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Note.

• The exercises and problems in this article does
not cover every possible topic in the midterm
exam.

• You should review homework and lecture notes.

• Please try to work on the exercises and
problems before looking at the solutions.
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A. Geometry of RN

1. Exercises

Exercise 1. Consider all real M × N matrices. Define

addition, scalar multiplication as follows:

A + B 7 (aij + bij); (1)

a A7 (a aij). (2)

• Prove that this set becomes linear vector space.

• Define the operation

(A, B)7 tr(AT B) (3)

where the “trace” is define for all N ×N matrices as

trA =
∑

i=1

N

aii. (4)

Is this an inner product? Justify your answer.

• If the above is an inner product, what is the norm

defined by it?

Exercise 2. LetA=(aij)∈R
M×N and let v∈R

N. Prove

‖A x‖6‖A‖F ‖x‖. (5)

Here ‖·‖ is the Euclidean norm for vectors defined in class,

and ‖·‖F is a matrix norm called Frobenius norm, defined

by

‖A‖F 7



∑

i=1

M
∑

j=1

N

aij
2





1/2

. (6)

Exercise 3. Let ‖·‖ be any norm on RN (that is satisfy

the three properties). Define A:={x∈R
N O ‖x‖<1}. Prove

that A is convex.

2. Solutions to exercises

Exercise 1. (A, B) is an inner product. The norm
is the Frobenius norm:

‖A‖F 7(

∑

i,j

aij
2

)

1/2

. (7)

Exercise 2. We have

‖A x‖ = [(a11x1 +
 + a1N xN)2 +
 ]1/2

6 [(a11
2 +
 + a1N

2 ) (x1
2 +
 +xN

2 )+
 ]

=

(

∑

i,j

aij
2

)

(x1
2 +
 +xN

2 )

= ‖A‖F ‖x‖. (8)

Note that we have used Cauchy-Schwarz in the
inequality step.

Exercise 3. For any x, y ∈A and t∈ [0, 1], we have

‖t x + (1− t) y‖ 6 ‖t x‖+ ‖(1− t) y‖
= |t| ‖x‖+ |1− t| ‖y‖
= t ‖x‖+(1− t) ‖y‖
< t + (1− t) =1. (9)

3. Problems

Problem 1. Let A⊆R
N be convex. Prove that Ao, Ā are

convex.

2



B. Topology of RN

1. Exercises

Exercise 4. Let A 7 {(x, y)O x y > 2}. Prove that A is

open.

Exercise 5. Let A ⊆R
N be defined through

x1 + x2 = 1, x1
2 +x2

2 < 1. (10)

Is A open or closed or both or neither? Justify your

answer.

Exercise 6. Let A, B ⊆R
N. Prove Ā ∪ B̄ = A∪B .

Exercise 7. Let A ⊆ R
N be compact. Let W be a

collection of closed sets satisfying A ∩ (∩E∈WE) = ∅.

Prove that there are E1, 	 , En ∈ W such that A ∩

(∩k=1
n Ek)= ∅.

2. Solutions to exercise

Exercise 4. Take any (x0, y0) ∈ A. We need to
find r > 0 such that B((x0, y0), r) ⊆ A. Denote
m7 x y − 2> 0. Now take

r: =min

{

1,
m

|x0|+ |y0|+ 1

}

. (11)

Then for any (x, y)∈B((x0, y0), r)

we have

x y = x0 y0 + x0 u+ y0 v + u v

> x0 y0− |x0 u| − |y0 v | − |u| |v |
> x0 y0− [|x0|+ |y0|] r − r2

> 2+ m− [|x0|+ |y0|+ 1] r

> 2. (12)

Exercise 5. The set is neither open nor closed.

• Not open. Take any x∈A and any r >0. Then

x′7 x +
r

2
e1 +

r

2
e2∈B(x, r) (13)

but

x1
′ + x2

′ = x1 + x2 + r = 1+ r � 1 (14)

so x′ � A.

• Not closed. We prove Ac is not open. Clearly
e1 � A. Now for any r > 0, define

r ′7 min {r, 1}. (15)

Consider

x7 (

1− r ′

2

)

e1− r ′

2
e2. (16)

Then clearly x∈B(e1, r)∩A so Ac is not open.

