Contents

A. Geometry of $\mathbb{R}^{N} \ldots2$

1. Exercises 2
2. Solutions to exercises 2
3. Problems 2
B. Topology of $\mathbb{R}^{N} \ldots3$
4. Exercises 3
5. Solutions to exercise 3
6. Problems 3
C. Continuity of Functions 4
7. Exercises 4
8. Solutions to exercises 4
9. Problems 4
D. Differentiability of Functions 5
10. Exercises 5
11. Solutions to exercises 5
12. Problems 5
E. Implicit and Inverse Functions 6
13. Exericises 6
14. Solutions to exercises 6
15. Problems 6
Solutions to Problems 7

Note.

- The exercises and problems in this article does not cover every possible topic in the midterm exam.
- You should review homework and lecture notes.
- Please try to work on the exercises and problems before looking at the solutions.
A. Geometry of \mathbb{R}^{N}

1. Exercises

Exercise 1. Consider all real $M \times N$ matrices. Define addition, scalar multiplication as follows:

$$
\begin{align*}
A+B & :=\left(a_{i j}+b_{i j}\right) \tag{1}\\
a A & :=\left(a a_{i j}\right) \tag{2}
\end{align*}
$$

- Prove that this set becomes linear vector space.
- Define the operation

$$
\begin{equation*}
(A, B):=\operatorname{tr}\left(A^{T} B\right) \tag{3}
\end{equation*}
$$

where the "trace" is define for all $N \times N$ matrices as

$$
\begin{equation*}
\operatorname{tr} A=\sum_{i=1}^{N} a_{i i} \tag{4}
\end{equation*}
$$

Is this an inner product? Justify your answer.

- If the above is an inner product, what is the norm defined by it?

Exercise 2. Let $A=\left(a_{i j}\right) \in \mathbb{R}^{M \times N}$ and let $\boldsymbol{v} \in \mathbb{R}^{N}$. Prove

$$
\begin{equation*}
\|A \boldsymbol{x}\| \leqslant\|A\|_{F}\|\boldsymbol{x}\| \tag{5}
\end{equation*}
$$

Here $\|\cdot\|$ is the Euclidean norm for vectors defined in class, and $\|\cdot\|_{F}$ is a matrix norm called Frobenius norm, defined by

$$
\begin{equation*}
\|A\|_{F}:=\left(\sum_{i=1}^{M} \sum_{j=1}^{N} a_{i j}^{2}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

Exercise 3. Let $\|\cdot\|$ be any norm on \mathbb{R}^{N} (that is satisfy the three properties). Define $A:=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid\|\boldsymbol{x}\|<1\right\}$. Prove that A is convex.

2. Solutions to exercises

Exercise 1. (A, B) is an inner product. The norm is the Frobenius norm:

$$
\begin{equation*}
\|A\|_{F}:=\left(\sum_{i, j} a_{i j}^{2}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

Exercise 2. We have

$$
\begin{align*}
\|A \boldsymbol{x}\| & =\left[\left(a_{11} x_{1}+\cdots+a_{1 N} x_{N}\right)^{2}+\cdots\right]^{1 / 2} \\
& \leqslant\left[\left(a_{11}^{2}+\cdots+a_{1 N}^{2}\right)\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)+\cdots\right] \\
& =\left(\sum_{i, j} a_{i j}^{2}\right)\left(x_{1}^{2}+\cdots+x_{N}^{2}\right) \\
& =\|A\|_{F}\|\boldsymbol{x}\| . \tag{8}
\end{align*}
$$

Note that we have used Cauchy-Schwarz in the inequality step.
Exercise 3. For any $\boldsymbol{x}, \boldsymbol{y} \in A$ and $t \in[0,1]$, we have

$$
\begin{align*}
\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\| & \leqslant\|t \boldsymbol{x}\|+\|(1-t) \boldsymbol{y}\| \\
& =|t|\|\boldsymbol{x}\|+|1-t|\|\boldsymbol{y}\| \\
& =t\|\boldsymbol{x}\|+(1-t)\|\boldsymbol{y}\| \\
& <t+(1-t)=1 . \tag{9}
\end{align*}
$$

3. Problems

Problem 1. Let $A \subseteq \mathbb{R}^{N}$ be convex. Prove that A^{o}, \bar{A} are convex.

