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Geometry of RV

Exercises

Exercise 1. Consider all real M x N matrices. Define
addition, scalar multiplication as follows:

A+ B:=(ai;+ bij); (1)
aA:=(aa;;). (2)
e Prove that this set becomes linear vector space.
e Define the operation
(A, B):=tr(ATB) (3)

where the “trace” is define for all N x N matrices as
N

tr A= Z Qi (4)
i=1

Is this an inner product? Justify your answer.

e If the above is an inner product, what is the norm
defined by it?

Exercise 2. Let A=(a;;) € RM X" and let v€ RV. Prove
[Az| <[[AllF [z (5)

Here ||-|| is the Euclidean norm for vectors defined in class,
and ||-|| 7 is a matrix norm called Frobenius norm, defined
by

M N 1/2
||A||F;—(Z > azzj) : (6)

i=1 j=1

Exercise 3. Let ||| be any norm on RY (that is satisfy
the three properties). Define A:={x € RV|| x| < 1}. Prove
that A is convex.

2.

Solutions to exercises

Exercise 1. (A, B) is an inner product. The norm
is the Frobenius norm:

5 \1/2
Allpe= (Y a3 ) - (7)
2%

Exercise 2. We have

Az a1 o1+ +ayey)i4 -2

afy+ - +aiy) (@i+ - +ak) + ]

[(
[(

N

= (D af ) @lt+ad)
]

= [lAllF [l |- (8)

Note that we have used Cauchy-Schwarz in the
inequality step.

Exercise 3. For any ,y € A and t € [0, 1], we have

3.

[te+(1-t)yl < [[te|+[1-1)yl
[t ]l + 1=t 1yl
= tlzll+0-1) |yl

< t+(1-t)=1.

(9)

Problems

Problem 1. Let A CRY be convex. Prove that A%, A are
convex.



B. Topology of RN

1. Exercises

Exercise 4. Let A:= {(z, y)| ¢y > 2}. Prove that A is
open.

Exercise 5. Let A CRY be defined through

r1+x2=1, z3+a3<1. (10)

Is A open or closed or both or neither? Justify your
answer.

Exercise 6. Let A,BCRY. Prove AUB=AUB.

Exercise 7. Let A C RN be compact. Let W be a
collection of closed sets satisfying A N (NgewE) = 2.
Prove that there are Ey, ..., E, € W such that A N
(NE=1Ex) = 2.

2. Solutions to exercise

Exercise 4. Take any (zo, yo) € A. We need to
find » > 0 such that B((zo, yo0), ) € A. Denote
m:=xy—2>0. Now take

m
ri=min {1, —2 % 11
1 ) an
Then for any (z, y) € B((xo, ¥0),7)
we have
TY = ToYo+Tou+Yv+uv
> zoyo— |rou|—|yov| - |ul|v]
> 2o yo— [|zo| +|yol] r —r?
> 2+4+m — [|zo| +|yo| + 1] r
> 2. (12)

Exercise 5. The set is neither open nor closed.

e Not open. Take any « € A and any r > 0. Then

w’::w+%el+%6253(fvﬂ°) (13)
but

sox'¢ A.

e Not closed. We prove A€ is not open. Clearly
e1 ¢ A. Now for any r >0, define

(15)

r’:=min {r,1}.

Consider
(16)

Then clearly € B(e1,r) N A so A€ is not open.

Exercise 6. Since ACA, BCB, AUBCAUB.
As the latter is closed, we have

AUB CAUB. (17)

For the other direction, as A C AU B, we have AC
AU B . Similarly B C AU B . Therefore

AUBCAUB. (18)
Exercise 7. Sincer AN (NgewF) =, we have
AC Ugpewk*. (19)

This is an open covering of the compact set A so there
is a finite sub-cover:

ACE{U--UE;,. (20)
Consequently

AN(EiN--NE,)=a. (21)

3. Problems

Problem 2. Let A:= {(x,siné)\ x,yelR,x,ygéO}. Find
o A%
o A;
e 0A;
e Cluster points of A.

Problem 3. Let ACRM. Prove: 9(8A) C dA. Then find
counter-examples for the following claims:

e 9(0A) C OA (meaning: C but not =)
o J(0A)=0A.