Exercise 6. Since A ⊆ Ā , B ⊆ B̄ , A ∪ B ⊆ Ā ∪ B̄ .
As the latter is closed, we have

A∪B ⊆ Ā ∪ B̄ . (17)

For the other direction, as A ⊆ A ∪B, we have Ā ⊆
A∪B . Similarly B̄ ⊆A∪B . Therefore

Ā ∪ B̄ ⊆A∪B . (18)

Exercise 7. Sincer A∩ (∩E∈WE)= ∅, we have

A⊆∪E∈WEc. (19)

This is an open covering of the compact set A so there
is a finite sub-cover:

A⊆E1
c∪
 ∪En

c . (20)

Consequently

A∩ (E1∩
 ∩En) = ∅. (21)

3. Problems

Problem 2. Let A7 {(

x,sin
1

x

)O x, y∈R,x, y� 0
}

. Find

• Ao;

• Ā;

• ∂A;

• Cluster points of A.

Problem 3. Let A ⊆R
N. Prove: ∂(∂A)⊆ ∂A. Then find

counter-examples for the following claims:

• ∂(∂A)⊂ ∂A (meaning: ⊆ but not =)

• ∂(∂A)= ∂A.

Problem 4. Let A,B ⊆R
N with A open and B compact.

Prove that there is an open set V ⊆R
N such that

B ⊆V , V̄ ⊆A. (22)
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C. Continuity of Functions

1. Exercises

Exercise 8. Prove that

lim
(x,y)� (0,0)

sin (x y)

x2 + y2
(23)

does not exist.

Exercise 9. Let f(x, y)7





exp
(

−
1

|x|+ |y|

)

(x, y)� 0

0 (x, y) =0

.

Prove that f is continuous at (0, 0).

Exercise 10. Prove that if the limit

lim(x,y)� (0,0)f(x) + g(y) exists, then the limits

limx� 0f(x) and limy� 0g(y) both exist.

2. Solutions to exercises

Exercise 8. Denote f(x, y)7 sin (x y)

x2 + y2
. For any r >0,

we have
( r

2
, 0
)

∈B(0, r) and f
( r

2
, 0
)

= 0.

On the other hand, since limx� 0
sin x

x
= 1, there

is δ > 0 such that for all 0< |x|< δ2,

sinx

x
>

1

2
. (24)

Now consider δ ′7 min {δ, r} and set (x, y) = (δ ′/2,

δ ′/2)∈B(0, r). Then

f(δ ′/2, δ ′/2) =
sin ((δ ′)2)

2 (δ ′)2
>

1

4
. (25)

Thus the limit cannot exist.

Exercise 9. For any ε > 0, take δ < (−ln ε)−1/2.
Then for all (x, y) such that ‖(x, y)‖< δ, we have

|x|+ |y |6 2 (x2 + y2)1/2 < 2 δ. (26)

Now we have

∣

∣e−1/(|x|+|y|)− 0
∣

∣< ε. (27)

Exercise 10. For any ε > 0, since
im(x,y)� (0,0)f(x) + g(y) exists, there is δ > 0 such

that for all (x1, y1), (x2, y2)∈B(0, δ),

|[f(x1)+ g(y1)]− [f(x2) + g(y2)]|< ε. (28)

Now for any x1, x2 such that |x1|, |x2|<δ, we have

(x1, 0), (x2, 0)∈B(0, δ) (29)

which gives

|f(x1)− f(x2)|<ε. (30)

Therefore limx� 0f(x) exists. Similarly limy� 0g(y)
exists.

3. Problems

Problem 5. Let f :RN�R be continuous. Denote

[f < 0]7 {x∈R
N O f(x) < 0} (31)

and

[f = 0]7 {x∈R
N O f(x)= 0}. (32)

Prove that ∂[f < 0]⊂ [f =0]. Does equality hold? What if

we take away the continuity assumption?

Problem 6. Let f: R
N � R

M be bounded and

continuous. Prove that f is continuous if and only if its

graph {(x, y)O y = f(x)} is a closed set in RN+M. Then

discuss:

• What if we remove the boundedness assumption?
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D. Differentiability of Functions

1. Exercises

Exercise 11. Let f(x, y)=x y sin
(

1

x2 + y2

)

for (x, y)� (0,

0) and f(0, 0) = 0. Prove that f is differentiable at (0, 0)

and find its differential there.

Exercise 12. Calculate partial derivatives for f(x, y, z)=

sin (x y z).

Exercise 13. Prove that f(x, y)= exy is differentiable.

