Math 217 Fall 2013 Midterm Solutions

NAME:

ID \#:

- There are four questions. Last two pages are scrap paper.
- Please write clearly and show enough work.

Question 1. (5 pts) Let $A:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0, y \geqslant 0, x y \geqslant 1\right\}$. Prove that A is convex.

Solution. Take any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in A$ and $t \in(0,1)$. We prove that

$$
\begin{equation*}
(x, y)=t\left(x_{1}, y_{1}\right)+(1-t)\left(x_{2}, y_{2}\right) \in A \tag{1}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
x=t x_{1}+(1-t) x_{2} \geqslant 0, \quad y=t y_{1}+(1-t) y_{2} \geqslant 0 . \tag{2}
\end{equation*}
$$

Now check

$$
\begin{align*}
x y & =\left(t x_{1}+(1-t) x_{2}\right)\left(t y_{1}+(1-t) y_{2}\right) \\
& =t^{2} x_{1} y_{1}+t(1-t)\left(x_{1} y_{2}+x_{2} y_{1}\right)+(1-t)^{2} x_{2} y_{2} \\
& \geqslant t^{2}+t(1-t)\left(\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{1}}\right)+(1-t)^{2} . \tag{3}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{x_{1}}{x_{2}}+\frac{x_{2}}{x_{1}}=\frac{x_{1}^{2}+x_{2}^{2}}{x_{1} x_{2}} \geqslant 2 \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
x y \geqslant t^{2}+2 t(1-t)+(1-t)^{2}=1 . \tag{5}
\end{equation*}
$$

Thus $(x, y) \in A$ and the proof ends.

Question 2. (5 pts) Let $A, B \subseteq \mathbb{R}^{N}$ be open. Prove that $C:=\{\boldsymbol{x}+\boldsymbol{y} \mid \boldsymbol{x} \in A, \boldsymbol{y} \in B\}$ is open.

Solution. Take any $\boldsymbol{z}_{0} \in C$. Then $\boldsymbol{z}_{0}=\boldsymbol{x}_{0}+\boldsymbol{y}_{0}$ for some $\boldsymbol{x}_{0} \in A, \boldsymbol{y}_{0} \in B$. Now since A is open, there is $r>0$ such that $B\left(\boldsymbol{x}_{0}, r\right) \subseteq A$. Consequently $B\left(\boldsymbol{x}_{0}+\boldsymbol{y}_{0}, r\right) \subseteq C$. So C is open.

Question 3. (5 pts) Let $\boldsymbol{f}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be defined as

$$
\begin{equation*}
\boldsymbol{f}(x, y)=\binom{x^{2}-y^{2}}{2 x y} \tag{6}
\end{equation*}
$$

a) (3 pts) Prove that for every nonzero $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, there is an open set $U \ni\left(x_{0}, y_{0}\right)$ such that \boldsymbol{f} is one-to-one on U.
b) (2 pts) Let $U \ni(0,0)$. Is \boldsymbol{f} one-to-one on U? Justify.

Solution.

a) We calculate

$$
\frac{\partial \boldsymbol{f}}{\partial(x, y)}=\left(\begin{array}{cc}
2 x & -2 y \tag{7}\\
2 y & 2 x
\end{array}\right)
$$

whose determinant is $4\left(x^{2}+y^{2}\right)$. At $\left(x_{0}, y_{0}\right) \neq(0,0)$ the determinant is nonzero. Furthermore all partial derivatives are continuous so Implicit Function Theorem applies and the conclusion follows.
b) We show that for any $r>0, \boldsymbol{f}$ is not one-to-one on $B(\mathbf{0}, r)$. To see this notice that $\boldsymbol{f}(x, y)=\boldsymbol{f}(-x,-y)$ for all (x, y).

Question 4. (10 pts) Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ be defined as

$$
\begin{equation*}
f(x, y)=\frac{x^{3}}{x^{2}+y^{2}} \text { if }(x, y) \neq(0,0) \text { and } f(x, y)=0 \text { if }(x, y)=(0,0) \tag{8}
\end{equation*}
$$

a) (3 pts) Prove that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are bounded on \mathbb{R}^{2}.
b) ($\mathbf{3} \boldsymbol{p t s}$) Prove that $\frac{\partial f}{\partial \boldsymbol{v}}(0,0)$ exists for every nonzero $\boldsymbol{v} \in \mathbb{R}^{2}$.
c) (2 pts) Let $\boldsymbol{g}: \mathbb{R} \mapsto \mathbb{R}^{2}$ be differentiable with $\boldsymbol{g}(0)=(0,0)$ and $\boldsymbol{g}^{\prime}(0) \neq(0,0)$. Define $F(t):=f(\boldsymbol{g}(t))$. Prove that $F(t)$ is differentiable at $t=0$.
d) (2 pts) Prove that f is not differentiable at $(0,0)$.

