$$(x+y) + z' = [(x+y) + z]' = [x + (y+z)]' = x + (y+z)' = x + (y+z').$$
(4)

Thus ends the proof.

Theorem 7. x + y = y + x.

Proof. Fix any $y \in \mathbb{N}$. First we prove 1 + y = y + 1. Let $\mathfrak{M} := \{y \in \mathbb{N} | 1 + y = y + 1\}$. We have 1 + 1 = 1 + 1 so $1 \in \mathfrak{M}$. Now if $y \in \mathfrak{M}$, we check

$$1 + y' = 1 + (y + 1) = (1 + y) + 1 = (y + 1) + 1 = y' + 1$$
(5)

so $y' \in \mathfrak{M}$ too. Consequently 1 + y = y + 1 for all $y \in \mathbb{N}$.

Now we prove that if x + y = y + x, then x' + y = y + x'. We have

$$x' + y = (x+1) + y = x + (1+y) = x + (y+1) = (x+y) + 1 = (y+x) + 1 = y + (x+1) = y + x'.$$
 (6)

Thus ends the proof.

Lemma 8. If $y \neq z$ then $x + y \neq x + z$. Or equivalently $x + y = x + z \Longrightarrow y = z$.

Exercise 4. Prove Lemma 8.

Ordering

Theorem 9. For any $x, y \in \mathbb{N}$, exactly one of the following is true:

- *i.* x = y;
- *ii.* There is exactly one $u \in \mathbb{N}$ such that x = y + u;
- *iii.* There is exactly one $v \in \mathbb{N}$ such that y = x + v.

Proof.

First we prove that for any $x, y \in \mathbb{N}$, at most one of the three holds. Three cases:

- x = y and x = y + u hold. Then we have $y = y + u \Longrightarrow y + 1 = y' = (y + u)' = y + u'$ which by Lemma 8 gives 1 = u' which contradicts Axiom 3.
- x = y and y = x + v hold. Similar to the above case.
- x = y + u and y = x + v hold. Then we have x + v = (y + u) + v = y + (u + v) which by similar argument as above contradicts Axiom 3.

Fix an arbitrary $x \in \mathbb{N}$. We prove that for any $y \in \mathbb{N}$, at least one of the above holds.

Let $\mathfrak{M} := \{y \in \mathbb{N} | \text{ exactly one of } x = y, x = y + u, y = x + v\}$ holds.

- $1 \in \mathfrak{M}$. There are two cases.
 - \circ x=1. Then x=y.
 - $x \neq 1$. Then by Lemma 4 there is $u \in \mathbb{N}$ such that x = u'. Thus x = u + 1 = 1 + u = y + u.
- If $y \in \mathfrak{M}$ then $y' \in \mathfrak{M}$. There are three cases.
 - x = y. Then y' = y + 1 = x + 1 and therefore $y' \in \mathfrak{M}$.
 - \circ x = y + u. Then there are two cases.
 - u=1. Then x=y'.
 - $u \neq 1$. Then by Lemma 4 there is $v \in \mathbb{N}$ such that u = v'. This gives

$$x = y + u = y + v' = (y + v)' = y' + v.$$
(7)

So $y' \in \mathfrak{M}$.

 $\circ y = x + v$. Then

$$y' = (x+v)' = x + v'$$
(8)

and $y' \in \mathfrak{M}$.

Thus $y' \in \mathfrak{M}$ and the proof ends.

Definition 10. (Ordering) If x = y + u, denote x > y; If y = x + v, denote x < y.

Theorem 11. For any given x, y, we have exactly one of the following: x = y, x < y, x > y.

Exercise 5. If x < y then y > x.

Definition 12. Define $x \ge y$ as x > y or x = y. Define $x \le y$ as x < y or x = y.

Exercise 6. If $x \leq y$ then $y \geq x$; If $x \geq y$ then $y \leq x$.

Exercise 7. If $x \leq y$ and $y \leq x$ then x = y.

Exercise 8. If x < y, y < z then x < z; If $x \leq y, y < z$ then x < z; If $x \leq y, y \leq z$ then x < z; If $x \leq y, y \leq z$ then $x \leq z$.

Exercise 9. If x > y, z > u then x + z > y + u.

Exercise 10. If x < y, then $x + 1 \leq y$.

Theorem 13. Let $A \subseteq \mathbb{N}$ be nonempty. Then there is a unique least element, that is $a \in A$ such that for all $b \in A$, $a \leq b$.

Proof.

