Contents

Α.	Ge	eometry of \mathbb{R}^N	
	1.	Exercises $\ldots \ldots \ldots \ldots \ldots \ldots 2$	
	2.	Solutions to exercises $\ldots \ldots \ldots 2$	
	3.	$Problems \ \ldots \ \ldots \ \ldots \ 2$	
В.	To	pology of \mathbb{R}^N	
	1.	Exercises	
	2.	Solutions to exercise	
	3.	Problems	
$\mathbf{C}.$	Co	ontinuity of Functions 4	
	1.	Exercises	
	2.	Solutions to exercises 4	
	3.	Problems 4	
D.	Di	fferentiability of Functions $\ldots \ldots 5$	

	1.	Exercises	5		
	2.	Solutions to exercises	5		
	3.	Problems	5		
Е.	Im	plicit and Inverse Functions	6		
	1.	Exericises	6		
	2.	Solutions to exercises	6		
	3.	Problems	6		
Solutions to Problems					

Note.

- The exercises and problems in this article does not cover every possible topic in the midterm exam.
- You should review homework and lecture notes.
- Please try to work on the exercises and problems before looking at the solutions.

A. Geometry of \mathbb{R}^N

1. Exercises

Exercise 1. Consider all real $M \times N$ matrices. Define addition, scalar multiplication as follows:

$$A + B := (a_{ij} + b_{ij}); (1)$$

$$aA := (aa_{ij}). \tag{2}$$

- Prove that this set becomes linear vector space.
- Define the operation

$$(A,B) := \operatorname{tr}(A^T B) \tag{3}$$

where the "trace" is define for all $N\times N$ matrices as

$$\operatorname{tr} A = \sum_{i=1}^{N} a_{i\,i}.\tag{4}$$

Is this an inner product? Justify your answer.

• If the above is an inner product, what is the norm defined by it?

Exercise 2. Let $A = (a_{ij}) \in \mathbb{R}^{M \times N}$ and let $v \in \mathbb{R}^N$. Prove

$$\|A\boldsymbol{x}\| \leqslant \|A\|_F \, \|\boldsymbol{x}\|. \tag{5}$$

Here $\|\cdot\|$ is the Euclidean norm for vectors defined in class, and $\|\cdot\|_F$ is a matrix norm called Frobenius norm, defined by

$$|A||_F := \left(\sum_{i=1}^{M} \sum_{j=1}^{N} a_{ij}^2\right)^{1/2}.$$
 (6)

Exercise 3. Let $\|\cdot\|$ be any norm on \mathbb{R}^N (that is satisfy the three properties). Define $A := \{ \boldsymbol{x} \in \mathbb{R}^N | \|\boldsymbol{x}\| < 1 \}$. Prove that A is convex.

2. Solutions to exercises

Exercise 1. (A, B) is an inner product. The norm is the Frobenius norm:

$$||A||_F := \left(\sum_{i,j} a_{ij}^2\right)^{1/2}.$$
(7)

Exercise 2. We have

$$\|A \boldsymbol{x}\| = [(a_{11} x_1 + \dots + a_{1N} x_N)^2 + \dots]^{1/2} \\ \leqslant [(a_{11}^2 + \dots + a_{1N}^2) (x_1^2 + \dots + x_N^2) + \dots] \\ = \left(\sum_{i,j} a_{ij}^2\right) (x_1^2 + \dots + x_N^2) \\ = \|A\|_F \|\boldsymbol{x}\|.$$
(8)

Note that we have used Cauchy-Schwarz in the inequality step.

Exercise 3. For any $\boldsymbol{x}, \boldsymbol{y} \in A$ and $t \in [0, 1]$, we have

$$\|t \, \boldsymbol{x} + (1-t) \, \boldsymbol{y}\| \leq \|t \, \boldsymbol{x}\| + \|(1-t) \, \boldsymbol{y}\| \\ = \|t\| \, \|\boldsymbol{x}\| + |1-t| \, \|\boldsymbol{y}\| \\ = t \, \|\boldsymbol{x}\| + (1-t) \, \|\boldsymbol{y}\| \\ < t + (1-t) = 1.$$
(9)

3. Problems

Problem 1. Let $A \subseteq \mathbb{R}^N$ be convex. Prove that A^o, \overline{A} are convex.

B. Topology of \mathbb{R}^N

1. Exercises

Exercise 4. Let $A := \{(x, y) | x y > 2\}$. Prove that A is open.

Exercise 5. Let $A \subseteq \mathbb{R}^N$ be defined through

$$x_1 + x_2 = 1, \qquad x_1^2 + x_2^2 < 1.$$
 (10)

Is A open or closed or both or neither? Justify your answer.

Exercise 6. Let $A, B \subseteq \mathbb{R}^N$. Prove $\overline{A} \cup \overline{B} = \overline{A \cup B}$.