B. Topology of \mathbb{R}^{N}

1. Exercises

Exercise 4. Let $A:=\{(x, y) \mid x y>2\}$. Prove that A is open.

Exercise 5. Let $A \subseteq \mathbb{R}^{N}$ be defined through

$$
\begin{equation*}
x_{1}+x_{2}=1, \quad x_{1}^{2}+x_{2}^{2}<1 \tag{10}
\end{equation*}
$$

Is A open or closed or both or neither? Justify your answer.

Exercise 6. Let $A, B \subseteq \mathbb{R}^{N}$. Prove $\bar{A} \cup \bar{B}=\overline{A \cup B}$.
Exercise 7. Let $A \subseteq \mathbb{R}^{N}$ be compact. Let W be a collection of closed sets satisfying $A \cap\left(\cap_{E \in W} E\right)=\varnothing$. Prove that there are $E_{1}, \ldots, E_{n} \in W$ such that $A \cap$ $\left(\cap_{k=1}^{n} E_{k}\right)=\varnothing$.

2. Solutions to exercise

Exercise 4. Take any $\left(x_{0}, y_{0}\right) \in A$. We need to find $r>0$ such that $B\left(\left(x_{0}, y_{0}\right), r\right) \subseteq A$. Denote $m:=x y-2>0$. Now take

$$
\begin{equation*}
r:=\min \left\{1, \frac{m}{\left|x_{0}\right|+\left|y_{0}\right|+1}\right\} \tag{11}
\end{equation*}
$$

Then for any $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$
we have

$$
\begin{align*}
x y & =x_{0} y_{0}+x_{0} u+y_{0} v+u v \\
& \geqslant x_{0} y_{0}-\left|x_{0} u\right|-\left|y_{0} v\right|-|u||v| \\
& \geqslant x_{0} y_{0}-\left[\left|x_{0}\right|+\left|y_{0}\right|\right] r-r^{2} \\
& >2+m-\left[\left|x_{0}\right|+\left|y_{0}\right|+1\right] r \\
& \geqslant 2 . \tag{12}
\end{align*}
$$

Exercise 5. The set is neither open nor closed.

- Not open. Take any $\boldsymbol{x} \in A$ and any $r>0$. Then

$$
\begin{equation*}
\boldsymbol{x}^{\prime}:=\boldsymbol{x}+\frac{r}{2} \boldsymbol{e}_{1}+\frac{r}{2} \boldsymbol{e}_{2} \in B(\boldsymbol{x}, r) \tag{13}
\end{equation*}
$$

but

$$
\begin{equation*}
x_{1}^{\prime}+x_{2}^{\prime}=x_{1}+x_{2}+r=1+r \neq 1 \tag{14}
\end{equation*}
$$

so $\boldsymbol{x}^{\prime} \notin A$.

- Not closed. We prove A^{c} is not open. Clearly $\boldsymbol{e}_{1} \notin A$. Now for any $r>0$, define

$$
\begin{equation*}
r^{\prime}:=\min \{r, 1\} \tag{15}
\end{equation*}
$$

Consider

$$
\begin{equation*}
\boldsymbol{x}:=\left(1-\frac{r^{\prime}}{2}\right) \boldsymbol{e}_{1}-\frac{r^{\prime}}{2} \boldsymbol{e}_{2} \tag{16}
\end{equation*}
$$

Then clearly $\boldsymbol{x} \in B\left(e_{1}, r\right) \cap A$ so A^{c} is not open.
Exercise 6. Since $A \subseteq \bar{A}, B \subseteq \bar{B}, A \cup B \subseteq \bar{A} \cup \bar{B}$. As the latter is closed, we have

$$
\begin{equation*}
\overline{A \cup B} \subseteq \bar{A} \cup \bar{B} \tag{17}
\end{equation*}
$$