Exercise 14. Let f(x, y) be differentiable. Define

u(r, θ)7 f(r cos θ, r sinθ) (33)

Prove
(

∂f

∂x

)

2

+

(

∂f

∂y

)

2

=

(

∂u

∂r

)

2

+
1

r2

(

∂u

∂θ

)

2

. (34)

Here the left hand side is evaluated at (x, y) = (r cos θ,

r sinθ).

2. Solutions to exercises

Exercise 11.

We prove Df(0,0)=0. That is for any (x, y)∈R2,

[Df(0, 0)](x, y)= 0. (35)

To do this we check
∣

∣

∣

∣

x y sin
1

x2 + y2

∣

∣

∣

∣

6 |x y |6 (x2 + y2) (36)

therefore

lim
(x,y)� (0,0)

∣

∣

∣x y sin
1

x2 + y2
− 0
∣

∣

∣

(x2 + y2)1/2
= 0. (37)

Exercise 12.

∂f

∂x
= y z cos (x y z); (38)

∂f

∂y
= x z cos (x y z); (39)

∂f

∂z
= x y cos (x y z). (40)

Exercise 13. We calculate

∂f

∂x
= y exy,

∂f

∂y
= x exy. (41)

Both are continuous at all (x, y) ∈R2. Therefore f

is differentiable at every (x, y)∈R2.

Exercise 14. We calculate through chain rule:

∂u

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ; (42)

∂u

∂θ
=

∂f

∂x
(−r sin θ)+

∂f

∂y
(r cos θ). (43)

Now clearly the conclusion holds.

3. Problems

Problem 7. Let f(x, y): R2� R. Assume
∂f

∂x
,

∂f

∂y
exists

at all (x, y)∈R
2. Prove that

∂f

∂x
=

∂f

∂y
= 0 for all (x, y)� f is constant. (44)

Problem 8. Let f : RN � R
M. Assume all its partial

derivatives are bounded, that is there is K > 0 such that

∀x∈R
N ,∀i=1,	 ,M , j =1,	 ,N

∣

∣

∣

∣

∂fi

∂xj
(x)

∣

∣

∣

∣

6K. (45)

Prove that f is uniformly continuous.

Problem 9. Let u, v be differentiable and satisfy

∂u

∂x
=

∂v

∂y
,

∂u

∂y
=−

∂v

∂x
, u2 + v2 = R2 (46)

for some constant R. Prove that both u, v are constants.

Problem 10. Let f , g: RN � R and x0 ∈ R
N. Assume

f is continuous at x0 and g is differentiable there with

g(x0)= 0. Prove that f g is differentiable with differential

f(x0) Dg(x0).
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E. Implicit and Inverse Functions

1. Exericises

Exercise 15. Let y=Y (x) be defined through the implicit

relation

x2 + 2 x y − y2 = a2. (47)

Calculate Y ′, Y ′′.

Exercise 16. Let z = Z(x, y) be defined through

x + y + z = ex+y+z. (48)

Calculate
∂Z

∂x
,

∂Z

∂y
.

Exercise 17. Let the implicit functions r = R(x, y),

θ = Θ(x, y) be define through

x = r cos θ (49)

y = r sinθ. (50)

Find
∂(R, Θ)

∂(x, y)
.

2. Solutions to exercises

Exercise 15. We have

x2 +2 x Y (x)−Y (x)2 = a2. (51)

Taking derivative:

2x + 2Y + 2x Y ′− 2YY ′ =0. (52)

which gives

Y ′(x) =
x+ y

x− y
. (53)

Taking derivative one more time:

2 +4 Y ′+ 2x Y ′′− 2 (Y ′)2− 2 YY ′′= 0 (54)

This gives

Y ′′ =
(Y ′)2− 2 Y ′− 1

x− y
(55)

which simplifies to

Y ′′=
(x + y) (3 y − x)− (x− y)2

(x− y)3
. (56)

Exercise 16. Z(x, y) satisfies

x + y + Z = ex+y+Z. (57)

Taking
∂

∂x
we have

1 +
∂Z

∂x
= ex+y+Z

(

1+
∂Z

∂x

)

(58)

which gives either x+ y +Z =0 which is not possible,

or
∂Z

∂x
=−1. Similarly we have

∂Z

∂y
=−1.