Exercise 7. Let $A \subseteq \mathbb{R}^N$ be compact. Let W be a collection of closed sets satisfying $A \cap (\bigcap_{E \in W} E) = \emptyset$. Prove that there are $E_1, ..., E_n \in W$ such that $A \cap (\bigcap_{k=1}^n E_k) = \emptyset$.

2. Solutions to exercise

Exercise 4. Take any $(x_0, y_0) \in A$. We need to find r > 0 such that $B((x_0, y_0), r) \subseteq A$. Denote m := xy - 2 > 0. Now take

$$r := \min\left\{1, \frac{m}{|x_0| + |y_0| + 1}\right\}.$$
(11)

Then for any $(x, y) \in B((x_0, y_0), r)$

we have

$$\begin{array}{rcl} x \, y & = & x_0 \, y_0 + x_0 \, u + y_0 \, v + u \, v \\ & \geqslant & x_0 \, y_0 - |x_0 \, u| - |y_0 \, v| - |u| \, |v| \\ & \geqslant & x_0 \, y_0 - [|x_0| + |y_0|] \, r - r^2 \\ & > & 2 + m - [|x_0| + |y_0| + 1] \, r \\ & \geqslant & 2. \end{array}$$
(12)

Exercise 5. The set is neither open nor closed.

• Not open. Take any $x \in A$ and any r > 0. Then

$$x' := x + \frac{r}{2} e_1 + \frac{r}{2} e_2 \in B(x, r)$$
 (13)

but

$$x_1' + x_2' = x_1 + x_2 + r = 1 + r \neq 1 \tag{14}$$

so $\boldsymbol{x}' \notin A$.

• Not closed. We prove A^c is not open. Clearly $e_1 \notin A$. Now for any r > 0, define

$$r' := \min\{r, 1\}.$$
(15)

Consider

$$\boldsymbol{x} := \left(1 - \frac{r'}{2}\right) \boldsymbol{e}_1 - \frac{r'}{2} \boldsymbol{e}_2. \tag{16}$$

Then clearly $\boldsymbol{x} \in B(\boldsymbol{e}_1, r) \cap A$ so A^c is not open.

Exercise 6. Since $A \subseteq \overline{A}$, $B \subseteq \overline{B}$, $A \cup B \subseteq \overline{A} \cup \overline{B}$. As the latter is closed, we have

$$\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}. \tag{17}$$

For the other direction, as $A \subseteq A \cup B$, we have $\overline{A} \subseteq \overline{A \cup B}$. Similarly $\overline{B} \subseteq \overline{A \cup B}$. Therefore

$$\bar{A} \cup \bar{B} \subseteq \overline{A \cup B} \,. \tag{18}$$

Exercise 7. Since $A \cap (\cap_{E \in W} E) = \emptyset$, we have

$$A \subseteq \bigcup_{E \in W} E^c. \tag{19}$$

This is an open covering of the compact set A so there is a finite sub-cover:

$$A \subseteq E_1^c \cup \dots \cup E_n^c. \tag{20}$$

Consequently

$$A \cap (E_1 \cap \dots \cap E_n) = \emptyset. \tag{21}$$

3. Problems

Problem 2. Let $A := \left\{ \left(x, \sin \frac{1}{x} \right) | x, y \in \mathbb{R}, x, y \neq 0 \right\}$. Find

- A^o ;
- *Ā*;
- ∂A ;
- Cluster points of A.

Problem 3. Let $A \subseteq \mathbb{R}^N$. Prove: $\partial(\partial A) \subseteq \partial A$. Then find counter-examples for the following claims:

- $\partial(\partial A) \subset \partial A$ (meaning: \subseteq but not =)
- $\partial(\partial A) = \partial A$.

Problem 4. Let $A, B \subseteq \mathbb{R}^N$ with A open and B compact. Prove that there is an open set $V \subseteq \mathbb{R}^N$ such that

$$B \subseteq V, \quad \bar{V} \subseteq A.$$
 (22)

C. Continuity of Functions

1. Exercises

Exercise 8. Prove that

$$\lim_{(x,y)\longrightarrow(0,0)}\frac{\sin(xy)}{x^2+y^2}\tag{23}$$

does not exist.

$$\begin{split} \mathbf{Exercise } \mathbf{9.} \ \mathrm{Let} \ f(x,y) \! := \! \left\{ \begin{array}{l} \exp \left(-\frac{1}{|x| + |y|} \right) & (x,y) \! \neq \! \mathbf{0} \\ 0 & (x,y) \! = \! \mathbf{0} \end{array} \right. \\ \mathrm{Prove \ that} \ f \ \mathrm{is \ continuous \ at} \ (0,0). \end{split}$$

Exercise 10. Prove that if the limit $\lim_{(x,y)\longrightarrow(0,0)} f(x) + g(y)$ exists, then the limits $\lim_{x\longrightarrow 0} f(x)$ and $\lim_{y\longrightarrow 0} g(y)$ both exist.