For the other direction, as $A \subseteq A \cup B$, we have $\bar{A} \subseteq$ $\overline{A \cup B}$. Similarly $\bar{B} \subseteq \overline{A \cup B}$. Therefore

$$
\begin{equation*}
\bar{A} \cup \bar{B} \subseteq \overline{A \cup B} \tag{18}
\end{equation*}
$$

Exercise 7. Sincer $A \cap\left(\cap_{E \in W} E\right)=\varnothing$, we have

$$
\begin{equation*}
A \subseteq \cup_{E \in W} E^{c} \tag{19}
\end{equation*}
$$

This is an open covering of the compact set A so there is a finite sub-cover:

$$
\begin{equation*}
A \subseteq E_{1}^{c} \cup \cdots \cup E_{n}^{c} \tag{20}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
A \cap\left(E_{1} \cap \cdots \cap E_{n}\right)=\varnothing \tag{21}
\end{equation*}
$$

3. Problems

Problem 2. Let $A:=\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, x, y \in \mathbb{R}, x, y \neq 0\right\}$. Find

- A^{o};
- $\bar{A} ;$
- ∂A;
- Cluster points of A.

Problem 3. Let $A \subseteq \mathbb{R}^{N}$. Prove: $\partial(\partial A) \subseteq \partial A$. Then find counter-examples for the following claims:

- $\partial(\partial A) \subset \partial A$ (meaning: \subseteq but not $=$)
- $\partial(\partial A)=\partial A$.

Problem 4. Let $A, B \subseteq \mathbb{R}^{N}$ with A open and B compact. Prove that there is an open set $V \subseteq \mathbb{R}^{N}$ such that

$$
\begin{equation*}
B \subseteq V, \quad \bar{V} \subseteq A \tag{22}
\end{equation*}
$$

C. Continuity of Functions

1. Exercises

Exercise 8. Prove that

$$
\lim _{(x, y) \longrightarrow(0,0)} \frac{\sin (x y)}{x^{2}+y^{2}}
$$

does not exist.
Exercise 9. Let $f(x, y):=\left\{\begin{array}{ll}\exp \left(-\frac{1}{|x|+|y|}\right) & (x, y) \neq \mathbf{0} \\ 0 & (x, y)=\mathbf{0}\end{array}\right.$.
Prove that f is continuous at $(0,0)$.
Exercise 10. Prove that if the limit $\lim _{(x, y) \longrightarrow(0,0)} f(x) \quad+g(y)$ exists, then the limits $\lim _{x \longrightarrow 0} f(x)$ and $\lim _{y \longrightarrow 0} g(y)$ both exist.

2. Solutions to exercises

Exercise 8. Denote $f(x, y):=\frac{\sin (x y)}{x^{2}+y^{2}}$. For any $r>0$, we have $\left(\frac{r}{2}, 0\right) \in B(\mathbf{0}, r)$ and $f\left(\frac{r}{2}, 0\right)=0$.

On the other hand, since $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, there is $\delta>0$ such that for all $0<|x|<\delta^{2}$,

$$
\begin{equation*}
\frac{\sin x}{x}>\frac{1}{2} \tag{24}
\end{equation*}
$$

Now consider $\delta^{\prime}:=\min \{\delta, r\}$ and set $(x, y)=\left(\delta^{\prime} / 2\right.$, $\left.\delta^{\prime} / 2\right) \in B(\mathbf{0}, r)$. Then

$$
\begin{equation*}
f\left(\delta^{\prime} / 2, \delta^{\prime} / 2\right)=\frac{\sin \left(\left(\delta^{\prime}\right)^{2}\right)}{2\left(\delta^{\prime}\right)^{2}}>\frac{1}{4} \tag{25}
\end{equation*}
$$