- If $1 \in A$ then 1 is the least element, since for all $x \in \mathbb{N}$, $x \neq 1$, there is u such that x = u' = 1 + u > 1.
- If $1 \notin A$, let $\mathfrak{M} := \{x \in \mathbb{N} | \forall b \in A, x \leq b\}$. Now if for every $x \in \mathfrak{M}$ we have $x + 1 \in \mathfrak{M}$, by the Axiom of induction $\mathfrak{M} = \mathbb{N}$ and $A = \emptyset$. Contradiction. Thus there is $a \in \mathfrak{M}$ satisfying:

$$a \in \mathfrak{M}, a+1 \notin \mathfrak{M}. \tag{9}$$

We claim $a \in A$. Since otherwise, by definition of \leq , for every $b \in A$ there must hold a < b which implies $a + 1 \leq b$. Consequently $a + 1 \in \mathfrak{M}$. Contradiction.

Now $a \in \mathfrak{M} \Longrightarrow \forall b \in A, a \leq b$ so a is a least element. Uniqueness follows from $a \leq b, b \leq a \Longrightarrow a = b$. \Box

Multiplication

Theorem 14. To every pair of $x, y \in \mathbb{N}$, we can assign in exactly one way a $z \in \mathbb{N}$, denoted $x \cdot y$ (or x y when no confusion may arise), such that

i. $x \cdot 1 = x$ for every x;

ii. $x \cdot y' = x \cdot y + x$ for every x and every y.

Proof. Left as exercise.

Exercise 11. $x \cdot y = y \cdot x$.

Exercise 12. x(y+z) = xy + xz.

Exercise 13. (x y) z = x (y z).

Exercise 14. If x > y(=y, < y) then x > y z(=y z, < y z). If x y > y z(=y z, < y z) then x > y(=y, < y).

Exercise 15. If x > y, z > u then x z > y u.

(Positive) Rational Numbers

Definition

Definition 15. Consider all ordered pairs (x_1, x_2) with $x_1, x_2 \in \mathbb{N}$. Define the equivalance

$$(x_1, x_2) \sim (y_1, y_2) \Longleftrightarrow x_1 y_2 = x_2 y_1. \tag{10}$$

Theorem 16. \sim is indeed an equivalence relation, that is

- 1. $(x_1, x_2) \sim (x_1, x_2);$
- 2. $(x_1, x_2) \sim (y_1, y_2) \iff (y_1, y_2) \sim (x_1, x_2);$
- 3. $(x_1, x_2) \sim (y_1, y_2)$ and $(y_1, y_2) \sim (z_1, z_2)$ then $(x_1, x_2) \sim (z_1, z_2)$.

Proof. Exercise.

Exercise 16. $(x_1, x_2) \sim (x_1 x, x_2 x)$ for any $x \in \mathbb{N}$.

Notation. From now on we will denote (x_1, x_2) by $\frac{x_1}{x_2}$, or x_1/x_2 .

Definition 17. $\frac{x_1}{x_2} > \frac{y_1}{y_2}$ if and only if $x_1 y_2 > y_1 x_2$. $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ if and only if $\frac{y_1}{y_2} > \frac{x_1}{x_2}$.

Theorem 18. Exactly one of the following three holds:

$$\frac{x_1}{x_2} \sim \frac{y_1}{y_2}, \qquad \frac{x_1}{x_2} > \frac{y_1}{y_2}, \qquad \frac{x_1}{x_2} < \frac{y_1}{y_2}.$$
(11)

Exercise 17. If $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ and $\frac{y_1}{y_2} < \frac{z_1}{z_2}$ then $\frac{x_1}{x_2} < \frac{z_1}{z_2}$.

Definition 19. $\frac{x_1}{x_2} \ge \frac{y_1}{y_2}$ if and only if $\frac{x_1}{x_2} \ge \frac{y_1}{y_2}$ or $\frac{x_1}{x_2} \sim \frac{y_1}{y_2}$. $\frac{x_1}{x_2} \le \frac{y_1}{y_2}$ if and only if $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ or $\frac{x_1}{x_2} \sim \frac{y_1}{y_2}$. **Exercise 18.** If $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ and $\frac{y_1}{y_2} \le \frac{z_1}{z_2}$ then $\frac{x_1}{x_2} < \frac{z_1}{z_2}$. **Exercise 19.** If $\frac{x_1}{x_2} \ge \frac{y_1}{y_2}$ and $\frac{y_1}{y_2} \ge \frac{x_1}{x_2}$, then $\frac{x_1}{x_2} = \frac{y_1}{y_2}$.

Theorem 20. If $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ then there is $\frac{z_1}{z_2}$ such that $\frac{x_1}{x_2} < \frac{z_1}{z_2} < \frac{y_1}{y_2}$.

Proof. Set

$$z_1 = x_1 + y_1, \qquad z_2 = x_2 + y_2.$$
 (12)

Then it satisfies the requirement.

Problem 1. Define addition, subtraction, multiplication, division, and justify their properties.