2. Solutions to exercises

Exercise 8. Denote $f(x, y) := \frac{\sin(xy)}{x^2 + y^2}$. For any r > 0, we have $\left(\frac{r}{2}, 0\right) \in B(\mathbf{0}, r)$ and $f\left(\frac{r}{2}, 0\right) = 0$.

On the other hand, since $\lim_{x \to 0} \frac{\sin x}{x} = 1$, there is $\delta > 0$ such that for all $0 < |x| < \delta^2$,

$$\frac{\sin x}{x} > \frac{1}{2}.\tag{24}$$

Now consider $\delta' := \min \{\delta, r\}$ and set $(x, y) = (\delta'/2, \delta'/2) \in B(\mathbf{0}, r)$. Then

$$f(\delta'/2, \delta'/2) = \frac{\sin((\delta')^2)}{2(\delta')^2} > \frac{1}{4}.$$
 (25)

Thus the limit cannot exist.

Exercise 9. For any $\varepsilon > 0$, take $\delta < (-\ln \varepsilon)^{-1}/2$. Then for all (x, y) such that $||(x, y)|| < \delta$, we have

$$|x| + |y| \leq 2 \, (x^2 + y^2)^{1/2} < 2 \,\delta. \tag{26}$$

Now we have

$$|e^{-1/(|x|+|y|)} - 0| < \varepsilon.$$
(27)

Exercise 10. For any $\varepsilon > 0$, since $\operatorname{im}_{(x,y)\longrightarrow(0,0)}f(x) + g(y)$ exists, there is $\delta > 0$ such that for all $(x_1, y_1), (x_2, y_2) \in B(\mathbf{0}, \delta)$,

$$|[f(x_1) + g(y_1)] - [f(x_2) + g(y_2)]| < \varepsilon.$$
(28)

Now for any x_1, x_2 such that $|x_1|, |x_2| < \delta$, we have

$$(x_1, 0), (x_2, 0) \in B(\mathbf{0}, \delta)$$
 (29)

which gives

$$|f(x_1) - f(x_2)| < \varepsilon. \tag{30}$$

Therefore $\lim_{x \to 0} f(x)$ exists. Similarly $\lim_{y \to 0} g(y)$ exists.

3. Problems

Problem 5. Let $f: \mathbb{R}^N \mapsto \mathbb{R}$ be continuous. Denote

$$[f < 0] := \{ \boldsymbol{x} \in \mathbb{R}^N | f(\boldsymbol{x}) < 0 \}$$
(31)

and

$$[f=0] := \{ \boldsymbol{x} \in \mathbb{R}^N | f(\boldsymbol{x}) = 0 \}.$$
(32)

Prove that $\partial[f < 0] \subset [f = 0]$. Does equality hold? What if we take away the continuity assumption?

Problem 6. Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$ be bounded and continuous. Prove that f is continuous if and only if its graph $\{(x, y) | y = f(x)\}$ is a closed set in \mathbb{R}^{N+M} . Then discuss:

• What if we remove the boundedness assumption?

D. Differentiability of Functions

1. Exercises

Exercise 11. Let $f(x, y) = x y \sin\left(\frac{1}{x^2 + y^2}\right)$ for $(x, y) \neq (0, 0)$ and f(0, 0) = 0. Prove that f is differentiable at (0, 0) and find its differential there.

Exercise 12. Calculate partial derivatives for $f(x, y, z) = \sin(x y z)$.

Exercise 13. Prove that $f(x, y) = e^{xy}$ is differentiable.

Exercise 14. Let f(x, y) be differentiable. Define

$$u(r,\theta) := f(r\cos\theta, r\sin\theta) \tag{33}$$

Prove

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2.$$
(34)

Here the left hand side is evaluated at $(x, y) = (r \cos \theta, r \sin \theta)$.

2. Solutions to exercises

Exercise 11.

We prove Df(0,0) = 0. That is for any $(x, y) \in \mathbb{R}^2$,

$$[Df(0,0)](x,y) = 0.$$
(35)

To do this we check

$$\left| x y \sin \frac{1}{x^2 + y^2} \right| \le |x y| \le (x^2 + y^2)$$
 (36)

therefore

$$\lim_{(x,y)\longrightarrow(0,0)} \frac{\left| x\, y\sin\frac{1}{x^2 + y^2} - 0 \right|}{(x^2 + y^2)^{1/2}} = 0.$$
(37)

Exercise 12.

$$\frac{\partial f}{\partial x} = y z \cos(x y z); \tag{38}$$

$$\frac{\partial f}{\partial y} = x z \cos(x y z);$$
 (39)

$$\frac{\partial f}{\partial z} = x y \cos(x y z). \tag{40}$$

Exercise 13. We calculate

$$\frac{\partial f}{\partial x} = y e^{xy}, \qquad \frac{\partial f}{\partial y} = x e^{xy}.$$
 (41)

Both are continuous at all $(x, y) \in \mathbb{R}^2$. Therefore f is differentiable at every $(x, y) \in \mathbb{R}^2$.