Thus the limit cannot exist.
Exercise 9. For any $\varepsilon>0$, take $\delta<(-\ln \varepsilon)^{-1} / 2$. Then for all (x, y) such that $\|(x, y)\|<\delta$, we have

$$
\begin{equation*}
|x|+|y| \leqslant 2\left(x^{2}+y^{2}\right)^{1 / 2}<2 \delta \tag{26}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\left|e^{-1 /(|x|+|y|)}-0\right|<\varepsilon . \tag{27}
\end{equation*}
$$

Exercise 10. For any $\varepsilon>0$, since $\operatorname{im}_{(x, y) \longrightarrow(0,0)} f(x)+g(y)$ exists, there is $\delta>0$ such that for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in B(\mathbf{0}, \delta)$,

$$
\begin{equation*}
\left|\left[f\left(x_{1}\right)+g\left(y_{1}\right)\right]-\left[f\left(x_{2}\right)+g\left(y_{2}\right)\right]\right|<\varepsilon \tag{28}
\end{equation*}
$$

Now for any x_{1}, x_{2} such that $\left|x_{1}\right|,\left|x_{2}\right|<\delta$, we have

$$
\begin{equation*}
\left(x_{1}, 0\right),\left(x_{2}, 0\right) \in B(\mathbf{0}, \delta) \tag{29}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<\varepsilon . \tag{30}
\end{equation*}
$$

Therefore $\lim _{x \longrightarrow 0} f(x)$ exists. Similarly $\lim _{y \longrightarrow 0} g(y)$ exists.

3. Problems

Problem 5. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be continuous. Denote

$$
\begin{equation*}
[f<0]:=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid f(\boldsymbol{x})<0\right\} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
[f=0]:=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid f(\boldsymbol{x})=0\right\} . \tag{32}
\end{equation*}
$$

Prove that $\partial[f<0] \subset[f=0]$. Does equality hold? What if we take away the continuity assumption?

Problem 6. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ be bounded and continuous. Prove that \boldsymbol{f} is continuous if and only if its graph $\{(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})\}$ is a closed set in \mathbb{R}^{N+M}. Then discuss:

- What if we remove the boundedness assumption?
D. Differentiability of Functions

1. Exercises

Exercise 11. Let $f(x, y)=x y \sin \left(\frac{1}{x^{2}+y^{2}}\right)$ for $(x, y) \neq(0$, 0) and $f(0,0)=0$. Prove that f is differentiable at $(0,0)$ and find its differential there.
Exercise 12. Calculate partial derivatives for $f(x, y, z)=$ $\sin (x y z)$.

Exercise 13. Prove that $f(x, y)=e^{x y}$ is differentiable.
Exercise 14. Let $f(x, y)$ be differentiable. Define

$$
\begin{equation*}
u(r, \theta):=f(r \cos \theta, r \sin \theta) \tag{33}
\end{equation*}
$$

Prove

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=\left(\frac{\partial u}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial u}{\partial \theta}\right)^{2} \tag{34}
\end{equation*}
$$

Here the left hand side is evaluated at $(x, y)=(r \cos \theta$, $r \sin \theta$).

2. Solutions to exercises

Exercise 11.

We prove $D f(0,0)=0$. That is for any $(x, y) \in \mathbb{R}^{2}$,

$$
\begin{equation*}
[D f(0,0)](x, y)=0 \tag{35}
\end{equation*}
$$

To do this we check

$$
\begin{equation*}
\left|x y \sin \frac{1}{x^{2}+y^{2}}\right| \leqslant|x y| \leqslant\left(x^{2}+y^{2}\right) \tag{36}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\lim _{(x, y) \longrightarrow(0,0)} \frac{\left|x y \sin \frac{1}{x^{2}+y^{2}}-0\right|}{\left(x^{2}+y^{2}\right)^{1 / 2}}=0 \tag{37}
\end{equation*}
$$

Exercise 12.

$$
\begin{align*}
& \frac{\partial f}{\partial x}=y z \cos (x y z) ; \tag{38}\\
& \frac{\partial f}{\partial y}=x z \cos (x y z) ; \tag{39}\\
& \frac{\partial f}{\partial z}=x y \cos (x y z) . \tag{40}
\end{align*}
$$

Exercise 13. We calculate

$$
\begin{equation*}
\frac{\partial f}{\partial x}=y e^{x y}, \quad \frac{\partial f}{\partial y}=x e^{x y} . \tag{41}
\end{equation*}
$$

Both are continuous at all $(x, y) \in \mathbb{R}^{2}$. Therefore f is differentiable at every $(x, y) \in \mathbb{R}^{2}$.