Definition 21. We define a positive rational number X to be an equivalence class of all pairs $\frac{y_1}{y_2}$ equivalent to a fixed pair $\frac{x_1}{x_2}$. We denote the set of positive rational numbers \mathbb{Q}^+ .

Definition 22. Two rational numbers X, Y are equal, denoted X = Y, if there are $\frac{x_1}{x_2} \in X$ and $\frac{y_1}{y_2} \in Y$ such that $\frac{x_1}{x_2} \sim \frac{y_1}{y_2}$.

Remark 23. We can easily define $X < Y, X \leq Y, X > Y, X \geq Y$.

Theorem 24. Let X, Y be rational numbers. Then there is an natural number z such that zX > Y.

Proof. Take $\frac{x_1}{x_2} \in X$, $\frac{y_1}{y_2} \in Y$. We need to prove that there is $z \in \mathbb{N}$ such that $z x_1 y_2 > x_2 y_1$. More generally, we prove that for any $x, y \in \mathbb{N}$, there is z such that z x > y.

Fix x, Let $\mathfrak{M} := \{ y \in \mathbb{N} | \exists z \in \mathbb{N}, z x > y \}.$

- $1 \in \mathfrak{M}$. Two cases.
 - \circ x=1. Then we have $1' \cdot x = x + x > x = 1$.
 - $x \neq 1$. Then there is $u \in \mathbb{N}$ such that x = u' = 1 + u > 1.

Therefore $1 \in \mathfrak{M}$.

• $y \in \mathfrak{M}$ then $y' \in \mathfrak{M}$.

Since $y \in \mathfrak{M}$ there is $z \in \mathbb{N}$ such that zx > y. Thus there is $u \in \mathbb{N}$ such that zx = y + u. Now consider z'x = zx + x = y + u + x. It is easy to see that $u + x \neq 1$ thus there is $v \in \mathbb{N}$ such that u + x = v'. This gives

$$z'x = y + u + x = y + v' = y' + v > y'.$$
(13)

Thus ends the proof.

Exercise 20. Let $x, y \in \mathbb{N}$. Prove that there is $v \in \mathbb{N}$ such that x + y = v'.

Theorem 25. Define $S := \{X \in \mathbb{Q}^+ | X \sim \frac{x}{1} \text{ for some } x \in \mathbb{N}\}$. Denote $\frac{1}{1}$ by 1. For any $X \in S$, define $X' := X + \frac{1}{1}$. Then S satisfies Axioms 1 – 5 of \mathbb{N} and is therefore \mathbb{N} .

Notation. In the following we will stop using capital letters to denote rational numbers.

Dedekind cuts

Definition 26. A subset $\xi \subseteq \mathbb{Q}$ is called a "cut" if and only if

- i. it contains a rational number, but does not contain all rational numbers;
- ii. every rational number in the set is smaller than every rational number not in the set;
- *iii.* it does not contain a greatest rational number.

Exercise 21. Let $\xi \subseteq \mathbb{Q}$ be a cut. Prove that

$$[x \in \xi] \Longrightarrow [\forall y < x, y \in \xi]; \qquad [x \notin \xi] \Longrightarrow [\forall y > x, y \notin \xi].$$

$$(14)$$

Exercise 22. Let $x \in \mathbb{Q}$. Then $\xi := \{y \in \mathbb{Q} | y < x\}$ is a cut.

Definition 27. Two cuts ξ , η are said to be equal, denoted $\xi = \eta$, if they are equal as sets.

Theorem 28. "=" is an equivalence relation, that is

$$\xi = \xi; \qquad \xi = \eta \Longrightarrow \eta = \xi; \qquad \xi = \eta, \eta = \zeta \Longrightarrow \xi = \zeta. \tag{15}$$

Definition 29. Let ξ , η be two cuts. Say $\xi < \eta$ if and only if $\xi \subseteq \eta$. Say $\xi > \eta$ if and only if $\eta < \xi$. Say $\xi \leq \eta$ if $\xi \subseteq \eta$ and $\xi \ge \eta$ if $\eta \leq \xi$.

Exercise 23. For any ξ , η exactly one of the following is true: $\xi = \eta$; $\xi > \eta$; $\xi < \eta$.

Exercise 24. If $\xi \leq \eta$ and $\eta \leq \xi$, then $\xi = \eta$.

Addition of cuts

Theorem 30. Let ξ , η be cuts. Then

$$\zeta := \{x + y \mid x \in \xi, y \in \eta\}$$

$$\tag{16}$$

is also a cut.

Proof. Since ξ , η are cuts they are not empty. Thus ζ is not empty. On the other hand, ξ , η are not \mathbb{Q} , therefore there is $a, b \in \mathbb{Q}$ such that $a \notin \xi, b \notin \eta$. By definition of cuts we have

$$\forall x \in \xi, x < a; \qquad \forall y \in \eta, y < b. \tag{17}$$

This gives

$$\forall z \in \zeta, \, z < a + b. \tag{18}$$

Therefore ζ is not \mathbb{Q} .