Problem 4. Let A, BCRY with A open and B compact.
Prove that there is an open set V C R" such that
BCV,

V CA. (22)



C. Continuity of Functions

1. Exercises

Exercise 8. Prove that

sin (z y)

1i 23
(@ 9) 2 (0,0) 22+ y? 23)

does not exist.

1
Exercise 9. Let f(z,y):= eXp(_\w\+\y\> (@,y)70 .
0 (z,y)=0
Prove that f is continuous at (0, 0).
Prove  that if  the  limit
+ g(y) exists, then the limits

Exercise 10.

lim,, ) (0,0).f (2)
limg_, of(x) and limy_,0g(y) both exist.

2. Solutions to exercises

sin (z y)
x2 + y2

we have (%,0) € B(0,r) and f(%,()) =0.

Exercise [8. Denote f(x,y):= . For any r >0,

sin &

On the other hand, since lim,__,¢ =1, there
is 0 > 0 such that for all 0 < |z| < 42,
sinz _ 1
—. 24
>3 (24)

Now consider ¢’ := min {J,r} and set (x, y) = (4"/2,
d'/2) € B(0,r). Then
sin ((6)2) _ 1

> —.

f((sl/27 61/2) = 2 (5/)2 4 (25)

Thus the limit cannot exist.

Exercise 9. For any ¢ > 0, take § < (—In ¢)71/2.
Then for all (z,y) such that ||(x,y)|| <, we have

lz| + |y <2 (22 + y?) /2 < 26. (26)

Now we have

|e=1/0elHluh _o| <. (27)

Exercise 10. For any e > 0, since
im(z,y)—(0,0)f () + g(y) exists, there is 6 > 0 such
that for all (z1, y1), (22, y2) € B(0,0),

I[f(z1) + g(y1)] = [f(z2) + g(y2)]| <e. (28)

Now for any z1, x5 such that ||, |z2| < d, we have

(21,0, (22,0) € B(0, ) (29)

which gives

|f(z1) = fx2) <e. (30)

Therefore lim, ¢ f(x) exists. Similarly lim,_,0g(y)
exists.

Problems

Problem 5. Let f: RN — R be continuous. Denote

[f <0]:={x e RV| f(x) <0} (31)

and

[f=0]:= {z e R"| f(zx)=0}. (32)

Prove that 9[f < 0] C [f =0]. Does equality hold? What if
we take away the continuity assumption?

Problem 6. Let f: RY — RM be bounded and
continuous. Prove that f is continuous if and only if its
graph {(z, y)| y= f(x)} is a closed set in RN+ Then
discuss:

e What if we remove the boundedness assumption?



D. Differentiability of Functions

1. Exercises

Exercise 11. Let f(z,y)=x ysin(ﬁ) for (z,y)# (0,

0) and f(0,0) =0. Prove that f is differentiable at (0, 0)
and find its differential there.

Exercise 12. Calculate partial derivatives for f(x,y,z)=

sin(zy z).

Exercise 13. Prove that f(z,y)=e*? is differentiable.

Exercise 14. Let f(x,y) be differentiable. Define
u(r,0):= f(rcosf,rsinb) (33)

Prove

OF\ (OF P _(ou)?, 1 (on)?

Ox dy) \or r2\ 00 )’
Here the left hand side is evaluated at (z, y) = (r cos 6,
rsind).

(34)

2. Solutions to exercises

Exercise 11.
We prove D £(0,0)=0. That is for any (z,y) € R?,

[D £(0,0)](x, y) =0. (35)
To do this we check
. 1
:1cysmwy2 <Jzyl < (22 +y?) (36)
therefore
’:v ysin ——sy —
Jim v 1=, (37)
(@.9)— 0,0  (22+y2)"
Exercise 12.
of _ ‘ .
% = yzcos(ryz); (38)
- zzcos(zyz); (39)
of _ xycos(Tyz). (40)

Exercise 13. We calculate

of

J— T
, —=zxe"Y.

(41)

Both are continuous at all (z, y) € R Therefore f
is differentiable at every (z,y) € R

Exercise 14. We calculate through chain rule:

ou _ Of of ..
Z = g?COSG—Fay SH;? (42)
5 = %(—rmn@)-l-a—y(TCOS@)- (43)

Now clearly the conclusion holds.