Exercise 17. We have

I =
∂(r cosθ, r sin θ)

∂(r, θ)

∂(R, Θ)

∂(x, y)
(59)

which gives

∂(R, Θ)

∂(x, y)
=

[

r

(

cos θ −sinθ

sinθ cosθ

)]−1

=
1

r

(

cos θ sin θ

−sin θ cos θ

)

. (60)

3. Problems

Problem 11. Let z = Z(x, y) be defined through

x2 + y2 + z2 = y f

(

z

y

)

(61)

for some differentiable function f . Prove that Z satisfy the

following partial differential equation:

(x2− y2− z2)
∂Z

∂x
+ 2 x y

∂Z

∂y
= 2 x Z. (62)
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Solutions to Problems

Problem 1.

• Ao.

Take any x, y ∈ Ao and t ∈ (0, 1). Denote
xt7 t x+(1− t) y. All we need to show is that
there is r > 0 such that B(xt, r)⊆A.

Since x, y ∈ Ao, there is rx, ry > 0 such
that B(x, rx) ⊆ A, B(y , ry) ⊆ A. Now take
r =min{rx, ry} and we claim that B(xt, r)⊆A

for all xt.

Take zt∈B(xt, r). Define

zx7 zt +(x−xt); zy7 zt + (y −xt). (63)

Then we have

zt = t zx +(1− t)zy. (64)

Now check

‖x− zx‖= ‖zt −xt‖<r 6 rx (65)

and similarly ‖y − zy‖<ry. Therefore

zx ∈B(x, rx)⊆A, zy ∈B(y , ry)⊆A. (66)

By convexity of A we have zt ∈ A. The
arbitrariness of zt now yields B(xt, r)⊆A and
consequently xt∈Ao.

• Ā .

Take any x, y ∈ Ā and any t ∈ (0, 1). We

need to prove xt 7 t x + (1 − t) y ∈ Ā . Note
that it suffices to prove for any r > 0,

B(xt, r)∩A� ∅. (67)

Now take any r > 0. Since x, y ∈ Ā , there are
x′∈B(x, r)∩A, y ′∈B(y , r)∩A. Therefore

xt
′7 t x′+ (1− t) y ′∈A. (68)

Now we calcualte

‖xt −xt
′‖ = ‖t (x−x′) + (1− t) (y − y ′)‖

< r. (69)

Thus B(xt, r)∩A� ∅ and the proof ends.

Problem 2. Let A7 {(

x, sin
1

x

)O x, y∈R, x, y� 0
}

.
Find

• Ao = ∅.

Take any (x0, y0)∈A then we have

y0 = sin
1

x0
. (70)

For any r > 0, clearly

(x0, y0 + r/2)∈B((x0, y0), r) (71)

but does not belong to A.

• Ā =A∪B with B7 {(0, y)O y ∈ [−1, 1]}.
We first prove that A ∪ B is closed, then

prove that for any y0 ∈ [−1, 1] and any r > 0,
B((0, y0), r)∩A� ∅.

− A ∪B is closed. We prove its complement
is open. Take any (x0, y0) � A∪B.

∗ Case 1. x0 = 0. Then y0 > 1. Take
r 7 y0 − 1. Clearly B((x0, y0), r) ∩
(A∪B) = ∅.

∗ Case 2. x0� 0. Then y0� sin
(

1

x0

)

. Set

ε07 ∣

∣

∣

∣

y0− sin

(

1

x0

)∣

∣

∣

∣

> 0. (72)

Now since sin
( 1

x

)

is continuous at x0,

there is δ0>0 such that for all |x−x0|<
δ0,
∣

∣

∣sin
( 1

x

)

− sin
(

1

x0

)∣

∣

∣<ε0/2. Now set

r: =min {δ0, ε0/2, |x0|}. Then for any
(x, y)∈B((x0, y0), r), we have

∣

∣

∣

∣

y0− sin

(

1

x

)∣

∣

∣

∣

>
ε0

2
(73)

while

|y− y0|< ε0

2
, |x−x0|< |x0|. (74)

Consequently (x, y) � A∪B. Thus

B((x0, y0), r)∩ (A∪B) = ∅. (75)

− A∪B is the smallest closed set containing
A. To show this it is enough to prove that
for any (0, y0)∈B and any r >0, B((0, y0),
r)∩A� ∅.