Exercise 14. We calculate through chain rule:

$$\frac{\partial u}{\partial r} = \frac{\partial f}{\partial x}\cos\theta + \frac{\partial f}{\partial y}\sin\theta;$$
(42)

$$\frac{\partial u}{\partial \theta} = \frac{\partial f}{\partial x} \left(-r\sin\theta \right) + \frac{\partial f}{\partial y} \left(r\cos\theta \right). \tag{43}$$

Now clearly the conclusion holds.

3. Problems

Problem 7. Let $f(x, y): \mathbb{R}^2 \mapsto \mathbb{R}$. Assume $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exists at all $(x, y) \in \mathbb{R}^2$. Prove that

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0 \text{ for all } (x, y) \Longleftrightarrow f \text{ is constant.}$$
(44)

Problem 8. Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$. Assume all its partial derivatives are bounded, that is there is K > 0 such that

$$\forall \boldsymbol{x} \in \mathbb{R}^{N}, \forall i = 1, ..., M, j = 1, ..., N \quad \left| \frac{\partial f_{i}}{\partial x_{j}}(\boldsymbol{x}) \right| \leqslant K.$$
(45)

Prove that \boldsymbol{f} is uniformly continuous.

Problem 9. Let u, v be differentiable and satisfy

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}, \ u^2 + v^2 = R^2 \tag{46}$$

for some constant R. Prove that both u, v are constants.

Problem 10. Let $f, g: \mathbb{R}^N \mapsto \mathbb{R}$ and $\boldsymbol{x}_0 \in \mathbb{R}^N$. Assume f is continuous at \boldsymbol{x}_0 and g is differentiable there with $g(\boldsymbol{x}_0) = 0$. Prove that fg is differentiable with differential $f(\boldsymbol{x}_0) Dg(\boldsymbol{x}_0)$.

E. Implicit and Inverse Functions

1. Exericises

Exercise 15. Let y = Y(x) be defined through the implicit relation

$$x^2 + 2xy - y^2 = a^2. (47)$$

Calculate Y', Y''.

Exercise 16. Let z = Z(x, y) be defined through

$$x + y + z = e^{x + y + z}.$$
 (48)

Calculate $\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}.$

Exercise 17. Let the implicit functions r = R(x, y), $\theta = \Theta(x, y)$ be define through

$$x = r\cos\theta \tag{49}$$

$$y = r\sin\theta. \tag{50}$$

Find $\frac{\partial(R,\Theta)}{\partial(x,y)}$.

2. Solutions to exercises

Exercise 15. We have

$$x^{2} + 2xY(x) - Y(x)^{2} = a^{2}.$$
 (51)

Taking derivative:

$$2x + 2Y + 2xY' - 2YY' = 0.$$
 (52)

which gives

$$Y'(x) = \frac{x+y}{x-y}.$$
(53)

Taking derivative one more time:

$$2 + 4Y' + 2xY'' - 2(Y')^2 - 2YY'' = 0$$
 (54)

This gives

$$Y'' = \frac{(Y')^2 - 2Y' - 1}{x - y} \tag{55}$$

which simplifies to

$$Y'' = \frac{(x+y)(3y-x) - (x-y)^2}{(x-y)^3}.$$
 (56)

Exercise 16. Z(x, y) satisfies

$$x + y + Z = e^{x + y + Z}.$$
 (57)

Taking $\frac{\partial}{\partial x}$ we have

$$1 + \frac{\partial Z}{\partial x} = e^{x + y + Z} \left(1 + \frac{\partial Z}{\partial x} \right) \tag{58}$$

which gives either x + y + Z = 0 which is not possible, or $\frac{\partial Z}{\partial x} = -1$. Similarly we have $\frac{\partial Z}{\partial y} = -1$.

Exercise 17. We have

$$I = \frac{\partial (r\cos\theta, r\sin\theta)}{\partial (r, \theta)} \frac{\partial (R, \Theta)}{\partial (x, y)}$$
(59)

which gives

$$\frac{\partial(R,\Theta)}{\partial(x,y)} = \left[r \left(\begin{array}{c} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) \right]^{-1} \\ = \frac{1}{r} \left(\begin{array}{c} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array} \right).$$
(60)

3. Problems

Problem 11. Let z = Z(x, y) be defined through

$$x^2 + y^2 + z^2 = y f\left(\frac{z}{y}\right) \tag{61}$$

for some differentiable function f. Prove that Z satisfy the following partial differential equation:

$$(x^2 - y^2 - z^2)\frac{\partial Z}{\partial x} + 2xy\frac{\partial Z}{\partial y} = 2xZ.$$
 (62)

Solutions to Problems

Problem 1.