3. Problems

Problem 7. Let f(z,y): R?— R. Assume %7 %?J; exists
at all (z,y) € R%. Prove that

of _ gzo for all (z,y) <= f is constant.

5 =5y (44)

Problem 8. Let f: RV — RM. Assume all its partial
derivatives are bounded, that is there is K > 0 such that

VeeRN Vi=1,..,.M,j=1,..,N ‘gﬁi_(w)‘ <K. (45)
J

Prove that f is uniformly continuous.
Problem 9. Let u,v be differentiable and satisfy

ou_ov du v

Ou_Ov u_ O o5 o po
or oy oy ow LTV TR

(46)

for some constant R. Prove that both u,v are constants.

Problem 10. Let f, g: RY — R and xp € RY. Assume
f is continuous at xg and g is differentiable there with
g(x0) =0. Prove that fg is differentiable with differential

f(=z0) Dg(zo).



E. Implicit and Inverse Functions which simplifies to

1. Exericises V= (x . y) (3(?;_—2))3_ (x — y)z' (56)

Exercise 15. Let y=Y (z) be defined through the implicit Exercise 16. Z(z,y) satisfies

relation

2+ 2zy—y?=a> (47) $+y+Z:ez+y+Z' (57)

Calculate Y/, Y. .
pewiate T4 Taking % we have
Exercise 16. Let z=Z(z,y) be defined through

A 07
THy+z=e*TVTZ (48) 1+%—€m+y+z<1+%) (58)
Calculate %, %
which gives either z 4 y+ Z =0 which is not possible,
Exercise 17. Let the implicit functions r = R(z, y), or 0Z _ _1. Similarly we have 0z _ 1
0 =0O(z,y) be define through ox y oy
Exercise 17. We have
z = rcosf (49)
y = rsind. (50) A(r cosf,rsinf) I(R,O)
I= (59)
Find 2£:9) 6(7‘, 6‘) 6(‘T7 y)
(=, y)
which gives
2. Solutions to exercises . _1
IR,0) _ - cos 6 —sinf
d(z,y) sinf  cosf
Exercise 15. We have 1 ( cosf sind )
= — . . (60)
22 +22Y(z) — Y(x)2=d> (51) r\ —sinf cosf
Taking derivative:
204+2Y +22Y' —2YY'=0. (52) 3 Problems
which gives n Problem 11. Let z= Z(x, y) be defined through
x
Y'(2)="= Z (53)
m2+y2+z2:yf<§> (61)

Taking derivative one more time:
for some differentiable function f. Prove that Z satisfy the

24+4Y'+2zY" -2 (Y/)2 —-2YY"=0 (54) following partial differential equation:
This gives (xQ—yQ—z2)%+2xy%:2xZ. (62)
s (Y)?2-2Y'—1 N
yrn -2y =1 (55)

r—=Yy



Solutions to Problems

Problem 1.
o A°.

Take any =, y € A° and ¢ € (0, 1). Denote
zy:=tx+ (1—1t)y. All we need to show is that
there is 7 > 0 such that B(z:,r) C A.

Since x, y € A°, there is 75, ry, > 0 such
that Bz, r,) € A, B(y, r,) € A. Now take
r=min{ry,r,} and we claim that B(x;,7)C A
for all x;.

Take z; € B(x,r). Define
zZyi=z+ (x—wy); zyi=z+(y—x). (63)
Then we have
zZi=tzy+(1—1t)z, (64)
Now check
2 —zo || =zt — @]l <r <o (65)
and similarly ||y — z,|| <r,. Therefore
zz€B(x,ry) CA, zy€ B(y,ry) CA. (66)
By convexity of A we have z; € A. The
arbitrariness of z; now yields B(x;,7) C A and
consequently x; € A°.
o A.
Take any x, y € A and any t € (0,1). We

need to prove x;:=tx + (1 —t) y € A. Note
that it suffices to prove for any r >0,

Bla,r)NA+D. (67)

Now take any 7 > 0. Since , y € A, there are
'€ B(x,r)NA,y' € B(y,r)NA. Therefore

zi=tx'+(1—t)y’ €A (68)
Now we calcualte

[y —ai]| = [t (x—a)+(1—1)(y -y
< r. (69)

Thus B(x,7) N A+ @ and the proof ends.

Problem 2. Let A:= {(x,sin%)\ z,yeR,z,y+0}.
Find

o A°=y.