Next we prove that if $z \in \zeta$ then all z' < z also belongs to ζ . Let $z \in \zeta$. Then there are $x \in \xi, y \in \eta$ such that z = x + y. Now for any z' < z, we have $\frac{z'}{z}x < x \Longrightarrow \frac{z'}{z}x \in \xi$ and similarly $\frac{z'}{z}y \in \eta$. Now we have

$$\frac{z'}{z}x + \frac{z'}{z}y = z'.$$
(19)

Now we prove that if $z \notin \zeta$ and z' > z, then $z' \notin \zeta$. This is obvious through proof by contradiction and what we have just proved.

Finally since neither ξ nor η has a greatest number, for any $z \in \zeta$ there is always $z' \in \zeta$ satisfying z' > z. \Box

Definition 31. Let ξ, η be cuts. Then define their sum to be

$$\xi + \eta := \{ x + y | \, x \in \xi, \, y \in \eta \}.$$
⁽²⁰⁾

Exercise 25. Prove $\xi + \eta > \xi$.

Exercise 26. Prove $\xi + \eta = \eta + \xi$.

Exercise 27. Prove $(\xi + \eta) + \zeta = \xi + (\eta + \zeta)$.

Exercise 28. Let ξ be a cut. Let $a \in \mathbb{Q}^+$. Then there are $x \in \xi$, $y \notin \xi$ such that y - x = a. (Hint: Consider x + n a for $n \in \mathbb{N}$)

Theorem 32. If $\xi > \eta$, then there is a unique ζ such that $\eta + \zeta = \xi$.

Proof. Uniqueness is trivial. We prove existence. Since $\xi > \eta$, the set

$$A := \{ x \in \mathbb{Q} | x \in \xi, x \notin \eta \}$$

$$\tag{21}$$

is not empty. Define

$$\zeta := \{ x - y | x, y \in A, x > y \}.$$
(22)

We first prove that it is a cut. (Need to identify $x \in \mathbb{Q}$ with a cut?)

i. Since A is non... \Box

Definition 33. Denote that ζ in the above theorem as $\xi - \eta$.

Multiplication of cuts

Theorem 34. Let ξ , η be cuts. Then

$$\zeta := \{ x \, y | \, x \in \xi, \, y \in \eta \} \tag{23}$$

is also a cut.

Proof. Left as exercise.

Definition 35. The ζ above is called the product of ξ , η , denoted $\xi \cdot \eta$ (or $\xi \eta$ if no confusion arises)

Exercise 29. $\xi \eta = \eta \xi$; Exercise 30. $(\xi \eta) \zeta = \xi (\eta \zeta)$; Exercise 31. $\xi (\eta + \zeta) = \xi \eta + \xi \zeta$. Exercise 32. If $\xi > \eta$, then $\xi \zeta > \eta \zeta$.

Theorem 36. Let **1** be the cut $\{x \in \mathbb{Q} | x < 1\}$. Then for any cut ξ , we have $\mathbf{1} \cdot \xi = \xi \cdot \mathbf{1} = \xi$.

Proof. Exercise.

Theorem 37. For any ξ , there is a unique η such that $\xi \eta = 1$.

Proof. Take

$$\eta := \left\{ \frac{y}{z} | \ y \in \mathbf{1}, z \notin \xi \right\}.$$
(24)

Then η is the cut we need.

Exercise 33. Finish the above proof.

Exercise 34. ξ, η are cuts. Then there is a unique v such that $\xi v = \eta$.

Exercise 35. Define division.

Problem 2. Let $x \in \mathbb{Q}$. Define $\xi_x := \{y \in \mathbb{Q} | y < x\}$. Then it is a cut. Prove that such "rational cuts" satisfy the same arithmetic rules as rational numbers.

Problem 3. Let $n \in \mathbb{N}$. Defind $\xi_n := \{y \in \mathbb{Q} | y < n\}$. Then it is a cut. Prove that such "integral cuts" satisfy the axioms for natural numbers.

Problem 4. If $\xi < \eta$, then there is a rational number Z such that $\xi < Z < \eta$.

Exercise 36. For each ζ , the equation $\xi^2 := \xi \cdot \xi = \zeta$ has exactly one solution.

Definition 38. Any cut which is not a rational number is called an irrational number.

Theorem 39. There exists an irrational number.

Proof. It suffices to show that the solution to $\xi^2 = 1'$ (recall that this is the successor of 1) is irrational.