Take an arbitrary (0, y0) ∈ B and any
r>0. Then there is n∈N such that 2 n π>

r−1. This gives

∣

∣

∣

∣

1

2 n π + π/2

∣

∣

∣

∣

,

∣

∣

∣

∣

1

2n π +3 π/2

∣

∣

∣

∣

<r. (76)

But we have

sin (2 n π + π/2) =1, (77)

sin (2n π +3 π/2)=−1. (78)
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Thus by intermediate value theorem, there

is x ∈
(

1

2 n π +3 π/2
,

1

2 n π + π/2

)

such that

sin
( 1

x

)

= y0. Now we have

(

x, sin

(

1

x

))

∈A∩B((0, y0), r). (79)

Thus ends the proof.

• ∂A= B7 {(0, y)O y ∈ [−1, 1]}.

• Cluster points of A is the same as Ā .

− For any (x0, y0) ∈ A, since sin
1

x
is

continuous at x0, taking any xn � x0,

xn � x0 we have sin
1

xn

� sin
1

x0

.

Consequently for any r > 0, there is n ∈
N such that

(

xn, sin
1

xn

)

∈ A ∩ B((x0, y0)) − {(x0,

y0)}. (80)

− For any (0, y0)∈B, similar to the proof of
A ∪ B is smallest closed set containing A,

we can find xn� 0, xn� 0 with sin
(

1

xn

)

=

y0.

Problem 3.

• Proof of ∂(∂A) ⊆ ∂A. We first prove ∂A is
closed. This follows immediately from the
definition:

∂A = Ā −Ao = Ā ∩ (Ao)c. (81)

Now

∂(∂A)=∂A − (∂A)o=∂A− (∂A)o⊆∂A. (82)

• Counter-example for ∂(∂A) ⊂ ∂A. Take A =
{x0}. Then Ā = A, Ao = ∅. So ∂A = A. Then
of course ∂(∂A)= ∂A.

• Counter-example for ∂(∂A) = ∂A. Take A =

Q⊂R. Then Ao = ∅, Ā =R so ∂A =R. Now
(∂A)o = ∂A =R so ∂(∂A)= ∅.

Problem 4. For any x∈B, there is rx >0 such that

B(x, rx)⊆A. (83)

Now consider the open covering of B:

B ⊆∪x∈BB(x, rx/2). (84)

There is a finite sub-covering:

B ⊆B(x1, r1/2)∪
 ∪B(xn, rn/2). (85)

Now define

V 7 B(x1, r1/2)∪
 ∪B(xn, rn/2). (86)

Clearly V is open and B ⊆V .

Now we prove V̄ ⊆A. We have

V̄ = B(x1, r1/2)∪
 ∪B(xn, rn/2)

⊆ B(x1, r1)∪
 ∪B(xn, rn)

⊆ A. (87)

Problem 5.

• Proof of ∂[f < 0] ⊂ [f = 0]. Take any x0 ∈
∂[f < 0]. Then for any r > 0,

B(x0, r)∩ [f < 0]� ∅, (88)

B(x0, r)∩ [f > 0]� ∅. (89)

Now we proceed via proof by contradiction.
Assume f(x0)� 0. Consider two cases.

− Case 1. f(x0)>0. Then there is r >0 such
that for all x ∈ B(x0, r), |f(x) − f(x0)|<
|f(x0)|� f(x)> 0.

− Case 2. f(x0)<0. Then there is r >0 such
that for all x ∈ B(x0, r), |f(x) − f(x0)|<
|f(x0)|� f(x)< 0.

Either way we contradicts one of (88–89).

• Equality may not hold. For example take
f(x) = 0. Then [f < 0] = ∅ and consequently
∂[f < 0] = ∅. But [f = 0] =RN.

• If continuity assumption is dropped, the
conclusion does not hold. For example take

f(x) =

{

−1 x� 0
1 x= 0

. Then ∂[f < 0] = {0} but

[f = 0] = ∅.

Problem 6.

• Proof of “f is continuous if and only if its graph

{(x, y)O y = f(x)} is a closed set in RN+M”.
Denote the graph by G ⊆RN+M.

− If. We prove by contradiction. Assume f

is not continuous. Then there is ε0 > 0
and x0 ∈RN such that there is xn� x0

with ‖f(xn) − f (x0)‖ > ε0. Now since
f (xn) is bounded, there is a convergent
subsequence

f (xnk
)� L. (90)

8



Necessarily L� f (x0). But now we have

(xnk
, f (xnk

))� (x0, L) (91)

which is not in graph of f . Contradiction.