Solution.

a) When $(x, y) \neq(0,0)$ we calculate

$$
\begin{align*}
\frac{\partial f}{\partial x} & =\frac{3 x^{2}}{x^{2}+y^{2}}-\frac{2 x^{4}}{\left(x^{2}+y^{2}\right)^{2}} \tag{9}\\
\frac{\partial f}{\partial y} & =-\frac{2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}} \tag{10}
\end{align*}
$$

Since

$$
\begin{equation*}
x^{2} \leqslant x^{2}+y^{2}, \quad x^{4} \leqslant\left(x^{2}+y^{2}\right)^{2}, \quad\left|x^{3} y\right|=\left|x^{2}\right||x y| \leqslant\left(x^{2}+y^{2}\right)^{2} \tag{11}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left|\frac{\partial f}{\partial x}\right| \leqslant 5, \quad\left|\frac{\partial f}{\partial y}\right| \leqslant 2 \tag{12}
\end{equation*}
$$

for all $(x, y) \neq(0,0)$.
At $(0,0)$ we have $f(x, 0)=x, f(0, y)=0$. So $\frac{\partial f}{\partial x}(0,0)=1, \frac{\partial f}{\partial y}(0,0)=0$. Summarizing, we see that $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist and are bounded on \mathbb{R}^{2}.
b) Take any $\boldsymbol{v}=(u, v) \neq(0,0)$. We calculate

$$
\begin{equation*}
f(0+t u, 0+t v)=\frac{(t u)^{3}}{(t u)^{2}+(t v)^{2}}=\frac{t u^{3}}{u^{2}+v^{2}} \tag{13}
\end{equation*}
$$

Thus clearly the directional derivative exists:

$$
\begin{equation*}
\frac{\partial f}{\partial \boldsymbol{v}}=\frac{u^{3}}{u^{2}+v^{2}} \tag{14}
\end{equation*}
$$

c) Denote $\boldsymbol{g}(t):=(u(t), v(t))$ and $\boldsymbol{g}^{\prime}(0):=(a, b)$. Then we have

$$
\begin{equation*}
F(t):=f(\boldsymbol{g}(t))=\frac{u(t)^{3}}{u(t)^{2}+v(t)^{2}} \tag{15}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
\frac{F(t)-F(0)}{t}=\frac{u(t)^{2}}{u(t)^{2}+v(t)^{2}} \cdot \frac{u(t)}{t} \tag{16}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\lim _{t \longrightarrow 0} \frac{u(t)}{t}=\lim _{t \longrightarrow 0} \frac{u(t)-u(0)}{t}=u^{\prime}(0)=a . \tag{17}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{u(t)^{2}}{u(t)^{2}+v(t)^{2}}=\lim _{t \rightarrow 0} \frac{\left[\frac{u(t)-u(0)}{t}\right]^{2}}{\left[\frac{u(t)-u(0)}{t}\right]^{2}+\left[\frac{v(t)-v(0)}{t}\right]^{2}}=\frac{a^{2}}{a^{2}+b^{2}} \tag{18}
\end{equation*}
$$

Note that here we have used $a^{2}+b^{2} \neq 0$ which comes from the assumption that $\boldsymbol{g}^{\prime}(0) \neq \mathbf{0}$. Therefore $F(t)$ is differentiable at $t=0$.
d) We prove by contradiction. Since $\frac{\partial f}{\partial x}(0,0)=1, \frac{\partial f}{\partial y}(0,0)=0$, if f is differentiable at $(0,0)$ then $(D f)(0,0)(x$, $y)=x$, and

$$
\begin{equation*}
0=\lim _{(x, y) \longrightarrow(0,0)} \frac{\left|\frac{x^{3}}{x^{2}+y^{2}}-x\right|}{\left(x^{2}+y^{2}\right)^{1 / 2}}=\lim _{(x, y) \longrightarrow(0,0)} \frac{\left|x y^{2}\right|}{\left(x^{2}+y^{2}\right)^{3 / 2}} \tag{19}
\end{equation*}
$$

However

$$
\begin{equation*}
\frac{\left|x y^{2}\right|}{\left(x^{2}+y^{2}\right)^{3 / 2}}=2^{-3 / 2} \tag{20}
\end{equation*}
$$

whenever $x=y$, independent of $\left(x^{2}+y^{2}\right)^{1 / 2}$. Therefore $\lim _{(x, y) \longrightarrow(0,0)} \frac{\left|x y^{2}\right|}{\left(x^{2}+y^{2}\right)^{3 / 2}}=0$ does not hold and f is not differentiable at $(0,0)$.