Exercise 14. We calculate through chain rule:

$$
\begin{align*}
& \frac{\partial u}{\partial r}=\frac{\partial f}{\partial x} \cos \theta+\frac{\partial f}{\partial y} \sin \theta \tag{42}\\
& \frac{\partial u}{\partial \theta}=\frac{\partial f}{\partial x}(-r \sin \theta)+\frac{\partial f}{\partial y}(r \cos \theta) \tag{43}
\end{align*}
$$

Now clearly the conclusion holds.

3. Problems

Problem 7. Let $f(x, y): \mathbb{R}^{2} \mapsto \mathbb{R}$. Assume $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exists at all $(x, y) \in \mathbb{R}^{2}$. Prove that

$$
\begin{equation*}
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0 \text { for all }(x, y) \Longleftrightarrow f \text { is constant. } \tag{44}
\end{equation*}
$$

Problem 8. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$. Assume all its partial derivatives are bounded, that is there is $K>0$ such that

$$
\begin{equation*}
\forall \boldsymbol{x} \in \mathbb{R}^{N}, \forall i=1, \ldots, M, j=1, \ldots, N \quad\left|\frac{\partial f_{i}}{\partial x_{j}}(\boldsymbol{x})\right| \leqslant K \tag{45}
\end{equation*}
$$

Prove that f is uniformly continuous.
Problem 9. Let u, v be differentiable and satisfy

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}, u^{2}+v^{2}=R^{2} \tag{46}
\end{equation*}
$$

for some constant R. Prove that both u, v are constants.
Problem 10. Let $f, g: \mathbb{R}^{N} \mapsto \mathbb{R}$ and $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$. Assume f is continuous at \boldsymbol{x}_{0} and g is differentiable there with $g\left(\boldsymbol{x}_{0}\right)=0$. Prove that $f g$ is differentiable with differential $f\left(\boldsymbol{x}_{0}\right) D g\left(\boldsymbol{x}_{0}\right)$.

E. Implicit and Inverse Functions

1. Exericises

Exercise 15. Let $y=Y(x)$ be defined through the implicit relation

$$
\begin{equation*}
x^{2}+2 x y-y^{2}=a^{2} \tag{47}
\end{equation*}
$$

Calculate $Y^{\prime}, Y^{\prime \prime}$.
Exercise 16. Let $z=Z(x, y)$ be defined through

$$
\begin{equation*}
x+y+z=e^{x+y+z} \tag{48}
\end{equation*}
$$

Calculate $\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}$.
Exercise 17. Let the implicit functions $r=R(x, y)$, $\theta=\Theta(x, y)$ be define through

$$
\begin{align*}
& x=r \cos \theta \tag{49}\\
& y=r \sin \theta \tag{50}
\end{align*}
$$

Find $\frac{\partial(R, \Theta)}{\partial(x, y)}$.

2. Solutions to exercises

Exercise 15. We have

$$
\begin{equation*}
x^{2}+2 x Y(x)-Y(x)^{2}=a^{2} . \tag{51}
\end{equation*}
$$

Taking derivative:

$$
\begin{equation*}
2 x+2 Y+2 x Y^{\prime}-2 Y Y^{\prime}=0 \tag{52}
\end{equation*}
$$

which gives

$$
\begin{equation*}
Y^{\prime}(x)=\frac{x+y}{x-y} \tag{53}
\end{equation*}
$$

Taking derivative one more time:

$$
\begin{equation*}
2+4 Y^{\prime}+2 x Y^{\prime \prime}-2\left(Y^{\prime}\right)^{2}-2 Y Y^{\prime \prime}=0 \tag{54}
\end{equation*}
$$