• A^o.

Take any $\boldsymbol{x}, \boldsymbol{y} \in A^o$ and $t \in (0, 1)$. Denote $\boldsymbol{x}_t := t \, \boldsymbol{x} + (1-t) \, \boldsymbol{y}$. All we need to show is that there is r > 0 such that $B(\boldsymbol{x}_t, r) \subseteq A$.

Since $\boldsymbol{x}, \boldsymbol{y} \in A^o$, there is $r_x, r_y > 0$ such that $B(\boldsymbol{x}, r_x) \subseteq A, B(\boldsymbol{y}, r_y) \subseteq A$. Now take $r = \min\{r_x, r_y\}$ and we claim that $B(\boldsymbol{x}_t, r) \subseteq A$ for all \boldsymbol{x}_t .

Take $\boldsymbol{z}_t \in B(\boldsymbol{x}_t, r)$. Define

$$z_x := z_t + (x - x_t); \ z_y := z_t + (y - x_t).$$
 (63)

Then we have

$$\boldsymbol{z}_t = t \, \boldsymbol{z}_x + (1-t) \, \boldsymbol{z}_y. \tag{64}$$

Now check

$$\|\boldsymbol{x} - \boldsymbol{z}_x\| = \|\boldsymbol{z}_t - \boldsymbol{x}_t\| < r \leqslant r_x \tag{65}$$

and similarly $\|\boldsymbol{y} - \boldsymbol{z}_y\| < r_y$. Therefore

$$\boldsymbol{z}_x \in B(\boldsymbol{x}, r_x) \subseteq A, \ \boldsymbol{z}_y \in B(\boldsymbol{y}, r_y) \subseteq A.$$
 (66)

By convexity of A we have $z_t \in A$. The arbitrariness of z_t now yields $B(x_t, r) \subseteq A$ and consequently $x_t \in A^o$.

• Ā.

Take any $\boldsymbol{x}, \boldsymbol{y} \in \bar{A}$ and any $t \in (0, 1)$. We need to prove $\boldsymbol{x}_t := t \boldsymbol{x} + (1 - t) \boldsymbol{y} \in \bar{A}$. Note that it suffices to prove for any r > 0,

$$B(\boldsymbol{x}_t, r) \cap A \neq \emptyset. \tag{67}$$

Now take any r > 0. Since $\boldsymbol{x}, \boldsymbol{y} \in \bar{A}$, there are $\boldsymbol{x}' \in B(\boldsymbol{x}, r) \cap A, \boldsymbol{y}' \in B(\boldsymbol{y}, r) \cap A$. Therefore

$$x'_t := t x' + (1-t) y' \in A.$$
 (68)

Now we calcualte

$$\|\boldsymbol{x}_{t} - \boldsymbol{x}_{t}'\| = \|t(\boldsymbol{x} - \boldsymbol{x}') + (1 - t)(\boldsymbol{y} - \boldsymbol{y}')\| < r.$$
(69)

Thus $B(\boldsymbol{x}_t, r) \cap A \neq \emptyset$ and the proof ends.

Problem 2. Let $A := \left\{ \left(x, \sin \frac{1}{x} \right) | x, y \in \mathbb{R}, x, y \neq 0 \right\}$. Find

• $A^o = \emptyset$.

Take any $(x_0, y_0) \in A$ then we have

$$y_0 = \sin \frac{1}{x_0}.$$
 (70)

For any r > 0, clearly

$$(x_0, y_0 + r/2) \in B((x_0, y_0), r) \tag{71}$$

but does not belong to A.

• $\bar{A} = A \cup B$ with $B := \{(0, y) | y \in [-1, 1]\}.$

We first prove that $A \cup B$ is closed, then prove that for any $y_0 \in [-1, 1]$ and any r > 0, $B((0, y_0), r) \cap A \neq \emptyset$.

- $A \cup B$ is closed. We prove its complement is open. Take any $(x_0, y_0) \notin A \cup B$.
 - * Case 1. $x_0 = 0$. Then $y_0 > 1$. Take $r := y_0 1$. Clearly $B((x_0, y_0), r) \cap (A \cup B) = \emptyset$.