Otherwise we would have $\xi = \frac{x}{y}$ where $x, y \in \mathbb{N}$. Take x, y such that y is smallest. We easily see that y < x < 1'y. Set x - y = u, then u < y. Next set y - u = t. Then

$$\begin{aligned} x \, x + t t &= (y + u) \, (y + u) + t t \\ &= (y \, y + 1' \, y \, u) + (u \, u + t \, t) \\ &= (y \, y + 1' \, u \, (u + t)) + (u \, u + t \, t) \\ &= (y \, y + 1' \, (u \, u)) + (u \, u + 1' \, u \, t + t \, t) \\ &= y \, y + 1' \, u \, u + y \, y \\ &= 1' \, y \, y + 1' \, u \, u \\ &= x \, x + 1' \, u \, u. \end{aligned}$$

Thus

$$\frac{t}{u} \cdot \frac{t}{u} = 1'. \tag{26}$$

But u < y. Contradiction.

Real numbers

Definition of real numbers

Definition 40. We call any cut ξ a "positive real number".

Notation. As in the following we will not use the idea of "cut" anymore, from now on we will simply denote real numbers by any convenient letters (English or Greek).

Definition 41. Let the symbol 0 be defined through the property: For any positive real number x, 0 + x = x + 0 = x.

Exercise 37. Prove that 0 is different from any positive real number defined in the previous section.

Definition 42. For any positive real number x, let the symbol -x be defined through the property

$$(-x) + x = x + (-x) = 0.$$
⁽²⁷⁾

These numbers are called "negative numbers".

Exercise 38. Prove that -(x+y) = (-x) + (-y).

Definition 43. Positive real numbers, negative real numbers, and 0 together are called "real numbers".

Definition 44. We extend the operation "-" as follows.

- If x > 0, -x is already defined;
- If x = 0, -x := 0;
- If x < 0, then there is ξ such that $x = -\xi$, define $-x := \xi$.

Order

Definition 45. Let x, y be real numbers. Then we say x > y if and only if

- x, y positive x > y, or
- x, y negative, -x < -y, or
- x = 0, y negative, or
- y=0, x positive, or
- x positive, y negative.

We say x < y if and only if y > x.

Exercise 39. For any $x, y \in \mathbb{R}$, exactly one of the following holds:

$$x = y, \quad x > y, \quad x < y. \tag{28}$$

Exercise 40. x > 0 if and only if it is a positive real number.

Definition 46. Let x, y be real numbers. Then we say x = y if and only if

- x, y positive, x = y, or
- x = y = 0, or
- x, y negative, -x = -y.

Exercise 41. Prove that = is an equivalence relation.

Definition 47. Let x, y be real numbers. We say $x \ge y$ if and only if x > y or x = y. We say $x \le y$ if and only if $y \ge x$.

Addition and subtraction

Definition 48. Let x, y be real numbers. We define their sum x + y as follows.

- If x, y > 0, already defined;
- If x = 0, x + y = y; If y = 0, x + y = x.
- If x > 0, y < 0, consider three sub-cases:
 - If x > (-y), then define x y := u where u is the unique solution to (-y) + u = x.
 - If $x = \eta$, then by definition of negative numbers x y := 0.
 - If x < (-y), then define x y := -u where u is the unique solution to x + u = (-y).
- If x < 0, y > 0 the definition is similar.

Exercise 42. Prove that x + y = y + x.

Exercise 43. Define the absolute value function as

$$|x| := \begin{cases} x & x > 0\\ 0 & x = 0\\ -x & x < 0 \end{cases}$$
(29)

Prove that |-x| = |x|.

Exercise 44. Prove $|x+y| \leq |x|+|y|$.

Definition 49. Let x, y be real numbers. We define their difference x - y := x + (-y).

Exercise 45. Prove that x - y = -(y - x).

Exercise 46. Prove that $x - y > 0 \iff x > y$.

Exercise 47. Prove that for every $x \in \mathbb{R}$, there are $y, z \in \mathbb{R}^+$ such that x = y - z.

Exercise 48. Prove that (x + y) + z = x + (y + z).

Multiplication and division

Definition 50. Let $x, y \in \mathbb{R}$. We define their product $x \cdot y$ (or xy when no confusion arises) through

- If x, y > 0, already defined;
- If x = 0 or y = 0, $x \cdot y := 0$;
- If $x, y < 0, x \cdot y := (-x) \cdot (-y);$
- If $x > 0, y < 0, x \cdot y := -(x \cdot (-y));$
- If $x < 0, y > 0, x \cdot y := -((-x) \cdot y)$.

Exercise 49. If x y = 0, then at least one of x, y is 0.

- **Exercise 50.** $|x y| = |x| \cdot |y|$.
- **Exercise 51.** x y = y x.
- **Exercise 52.** $x \cdot 1 = x$.
- **Exercise 53.** (-x)(-y) = x y.
- **Exercise 54.** (x y) z = x (y z).
- **Exercise 55.** x(y+z) = xy + xz.