This gives

$$
\begin{equation*}
Y^{\prime \prime}=\frac{\left(Y^{\prime}\right)^{2}-2 Y^{\prime}-1}{x-y} \tag{55}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
Y^{\prime \prime}=\frac{(x+y)(3 y-x)-(x-y)^{2}}{(x-y)^{3}} . \tag{56}
\end{equation*}
$$

Exercise 16. $Z(x, y)$ satisfies

$$
\begin{equation*}
x+y+Z=e^{x+y+Z} \tag{57}
\end{equation*}
$$

Taking $\frac{\partial}{\partial x}$ we have

$$
\begin{equation*}
1+\frac{\partial Z}{\partial x}=e^{x+y+Z}\left(1+\frac{\partial Z}{\partial x}\right) \tag{58}
\end{equation*}
$$

which gives either $x+y+Z=0$ which is not possible, or $\frac{\partial Z}{\partial x}=-1$. Similarly we have $\frac{\partial Z}{\partial y}=-1$.

Exercise 17. We have

$$
\begin{equation*}
I=\frac{\partial(r \cos \theta, r \sin \theta)}{\partial(r, \theta)} \frac{\partial(R, \Theta)}{\partial(x, y)} \tag{59}
\end{equation*}
$$

which gives

$$
\begin{align*}
\frac{\partial(R, \Theta)}{\partial(x, y)} & =\left[r\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right]^{-1} \\
& =\frac{1}{r}\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) . \tag{60}
\end{align*}
$$

3. Problems

Problem 11. Let $z=Z(x, y)$ be defined through

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=y f\left(\frac{z}{y}\right) \tag{61}
\end{equation*}
$$

for some differentiable function f. Prove that Z satisfy the following partial differential equation:

$$
\begin{equation*}
\left(x^{2}-y^{2}-z^{2}\right) \frac{\partial Z}{\partial x}+2 x y \frac{\partial Z}{\partial y}=2 x Z . \tag{62}
\end{equation*}
$$

Solutions to Problems

Problem 1.

- A^{o}.

Take any $\boldsymbol{x}, \boldsymbol{y} \in A^{o}$ and $t \in(0,1)$. Denote $\boldsymbol{x}_{t}:=t \boldsymbol{x}+(1-t) \boldsymbol{y}$. All we need to show is that there is $r>0$ such that $B\left(\boldsymbol{x}_{t}, r\right) \subseteq A$.

Since $\boldsymbol{x}, \boldsymbol{y} \in A^{o}$, there is $r_{x}, r_{y}>0$ such that $B\left(\boldsymbol{x}, r_{x}\right) \subseteq A, B\left(\boldsymbol{y}, r_{y}\right) \subseteq A$. Now take $r=\min \left\{r_{x}, r_{y}\right\}$ and we claim that $B\left(\boldsymbol{x}_{t}, r\right) \subseteq A$ for all \boldsymbol{x}_{t}.

Take $\boldsymbol{z}_{t} \in B\left(\boldsymbol{x}_{t}, r\right)$. Define
$\boldsymbol{z}_{x}:=\boldsymbol{z}_{t}+\left(\boldsymbol{x}-\boldsymbol{x}_{t}\right) ; \boldsymbol{z}_{y}:=\boldsymbol{z}_{t}+\left(\boldsymbol{y}-\boldsymbol{x}_{t}\right)$.
Then we have

$$
\begin{equation*}
\boldsymbol{z}_{t}=t \boldsymbol{z}_{x}+(1-t) \boldsymbol{z}_{y} . \tag{64}
\end{equation*}
$$