* Case 2.
$$x_0 \neq 0$$
. Then $y_0 \neq \sin\left(\frac{1}{x_0}\right)$. Set
 $\varepsilon_0 := \left|y_0 - \sin\left(\frac{1}{x_0}\right)\right| > 0.$ (72)

Now since $\sin\left(\frac{1}{x}\right)$ is continuous at x_0 , there is $\delta_0 > 0$ such that for all $|x - x_0| < \delta_0$, $\left|\sin\left(\frac{1}{x}\right) - \sin\left(\frac{1}{x_0}\right)\right| < \varepsilon_0/2$. Now set $r: = \min \left\{\delta_0, \varepsilon_0/2, |x_0|\right\}$. Then for any $(x, y) \in B((x_0, y_0), r)$, we have

$$\left| y_0 - \sin\left(\frac{1}{x}\right) \right| > \frac{\varepsilon_0}{2} \tag{73}$$

while

$$|y-y_0| < \frac{\varepsilon_0}{2}, \qquad |x-x_0| < |x_0|.$$
 (74)

Consequently $(x, y) \notin A \cup B$. Thus

$$B((x_0, y_0), r) \cap (A \cup B) = \emptyset.$$
(75)

- $A \cup B$ is the smallest closed set containing A. To show this it is enough to prove that for any $(0, y_0) \in B$ and any r > 0, $B((0, y_0),$ $r) \cap A \neq \emptyset$.

Take an arbitrary $(0, y_0) \in B$ and any r > 0. Then there is $n \in \mathbb{N}$ such that $2 n \pi > r^{-1}$. This gives

$$\left|\frac{1}{2\,n\,\pi + \pi/2}\right|, \, \left|\frac{1}{2\,n\,\pi + 3\,\pi/2}\right| < r.$$
 (76)

But we have

$$\sin\left(2\,n\,\pi + \pi/2\right) = 1,\tag{77}$$

$$\sin\left(2\,n\,\pi + 3\,\pi/2\right) = -1.\tag{78}$$

Thus by intermediate value theorem, there Now define is $x \in \left(\frac{1}{2n\pi + 3\pi/2}, \frac{1}{2n\pi + \pi/2}\right)$ such that $\sin\left(\frac{1}{x}\right) = y_0$. Now we have

$$\left(x,\sin\left(\frac{1}{x}\right)\right) \in A \cap B((0,y_0),r).$$
(79)

Thus ends the proof.

- $\partial A = B := \{(0, y) | y \in [-1, 1]\}.$
- Cluster points of A is the same as \overline{A} .
 - For any $(x_0, y_0) \in A$, since $\sin \frac{1}{x}$ is continuous at x_0 , taking any $x_n \longrightarrow x_0$, $x_n \neq x_0$ we have $\sin \frac{1}{x_n} \longrightarrow \sin \frac{1}{x_0}$. Consequently for any r > 0, there is $n \in$ N such that

$$\left(x_n, \sin\frac{1}{x_n}\right) \in A \cap B((x_0, y_0)) - \{(x_0, y_0)\}.$$
(80)

- For any $(0, y_0) \in B$, similar to the proof of $A \cup B$ is smallest closed set containing A, we can find $x_n \neq 0, x_n \longrightarrow 0$ with $\sin\left(\frac{1}{x_n}\right) =$ y_0 .

Problem 3.

• Proof of $\partial(\partial A) \subseteq \partial A$. We first prove ∂A is closed. This follows immediately from the definition:

$$\partial A = \bar{A} - A^o = \bar{A} \cap (A^o)^c. \tag{81}$$

Now

$$\partial(\partial A) = \overline{\partial A} - (\partial A)^o = \partial A - (\partial A)^o \subseteq \partial A.$$
 (82)

- Counter-example for $\partial(\partial A) \subset \partial A$. Take A = $\{x_0\}$. Then $\overline{A} = A, A^o = \emptyset$. So $\partial A = A$. Then of course $\partial(\partial A) = \partial A$.
- Counter-example for $\partial(\partial A) = \partial A$. Take A = $\mathbb{Q} \subset \mathbb{R}$. Then $A^o = \emptyset$, $\overline{A} = \mathbb{R}$ so $\partial A = \mathbb{R}$. Now $(\partial A)^o = \overline{\partial A} = \mathbb{R}$ so $\partial(\partial A) = \emptyset$.

Problem 4. For any $x \in B$, there is $r_x > 0$ such that

$$B(\boldsymbol{x}, r_x) \subseteq A. \tag{83}$$

Now consider the open covering of B:

$$B \subseteq \bigcup_{\boldsymbol{x} \in B} B(\boldsymbol{x}, r_x/2). \tag{84}$$

There is a finite sub-covering:

$$B \subseteq B(\boldsymbol{x}_1, r_1/2) \cup \dots \cup B(\boldsymbol{x}_n, r_n/2).$$
(85)

$$V := B(\boldsymbol{x}_1, r_1/2) \cup \dots \cup B(\boldsymbol{x}_n, r_n/2).$$
(86)

Clearly V is open and $B \subseteq V$.

Now we prove $\overline{V} \subseteq A$. We have

$$\bar{V} = \overline{B(\boldsymbol{x}_1, r_1/2)} \cup \cdots \cup \overline{B(\boldsymbol{x}_n, r_n/2)}$$

$$\subseteq B(\boldsymbol{x}_1, r_1) \cup \cdots \cup B(\boldsymbol{x}_n, r_n)$$

$$\subseteq A.$$
(87)

Problem 5.