Exercise 56. There is a unique u solving x u = y if $x \neq 0$.

Theorem 51. $x, y \in \mathbb{R}$. Then x y = (-x)(-y).

Proof. We have

$$(x + (-x)) y = 0 \Longrightarrow x y + (-x) y = 0.$$

$$(30)$$

On the other hand

$$(-x)(y + (-y)) = 0 \Longrightarrow (-x)y + (-x)(-y) = 0.$$
(31)

Therefore x y = (-x) (-y).

Recall that for any $x \in \mathbb{R}^+$, there is a unique y such that x y = 1. From the above theorem we see that (-y) is the unique solution to (-x) (-y) = 1. Thus division can be easily defined for all real numbers (denominator $\neq 0$).

Dedekind's fundamental theorem

- **Theorem 52.** Let $A \cup B = \mathbb{R}$ with
 - i. A, B not empty;
 - *ii.* $A \cap B = \emptyset$;
 - $iii. \ \forall x \in A, y \in B, \ x < y.$

Then there is exactly one real number z such that $\{x | x < z\} \subseteq A, \{x | x > z\} \subseteq B$.

Proof.

• Uniqueness.

If there are $z_1 \neq z_2$, then wlog $z_1 < z_2$. Then $\frac{z_1 + z_2}{2} \in A \cap B$. Contradiction.

- Existence.
 - 1. $A \cap \mathbb{R}^+ \neq \emptyset$. Consider $A \cap \mathbb{Q}$. If there is $x = \max(A \cap \mathbb{Q})$, set $\xi = A \cap \mathbb{Q}^+ \{x\}$. Otherwise set $\xi = A \cap \mathbb{Q}^+$.

Now it can be check that ξ is a cut and therefore determine a real number z.

For any x < z, if x < 0, since 0 < z we have $x \in A$; If x > 0 we have $x < \frac{x+z}{2} < z$ and is therefore in A.

Similarly we can show $\{x \mid x > z\} \subseteq B$.

- 2. $A \cap \mathbb{R}^+ = \emptyset$, $0 \in A$. Then we prove that z = 0.
- 3. Other cases are similarly discussed.

Properties of real numbers

${\mathbbm R}$ is an ordered field

Definition 53. (Field) A set F is called a field if there are two functions defined: $\oplus, \odot: F \times F \mapsto F$, satisfying the following:

- Axioms for addition:
 - *i.* $x \in F, y \in F \Longrightarrow x \oplus y \in F;$
 - *ii.* $x \oplus y = y \oplus x$;
 - *iii.* $(x \oplus y) \oplus z = x \oplus (y \oplus z);$
 - iv. There is an element 0 satisfying $0 \oplus x = x$ for any $a \in F$;
 - v. For each $x \in F$, there is an element $y \in F$ such that $y \oplus x = 0$. Denote it by -x.
- Axioms for multiplication:
 - a) $x \in F, y \in F \Longrightarrow x \odot y \in F;$
 - b) $x \odot y = y \odot x;$
 - c) $x \odot (y \odot z) = (x \odot y) \odot z;$
 - d) There is an element $i \in F$ such that $i \odot x = x$ for every $x \in F$. Denote it by 1;
 - e) For every $x \in F$, there is a $y \in F$ such that $x \odot y = 1$. Denote y by x^{-1} .
- The distributive law:
 - A) For every $x, y, z \in F$, $x \odot (y \oplus z) = (x \odot y) \oplus (x \odot z)$.

2

Exercise 57. Prove the uniqueness of the special elements 0, 1. Also prove that for each $x \in F$ and each $y \in F$, $y \neq 0$, -x and y^{-1} are unique.

Exercise 58. Give a reasonable definition to the new function $F \times F \times F \mapsto F$ which we hope to denote by $x \oplus y \oplus z$ and justify your definition.

Exercise 59. Let A be a set. Let $W := \{$ subsets of $A \}$. Define addition and multiplication on W as

$$x \oplus y := x \cup y; \qquad x \odot y := x \cap y. \tag{32}$$

Does this make W a field? Justify your answer.

Remark 54. Clearly we can further define "subtration" and "division" through

$$x - y := x + (-y);$$
 $x/y := x (y^{-1}).$ (33)

Example 55. Prove that $4 = 2 \oplus 2$.

Proof. By definition,

$$4 = 3 \oplus 1 = (2 \oplus 1) \oplus 1 = 2 \oplus (1 \oplus 1) = 2 \oplus 2.$$
(34)

Thus ends the proof.

Exercise 60. Let $x \in F$. Prove that $x \oplus x \oplus x = 3 \odot x$.

Exercise 61. Prove

- a) $x \oplus y = x \oplus z \Longrightarrow y = z;$
- b) $x \odot y = x \odot z \Longrightarrow y = z$ unless x = 0.