Now check

$$
\begin{equation*}
\left\|\boldsymbol{x}-\boldsymbol{z}_{x}\right\|=\left\|\boldsymbol{z}_{t}-\boldsymbol{x}_{t}\right\|<r \leqslant r_{x} \tag{65}
\end{equation*}
$$

and similarly $\left\|\boldsymbol{y}-\boldsymbol{z}_{y}\right\|<r_{y}$. Therefore

$$
\begin{equation*}
\boldsymbol{z}_{x} \in B\left(\boldsymbol{x}, r_{x}\right) \subseteq A, \boldsymbol{z}_{y} \in B\left(\boldsymbol{y}, r_{y}\right) \subseteq A \tag{66}
\end{equation*}
$$

By convexity of A we have $\boldsymbol{z}_{t} \in A$. The arbitrariness of \boldsymbol{z}_{t} now yields $B\left(\boldsymbol{x}_{t}, r\right) \subseteq A$ and consequently $\boldsymbol{x}_{t} \in A^{o}$.

- \bar{A}.

Take any $\boldsymbol{x}, \boldsymbol{y} \in \bar{A}$ and any $t \in(0,1)$. We need to prove $\boldsymbol{x}_{t}:=t \boldsymbol{x}+(1-t) \boldsymbol{y} \in \bar{A}$. Note that it suffices to prove for any $r>0$,

$$
\begin{equation*}
B\left(\boldsymbol{x}_{t}, r\right) \cap A \neq \varnothing \tag{67}
\end{equation*}
$$

Now take any $r>0$. Since $\boldsymbol{x}, \boldsymbol{y} \in \bar{A}$, there are $\boldsymbol{x}^{\prime} \in B(\boldsymbol{x}, r) \cap A, \boldsymbol{y}^{\prime} \in B(\boldsymbol{y}, r) \cap A$. Therefore

$$
\begin{equation*}
\boldsymbol{x}_{t}^{\prime}:=t \boldsymbol{x}^{\prime}+(1-t) \boldsymbol{y}^{\prime} \in A \tag{68}
\end{equation*}
$$

Now we calcualte

$$
\begin{align*}
\left\|\boldsymbol{x}_{t}-\boldsymbol{x}_{t}^{\prime}\right\| & =\left\|t\left(\boldsymbol{x}-\boldsymbol{x}^{\prime}\right)+(1-t)\left(\boldsymbol{y}-\boldsymbol{y}^{\prime}\right)\right\| \\
& <r . \tag{69}
\end{align*}
$$

Thus $B\left(\boldsymbol{x}_{t}, r\right) \cap A \neq \varnothing$ and the proof ends.
Problem 2. Let $A:=\left\{\left.\left(x, \sin \frac{1}{x}\right) \right\rvert\, x, y \in \mathbb{R}, x, y \neq 0\right\}$. Find

- $A^{o}=\varnothing$.

Take any $\left(x_{0}, y_{0}\right) \in A$ then we have

$$
\begin{equation*}
y_{0}=\sin \frac{1}{x_{0}} \tag{70}
\end{equation*}
$$

For any $r>0$, clearly

$$
\begin{equation*}
\left(x_{0}, y_{0}+r / 2\right) \in B\left(\left(x_{0}, y_{0}\right), r\right) \tag{71}
\end{equation*}
$$

but does not belong to A.

- $\bar{A}=A \cup B$ with $B:=\{(0, y) \mid y \in[-1,1]\}$.

We first prove that $A \cup B$ is closed, then prove that for any $y_{0} \in[-1,1]$ and any $r>0$, $B\left(\left(0, y_{0}\right), r\right) \cap A \neq \varnothing$.
$-A \cup B$ is closed. We prove its complement is open. Take any $\left(x_{0}, y_{0}\right) \notin A \cup B$.