• Proof of $\partial [f < 0] \subset [f = 0]$. Take any $x_0 \in$ $\partial [f < 0]$. Then for any r > 0,

$$B(\boldsymbol{x}_0, r) \cap [f < 0] \neq \emptyset, \tag{88}$$

$$B(\boldsymbol{x}_0, r) \cap [f \ge 0] \neq \emptyset.$$
(89)

Now we proceed via proof by contradiction. Assume $f(\boldsymbol{x}_0) \neq 0$. Consider two cases.

- Case 1. $f(\boldsymbol{x}_0) > 0$. Then there is r > 0 such that for all $\boldsymbol{x} \in B(\boldsymbol{x}_0, r), |f(\boldsymbol{x}) - f(\boldsymbol{x}_0)| <$ $|f(\boldsymbol{x}_0)| \Longrightarrow f(\boldsymbol{x}) > 0.$
- Case 2. $f(\boldsymbol{x}_0) < 0$. Then there is r > 0 such that for all $\boldsymbol{x} \in B(\boldsymbol{x}_0, r), |f(\boldsymbol{x}) - f(\boldsymbol{x}_0)| <$ $|f(\boldsymbol{x}_0)| \Longrightarrow f(\boldsymbol{x}) < 0.$

Either way we contradicts one of (88–89).

- Equality may not hold. For example take $f(\mathbf{x}) = 0$. Then $[f < 0] = \emptyset$ and consequently $\partial [f < 0] = \emptyset$. But $[f = 0] = \mathbb{R}^N$.
- If continuity assumption is dropped, the conclusion does not hold. For example take $f(x) = \begin{cases} -1 & x \neq 0 \\ 1 & x = 0 \end{cases}$. Then $\partial[f < 0] = \{0\}$ but $[f=0] = \emptyset.$

Problem 6.

- Proof of "*f* is continuous if and only if its graph $\{(\boldsymbol{x}, \boldsymbol{y}) | \boldsymbol{y} = \boldsymbol{f}(\boldsymbol{x})\}$ is a closed set in $\mathbb{R}^{N+M"}$. Denote the graph by $G \subseteq \mathbb{R}^{N+M}$.
 - If. We prove by contradiction. Assume fis not continuous. Then there is $\varepsilon_0 > 0$ and $\boldsymbol{x}_0 \in \mathbb{R}^N$ such that there is $\boldsymbol{x}_n \longrightarrow \boldsymbol{x}_0$ with $\|\boldsymbol{f}(\boldsymbol{x}_n) - \boldsymbol{f}(\boldsymbol{x}_0)\| > \varepsilon_0$. Now since $f(x_n)$ is bounded, there is a convergent subsequence

$$\boldsymbol{f}(\boldsymbol{x}_{n_k}) \longrightarrow \boldsymbol{L}. \tag{90}$$

Necessarily $L \neq f(x_0)$. But now we have

$$(\boldsymbol{x}_{n_k}, \boldsymbol{f}(\boldsymbol{x}_{n_k})) \longrightarrow (\boldsymbol{x}_0, \boldsymbol{L})$$
 (91)

which is not in graph of f. Contradiction.

- Only if. Still prove by contradiction. Assume there is $(\boldsymbol{x}_0, \boldsymbol{y}_0) \notin G$ such that for any r > 0, $B((\boldsymbol{x}_0, \boldsymbol{y}_0), r) \cap G \neq \emptyset$. Then we can find $\boldsymbol{x}_n \longrightarrow \boldsymbol{x}_0$ such that $\boldsymbol{f}(\boldsymbol{x}_n) \longrightarrow$ \boldsymbol{y}_0 . But then by continuity of \boldsymbol{f} it must hold that $\boldsymbol{y}_0 = \boldsymbol{f}(\boldsymbol{x}_0)$. Contradiction.
- What if we remove the boundedness assumption?

The conclusion does not hold anymore. For example $f(x) = \begin{cases} 1/x & x \neq 0 \\ 0 & x = 0 \end{cases}$. Then its graph is closed but f is not continuous.

Problem 7.

• \Longrightarrow . Fix $(x_0, y_0) \in \mathbb{R}^2$. For any $(x, y) \in \mathbb{R}^2$, by Mean Value Theorem, there are ξ_1, ξ_2 such that

$$f(x, y) - f(x_0, y_0) = \frac{\partial f}{\partial x}(\xi_1, y_0) (x - x_0) + \frac{\partial f}{\partial y}(x, \xi_2) (y - y_0) = 0.$$
(92)

Therefore f is a constant.

• \Leftarrow . This direction is obvious.

Problem 8.