Take any (xo, yo) € A then we have
—sin+ (70)
Yo= To

For any r >0, clearly

(z0, yo+1/2) € B((z0, yo),7) (71)
but does not belong to A.

e A=AUB with B:={(0,y)|y€[-1,1]}.

We first prove that A U B is closed, then
prove that for any yo € [—1, 1] and any r > 0,
B((Ov yo)ﬂ”)ﬂA#Q

— AU B is closed. We prove its complement
is open. Take any (xo, yo) ¢ AU B.

x Case 1. x9g = 0. Then yo > 1. Take
r:= yo — 1. Clearly B((xq, yo), r) N
(AUB)=2.

% Case 2. £9#£0. Then yo#zsin( ! ) Set

Zo

Yo — sin (i)‘ >0. (72)

Lo

Ep=

Now since sin (%) is continuous at x,
there is dp > 0 such that for all |z — x| <
do, ’sin (%) —sin (xio)’ <eo/2. Now set
r: =min {do, €0/2, |zo|}. Then for any
(.I, y) € B((IOa yo)v T)v we have

. 1 €0
Yo — sin (;)‘ >3 (73)

while
&
|y_y0|<?ou |z — x| <|wol.  (74)

Consequently (z,y) ¢ AU B. Thus
B((z0,90),7)N(AUB)=@.  (75)

— AU B is the smallest closed set containing
A. To show this it is enough to prove that
for any (0, yo) € B and any r >0, B((0, yo),
rYNA+D.

Take an arbitrary (0, yo) € B and any
r>0. Then there is n € N such that 2n 7>
r—1. This gives

1 1
‘2n7r+7r/2" 2n7r+37r/2‘ <r. (16)
But we have

sin(2nw+m/2)=1, (77)

sin(2nmw+37/2)=—1. (78)



Thus by intermediate value theorem, there

. 1 1
is x € (2nw+3ﬁ/2, 2n7'r+7'r/2) such that

sin (%) =1yo. Now we have

(x,sin <%)> cANB((0,50),r).  (79)

Thus ends the proof.
e 0A=B:={(0,y)|ye[-1,1]}.
e Cluster points of A is the same as A.

— For any (zo, yo) € A, since sin % is
continuous at xg, taking any x, — xo,
Ty F# o we have sin Iin — sin wio
Consequently for any r > 0, there is n €
N such that

(:vn, sin %) € AN B((zo, y0)) — {(zo,
Yo) }-

— For any (0, yo) € B, similar to the proof of
AU B is smallest closed set containing A,

we can find x,, #0, £, — 0 with sin(ml):

Yo-
Problem 3.

(80)

e Proof of 9(0A) C OA. We first prove 0A is
closed. This follows immediately from the

definition:

0A=A — A°= AN (A°)". (81)
Now
0(0A)=0A — (0A)°=0A— (0A)°COA. (82)

e Counter-example for 9(0A) C JA. Take A =
{xo}. Then A = A, A°=2. So 9A = A. Then
of course 9(0A) = DA.

e Counter-example for 9(0A) = JA. Take A =
QCR. Then A°=@, A =R so 9A=R. Now
(0A)°=0A =R so 9(0A) = @.

Problem 4. For any x € B, there is 7, > 0 such that

B(x,r,) C A. (83)
Now consider the open covering of B:
B CUzenB(@,72/2). (84)
There is a finite sub-covering:
BC B(xy,r1/2) U UB(xn,mn/2). (85)

Now define

V= B(z1,71/2) U--UB(2n, mn/2). (86)

Clearly V is open and BCV.
Now we prove V C A. We have

V:

B(x1,7r1/2)U--UB(y,1,/2)
B(xy,r1)U--UB(p, )

C
C A (87)

Problem 5.

e Proof of J[f < 0] C [f = 0]. Take any xg €
d|f <0]. Then for any >0,

B(xo,r)N[f <0] £ o, (88)

B(zo,r)N[f>0]# 2. (89)
Now we proceed via proof by contradiction.
Assume f(xo)#0. Consider two cases.

— Case 1. f(xo)>0. Then there is r > 0 such
that for all @ € B(xo,7), |f(x) — f(x0)| <
|f(zo)| = f (=) >0.