− Only if. Still prove by contradiction.
Assume there is (x0, y0) � G such that
for any r > 0, B((x0, y0), r)∩G� ∅. Then
we can find xn� x0 such that f(xn)�
y0. But then by continuity of f it must
hold that y0 = f(x0). Contradiction.

• What if we remove the boundedness
assumption?

The conclusion does not hold anymore. For

example f(x) =

{

1/x x� 0
0 x= 0

. Then its graph

is closed but f is not continuous.

Problem 7.

• � . Fix (x0, y0)∈R2. For any (x, y)∈R2, by
Mean Value Theorem, there are ξ1, ξ2 such that

f(x, y)− f(x0, y0) =
∂f

∂x
(ξ1, y0) (x− x0)

+
∂f

∂y
(x, ξ2) (y − y0)

= 0. (92)

Therefore f is a constant.

• � . This direction is obvious.

Problem 8.

Take any x, y ∈RN. By MVT we have

|fi(x)− fi(y)| 6 K
∑

j=1

N

|xj − yj |

6 K
∑

j=1

N

‖x− y‖

= KN ‖x− y‖. (93)

This gives

‖f (x)− f (y)‖ =

[

∑

i=1

M

(fi(x)− fi(y))2

]

1/2

6

[

∑

i=1

M

(KN ‖x− y‖)2
]

1/2

= M
√

N K ‖x− y‖. (94)

Now for any ε > 0, take δ =
ε

M
√

N K
. We have

whenever ‖x − y‖ < δ, ‖f (x) − f(y)‖ < ε. So
it is uniformly continuous.

Problem 9. Since u2 + v2 = R2 we consider two
cases.

• Case 1. R = 0. Then clearly u= v = 0.

• Case 2. R� 0. We have

0 =
∂(u2 + v2)

∂x

= 2 u
∂u

∂x
+ 2 v

∂v

∂x

= 2

[

u
∂u

∂x
− v

∂u

∂y

]

; (95)

0=
∂(u2 + v2)

∂y
= 2

[

u
∂u

∂y
+ v

∂u

∂x

]

. (96)

Thus
∂u

∂x
,

∂u

∂y
satisfy

u
∂u

∂x
− v

∂u

∂y
= 0 (97)

v
∂u

∂x
+ u

∂u

∂y
= 0. (98)

Solving this system we have

∂u

∂x
=

∂u

∂y
= 0 (99)

which leads to u being constant. The proof for
v being constant is similar and omitted.

Problem 10. Denote Dg(x0) by L.

First assume f(x0)� 0. For any ε > 0, take δ > 0
such that for all x∈B(x0, δ),

|f(x)− f(x0)|< ε

2 (L+ 1)
(100)

|g(x)−L(x−x0)|
‖x−x0‖

<min

{

ε

2 |f(x0)|
, 1

}

(101)

Then we have, for all such x,

|(f g)(x)− (f g)(x0)− f(x0)L(x−x0)|
‖x−x0‖

=
|f(x) g(x)− f(x0)L(x−x0)|

‖x−x0‖
6

|f(x0) [g(x)−L(x−x0)]|
‖x−x0‖

+
|[f(x)− f(x0)] g(x)|

‖x−x0‖
<

ε

2
+

ε

2
= ε. (102)

The claim is proved.
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In the case f(x0)=0 we can simply choose δ such
that

|g(x)−L(x−x0)|
‖x−x0‖

< 1. (103)

Problem 11. Taking
∂

∂x
and

∂

∂y
of x2 + y2 + z2 =

y f
(

z

y

)

we have (all f ′ are evaluated at Z/y):

2x +2 Z
∂Z

∂x
= f ′ ∂Z

∂x
(104)

2 y +2 Z
∂Z

∂y
= f + f ′ ∂Z

∂y
− f ′ Z

y
. (105)

This gives
∂Z

∂x
=

2x

f ′− 2 Z
(106)

and

∂Z

∂y
=

2 y − f + f ′Z/y

f ′− 2Z
. (107)

Now we calculate

(x2− y2− z2)
∂Z

∂x
+2 x y

∂Z

∂y

=
2x (x2− y2− z2)

f ′− 2Z
+

4x y2− 2 x y f + 2x f ′Z
f ′− 2 z

=
2x (x2 + y2− z2)− 2 x (x2 + y2 + z2) +2 x f ′Z

f ′− 2 Z

=
−4x Z2 +2 x f ′ Z

f ′− 2 Z
=2 xZ. (108)
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