Exercise 62. Denote $x \odot x$ by x^2 . Prove that $(x \oplus y)^2 = x^2 \oplus (2 \odot x \odot y) \oplus y^2$.

Exercise 63. Prove the following

- a) $x \odot 0 = 0;$
- b) $x \odot (-y) = -(x \odot y);$
- c) $(-x) \odot (-y) = x \odot y;$
- d) If $x \neq 0$, $(-x)^{-1} = -(x^{-1})$;

Notation. From now on we will discard \odot and \oplus , and simply use the usual notations $x \cdot y$ (x y), x/y, $x \pm y$.

Definition 56. (Order) Let S be a set. An "order" on S is a relation, denoted by <, with the following two properties:

i. If $x \in S$, $y \in S$ then exactly one of the following is true.

$$x < y, x = y, x > y; \tag{35}$$

ii. If $x, y, z \in S$, if x < y and y < z, then x < z.

Remark 57. $\geq \in \in$ can be defined in the natural way.

Definition 58. (Ordered field) F is an ordered field if

- *i.* It is a field;
- ii. It has an order;
- *iii.* The field operations are consistent with the order structure:
 - $x, y, z \in F, y < z \Longrightarrow x + y < x + z;$
 - $x, y \in F, x > 0, y > 0 \Longrightarrow x y > 0.$

Exercise 64. Let F be an ordered field. Let $x, y \in F$. Prove that if x y < 0, then one is positive and the other negative.

Exercise 65. Let F be an ordered field. Let $x, y, z \in F$. Then

- a) If x > 0 then -x < 0 and vice verse;
- b) If $x \neq 0$, then $x^2 > 0$; In particular 1 > 0;
- c) If x > 0, y < z, then x y < x z;
- d) If 0 > x > y, then $0 > \frac{1}{y} > \frac{1}{x}$.

Theorem 59. \mathbb{R} as constructed in the previous sections is an ordered field.

${\mathbb R}$ has least upper bound property

Definition 60. (Upper bound) Suppose S is an ordered set, and $E \subseteq S$. If there is a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say E is bounded above, and called β an upper bound of E.

Remark 61. Lower bound can be defined similarly.

Definition 62. (Least upper bound) Suppose S is an ordered set, $E \subseteq S$, and E is bounded above. Suppose that there exists an $\alpha \in S$ such that

- i. α is an upper bound of E;
- ii. If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the least upper bound (also called "supreme") of E. Denoted as

$$\alpha = \sup E. \tag{36}$$

Remark 63. Greatest lower bound (or infimum) $\alpha = \inf E$ can be defined similarly.

Definition 64. (LUB property) An ordered set S is said to have the least-upper-bound (LUB) property if:

$$E \subseteq S, E \neq \emptyset, E \text{ is bounded above}, \Longrightarrow \sup E \text{ exists in } S.$$

$$(37)$$

Exercise 66. Prove that \mathbb{Q} does not have LUB property.

Exercise 67. S has least-upper-bound property \iff S has greatest lower bound property.

Theorem 65. Let F be an ordered field with LUB property. Then for every x > 0, there is a unique y > 0 such that $y^3 = x$.

Proof. That y is unique is trivial since $y_1 < y_2 \Longrightarrow y_1^3 < y_2^3$.

To show existence, consider $A := \{t \in F | t \ge 0, t^3 < x\}$ and set $y := \sup A$. Note that since $0^3 = 0 < x$, we have $0 \in A$ and therefore y exists. Furthermore taking $z = \min\{1, \frac{x}{2}\}$ we have

$$z^{3} \leqslant z \leqslant \frac{x}{2} < x \Longrightarrow z \in A \Longrightarrow y > 0.$$
(38)

Now we show that it cannot hold that $y^3 < x$ or $y^3 > x$. Assume the contrary. Two cases.

• $y^3 < x$. Then $1 < y^{-3}x$. If we can find $\varepsilon > 0$ such that $(1 + \varepsilon)^3 < y^{-3}x$ then $[(1 + \varepsilon)y]^3 < x$ and we have a contradiction.

Thus it suffices to show that $1 < x \Longrightarrow \exists \varepsilon > 0, (1 + \varepsilon)^3 < x$. We have

$$(1+\varepsilon)^3 = 1+3\varepsilon+3\varepsilon^2+\varepsilon^3 = 1+(3+3\varepsilon+\varepsilon^2)\varepsilon.$$
(39)

Now take $\varepsilon = \min\left\{1, \frac{x-1}{8}\right\}$. We have

$$(1+\varepsilon)^3 = 1 + (3+3\varepsilon+\varepsilon^2)\varepsilon \leqslant 1+7\varepsilon \leqslant 1+\frac{7}{8}(x-1) < x.$$

$$(40)$$

Thus we are done.