— Case 2. f(xo) <0. Then there is r > 0 such
that for all @ € B(xo, ), |f(x) — f(zo)| <
|f(zo)| = f(=) <O0.

Either way we contradicts one of (88-89).

e Equality may not hold. For example take
f(x) =0. Then [f < 0] = @ and consequently
d[f <0]=2. But [f=0]=RN.

e If continuity assumption is dropped, the
conclusion does not hold. For example take

f(:v):{ T 70 Then o[ < 0] = {0 but
1=0=2.
Problem 6.

e Proof of “ f is continuous if and only if its graph
{(z, y)| y= f(x)} is a closed set in RN M,
Denote the graph by G CRN M,

— If. We prove by contradiction. Assume f
is not continuous. Then there is ¢g > 0
and g € RY such that there is &, — %
with || f(xn) — f(xo)|| > €o. Now since
f(xy,) is bounded, there is a convergent
subsequence

f(xn,) — L. (90)



Necessarily L+ f(xo). But now we have

(wnkv f(wnk)) - (woa L) (91)

which is not in graph of f. Contradiction.

— Only if. Still prove by contradiction.
Assume there is (zg, yo) ¢ G such that
for any r >0, B((xo, yo),7) NG+ &. Then
we can find @, — x( such that f(x,)—
Yyo. But then by continuity of f it must
hold that yo= f(xo). Contradiction.

e What if we
assumption?

remove the boundedness

The conclusion does not hold anymore. For
1/z x+0
0 z=0
is closed but f is not continuous.

Problem 7.

example f(z)= { . Then its graph

e —. Fix (w0, yo) € R2 For any (z,y) € R?, by
Mean Value Theorem, there are &1, &5 such that

F ) = feo o) = 9L(E o) (o~ o)

19)
0
e, (v -w)
= 0. (92)
Therefore f is a constant.
e «——. This direction is obvious.
Problem 8.
Take any =,y € RY. By MVT we have
N
|fi(z) — fi(y)| < KZ |z — vj
=1
N
< KY z—yl
j=1
= KNz -yl (93)
This gives
M 1/2
[ f(z) = F(ll = lz (filz) - fi(y))ﬂ
i=1

N

B

=1
— VI NK |z -y

M 1/2
[Z (KN ||m—y||>2]

(94)

_ €
Now for any ¢ > 0, take § = INE We have

whenever |z — y|| < 0, [[f(x) — f(y)|| < e So
it is uniformly continuous.

Problem 9. Since u? + v? = R? we consider two
cases.

e Case 1. R=0. Then clearly u=v=0.

e Case 2. R+0. We have

0 — O(u?+v?)
e
v
ou ou
0w+ v?) Ou ,  0Ou
Ou Ou .
Thus 5 Ty satisfy
ou ou
ou ou
Solving this system we have
ou  Ou
i v 0 (99)

which leads to u being constant. The proof for
v being constant is similar and omitted.

Problem 10. Denote Dg(xz) by L.
First assume f(xo)#0. For any € >0, take 6 >0
such that for all x € B(x,0),

€

| f(x) — f(zo0)] <m (100)
9@)~Le—an)] __ <
EE {2|f<wo>|’1} (101)

Then we have, for all such x,

|(f9) (=) — (fg)H(wO) - J|“|(CC0) L(z — o)
r — X9
|f(z) g(w)H— f(fBO)HL(fB —xo)|
r — I

|f(@0) [g(z) — L(z — a0)]|

[l — x|

|[f (&) — f(20)] g()]

[ — 0|

e )
< 54—5—5

The claim is proved.

N

_|_

(102)
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In the case f(xg) =0 we can simply choose § such and

that _ ’
Ig(w)H— L(:ciwoﬂ 1 (103) %:W. (107)
L — X

Problem 11. Taking 8_81 and a% of 22+ y?2 + 22 = Now we calculate

yf(%) we have (all f are evaluated at Z/y): (22— g2 — 22) g+2xy%
5
2:10—}—22% = f’g—i (104) _ 23:(3:2—y2—22)+4xy2632xyf+2$f’Z
2y+22% _ pyp 92 _pZ (105) 5 O P P :
Ay oy y _ 2z(attyt -2t 2z (@t yt+2t) 422 f' 2
This gives =22
0Z 2z (106) _ —4$Z2+2xf’Z:2$Z. (108)

oz f—-2Z =27