Take any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$. By MVT we have

$$|f_{i}(\boldsymbol{x}) - f_{i}(\boldsymbol{y})| \leqslant K \sum_{j=1}^{N} |x_{j} - y_{j}|$$

$$\leqslant K \sum_{j=1}^{N} ||\boldsymbol{x} - \boldsymbol{y}||$$

$$= K N ||\boldsymbol{x} - \boldsymbol{y}||.$$
(93)

This gives

$$\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})\| = \left[\sum_{i=1}^{M} (f_i(\boldsymbol{x}) - f_i(\boldsymbol{y}))^2\right]^{1/2}$$
$$\leq \left[\sum_{i=1}^{M} (KN \|\boldsymbol{x} - \boldsymbol{y}\|)^2\right]^{1/2}$$
$$= \sqrt{M} NK \|\boldsymbol{x} - \boldsymbol{y}\|.$$
(94)

Now for any $\varepsilon > 0$, take $\delta = \frac{\varepsilon}{\sqrt{M}NK}$. We have whenever $\|\boldsymbol{x} - \boldsymbol{y}\| < \delta$, $\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})\| < \varepsilon$. So it is uniformly continuous. **Problem 9.** Since $u^2 + v^2 = R^2$ we consider two cases.

- Case 1. R = 0. Then clearly u = v = 0.
- Case 2. $R \neq 0$. We have

$$0 = \frac{\partial (u^2 + v^2)}{\partial x}$$

= $2 u \frac{\partial u}{\partial x} + 2 v \frac{\partial v}{\partial x}$
= $2 \left[u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} \right];$ (95)

$$0 = \frac{\partial (u^2 + v^2)}{\partial y} = 2 \left[u \frac{\partial u}{\partial y} + v \frac{\partial u}{\partial x} \right].$$
(96)

Thus
$$\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$$
 satisfy

$$u\frac{\partial u}{\partial x} - v\frac{\partial u}{\partial y} = 0 \tag{97}$$

$$v\frac{\partial u}{\partial x} + u\frac{\partial u}{\partial y} = 0.$$
(98)

Solving this system we have

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0 \tag{99}$$

which leads to u being constant. The proof for v being constant is similar and omitted.

Problem 10. Denote $Dg(\boldsymbol{x}_0)$ by L.

First assume $f(\boldsymbol{x}_0) \neq 0$. For any $\varepsilon > 0$, take $\delta > 0$ such that for all $\boldsymbol{x} \in B(\boldsymbol{x}_0, \delta)$,

$$|f(\boldsymbol{x}) - f(\boldsymbol{x}_0)| < \frac{\varepsilon}{2(L+1)}$$
(100)

$$\frac{|\boldsymbol{g}(\boldsymbol{x}) - L(\boldsymbol{x} - \boldsymbol{x}_0)|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} < \min\left\{\frac{\varepsilon}{2|f(\boldsymbol{x}_0)|}, 1\right\}$$
(101)

Then we have, for all such \boldsymbol{x} ,

$$\frac{|(fg)(x) - (fg)(x_0) - f(x_0) L(x - x_0)|}{\|x - x_0\|} \\
= \frac{|f(x) g(x) - f(x_0) L(x - x_0)|}{\|x - x_0\|} \\
\leqslant \frac{|f(x_0) [g(x) - L(x - x_0)]|}{\|x - x_0\|} \\
+ \frac{|[f(x) - f(x_0)] g(x)|}{\|x - x_0\|} \\
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
(102)

The claim is proved.

(107)

In the case $f(\boldsymbol{x}_0) = 0$ we can simply choose δ such and that

$$\frac{|g(x) - L(x - x_0)|}{\|x - x_0\|} < 1.$$
(103)

Problem 11. Taking $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ of $x^2 + y^2 + z^2 = N$ $yf\left(\frac{z}{y}\right)$ we have (all f' are evaluated at Z/y):

$$2x + 2Z\frac{\partial Z}{\partial x} = f'\frac{\partial Z}{\partial x}$$
(104)

$$2y + 2Z\frac{\partial Z}{\partial y} = f + f'\frac{\partial Z}{\partial y} - f'\frac{Z}{y}.$$
 (105)

This gives

$$\frac{\partial Z}{\partial x} = \frac{2x}{f' - 2Z} \tag{106}$$

 $\frac{\partial Z}{\partial y} = \frac{2 \, y - f + f' \, Z/y}{f' - 2 \, Z}.$

$$(x^{2} - y^{2} - z^{2}) \frac{\partial Z}{\partial x} + 2xy \frac{\partial Z}{\partial y}$$

$$= \frac{2x(x^{2} - y^{2} - z^{2})}{f' - 2Z} + \frac{4xy^{2} - 2xyf + 2xf'Z}{f' - 2z}$$

$$= \frac{2x(x^{2} + y^{2} - z^{2}) - 2x(x^{2} + y^{2} + z^{2}) + 2xf'Z}{f' - 2Z}$$

$$= \frac{-4xZ^{2} + 2xf'Z}{f' - 2Z} = 2xZ.$$
(108)