• $y^3 > x$. In this case all we need is $(1 - \varepsilon)^3 > y^{-3}x$. In light of

$$(1-\varepsilon)^3 = 1 - 3\varepsilon + 3\varepsilon^2 - \varepsilon^3 > 1 - (3+\varepsilon^2)\varepsilon$$

$$\tag{41}$$

the proof is similar to that for the previous case.

Thus $y^3 = x$ and the proof ends.

Exercise 68. Prove that $y_1 < y_2 \Longrightarrow y_1^3 < y_2^3$ with no assumption on the signs of y_1, y_2 .

Exercise 69. Fill in the details for the $y^3 > x$ case.

Exercise 70. Let F be an ordered field with LUB property. Let $\alpha \in \mathbb{Q}$. Define α -th power in the natural way. Then for every x > 0, there is a unique y > 0 such that $y^{\alpha} = x$.

Problem 5. Let F be an ordered field with LUB property. Let $\alpha \in \mathbb{R}$. Define x^{α} for all $x \in F, x > 0$. (Hint: See Problem 6 of Chapter 1 in (Baby Rudin))

Problem 6. Let F be an ordered field with LUB property. Fix b > 1, y > 0. Prove that there is a unique $x \in \mathbb{R}$ such that $b^x = y$. (Hint: See Problem 7 of Chapter 1 in (Baby Rudin))

Theorem 66. \mathbb{R} as constructed in the previous sections has the LUB property.

Proof. We consider the following cases:

• All the upper bounds are positive. Then $E \cup \mathbb{R}^+$ is not empty. We identify real numbers with cuts and define

$$\alpha := \bigcup_{\xi \in E \cup \mathbb{R}^+} \xi. \tag{42}$$

- 0 is an upper bound but there is no negative upper bounds. In this case by definition $\sup E = 0 \in \mathbb{R}$.
- There is at least one negative upper bound. Define

$$F := \{-\alpha \mid \alpha \text{ is an upper bound for } E, \ \alpha < 0\}.$$

$$(43)$$

Now treat member of F as cuts and define $\eta := -\xi$ where

$$\xi := \bigcup_{\alpha \in F} \alpha. \tag{44}$$

Clearly $\eta = \sup E$.

Problem 7. Let F be an ordered field satisfying LUB. Prove that there is $x \in F$ such that $x^2 = 2$.

Exercise 71. Let F be an ordered field satisfying LUB. Let $a \in F$ be a > 0. Prove that there is $x \in F$ such that $x^2 = a$.

Archimedean

Definition 67. A ordered field F is said to be Archimedean if and only if \mathbb{N} does not have an upper bound in F. Here \mathbb{N} is defined as $\{1, 1+1, 1+1+1, \ldots\}$.

Remark 68. It is obvious that \mathbb{R} is Archimedean.

Theorem 69. A ordered field F satisfying LUB then Archimedian.

Proof. Assume N is bounded from above. Then there is least upper bound $a = \sup \mathbb{N}$. By definition of $\sup a = 1$ is not a upper bound for N. Thus there is $n \in \mathbb{N}$ such that n > a - 1. But then $a < n + 1 \in \mathbb{N}$. Contradiction.

Exercise 72. Find an ordered field that is Archimedean but does not satisfy LUB.

Theorem 70. An ordered field F is Archimedean $\iff \mathbb{Q}$ is dense in F.

Proof.

• \implies . Take any $x, y \in F, x < y$. We prove that there is $z \in \mathbb{Q}$ such that x < z < y. It is clear that it suffices to discuss the situation 0 < x < y. In this case we need to find $m, n \in \mathbb{N}$ such that

$$x < \frac{m}{n} < y \Longleftrightarrow n \, x < m < n \, y. \tag{45}$$

Since F is Archimedean, there is $n \in \mathbb{N}$ such that n(y - x) > 1. Fix this n. Consider the set A: ={ $k \in \mathbb{N} | k < n y$ }. Again since F is Archimedean, this set is finite and we take $m = \max A$. We claim that m > n x. Assume otherwise, then $m < n x \Longrightarrow m + 1 < n x + n (y - x) = n y$. We see that $m + 1 \in A$. Contradiction.

• \Leftarrow . Take any positive $y \in F$. We show that it cannot be an upper bound for \mathbb{N} .

Since \mathbb{Q} is dense in F, there is $\frac{m}{n}$ such that

$$0 < \frac{m}{n} < \frac{1}{y} \Longrightarrow m \, y < n \Longrightarrow y < n. \tag{46}$$

Thus F is Archimedean.

\mathbb{R} is unique

Theorem 71. \mathbb{R} is the unique ordered Archimedean field. Or equivalently \mathbb{R} is the unique field where \mathbb{Q} is dense.