* Case 1. $x_{0}=0$. Then $y_{0}>1$. Take $r:=y_{0}-1$. Clearly $B\left(\left(x_{0}, y_{0}\right), r\right) \cap$ $(A \cup B)=\varnothing$.
* Case 2. $x_{0} \neq 0$. Then $y_{0} \neq \sin \left(\frac{1}{x_{0}}\right)$. Set

$$
\begin{equation*}
\varepsilon_{0}:=\left|y_{0}-\sin \left(\frac{1}{x_{0}}\right)\right|>0 \tag{72}
\end{equation*}
$$

Now since $\sin \left(\frac{1}{x}\right)$ is continuous at x_{0}, there is $\delta_{0}>0$ such that for all $\left|x-x_{0}\right|<$ $\delta_{0},\left|\sin \left(\frac{1}{x}\right)-\sin \left(\frac{1}{x_{0}}\right)\right|<\varepsilon_{0} / 2$. Now set $r:=\min \left\{\delta_{0}, \varepsilon_{0} / 2,\left|x_{0}\right|\right\}$. Then for any $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$, we have

$$
\begin{equation*}
\left|y_{0}-\sin \left(\frac{1}{x}\right)\right|>\frac{\varepsilon_{0}}{2} \tag{73}
\end{equation*}
$$

while

$$
\begin{equation*}
\left|y-y_{0}\right|<\frac{\varepsilon_{0}}{2}, \quad\left|x-x_{0}\right|<\left|x_{0}\right| \tag{74}
\end{equation*}
$$

Consequently $(x, y) \notin A \cup B$. Thus

$$
\begin{equation*}
B\left(\left(x_{0}, y_{0}\right), r\right) \cap(A \cup B)=\varnothing \tag{75}
\end{equation*}
$$

$-A \cup B$ is the smallest closed set containing A. To show this it is enough to prove that for any $\left(0, y_{0}\right) \in B$ and any $r>0, B\left(\left(0, y_{0}\right)\right.$, $r) \cap A \neq \varnothing$.

Take an arbitrary $\left(0, y_{0}\right) \in B$ and any $r>0$. Then there is $n \in \mathbb{N}$ such that $2 n \pi>$ r^{-1}. This gives

$$
\begin{equation*}
\left|\frac{1}{2 n \pi+\pi / 2}\right|,\left|\frac{1}{2 n \pi+3 \pi / 2}\right|<r \tag{76}
\end{equation*}
$$

But we have

$$
\begin{align*}
\sin (2 n \pi+\pi / 2) & =1 \tag{77}\\
\sin (2 n \pi+3 \pi / 2) & =-1 \tag{78}
\end{align*}
$$

Thus by intermediate value theorem, there is $x \in\left(\frac{1}{2 n \pi+3 \pi / 2}, \frac{1}{2 n \pi+\pi / 2}\right)$ such that $\sin \left(\frac{1}{x}\right)=y_{0}$. Now we have

$$
\begin{equation*}
\left(x, \sin \left(\frac{1}{x}\right)\right) \in A \cap B\left(\left(0, y_{0}\right), r\right) \tag{79}
\end{equation*}
$$

Thus ends the proof.

- $\partial A=B:=\{(0, y) \mid y \in[-1,1]\}$.
- Cluster points of A is the same as \bar{A}.
- For any $\left(x_{0}, y_{0}\right) \in A$, since $\sin \frac{1}{x}$ is continuous at x_{0}, taking any $x_{n} \longrightarrow x_{0}$, $x_{n} \neq x_{0}$ we have $\sin \frac{1}{x_{n}} \longrightarrow \sin \frac{1}{x_{0}}$. Consequently for any $r>0$, there is $n \in$ \mathbb{N} such that
$\left(x_{n}, \sin \frac{1}{x_{n}}\right) \in A \cap B\left(\left(x_{0}, y_{0}\right)\right)-\left\{\left(x_{0}\right.\right.$, $\left.\left.y_{0}\right)\right\}$.
- For any $\left(0, y_{0}\right) \in B$, similar to the proof of $A \cup B$ is smallest closed set containing A, we can find $x_{n} \neq 0, x_{n} \longrightarrow 0$ with $\sin \left(\frac{1}{x_{n}}\right)=$ y_{0}.

Problem 3.

- Proof of $\partial(\partial A) \subseteq \partial A$. We first prove ∂A is closed. This follows immediately from the definition:

$$
\begin{equation*}
\partial A=\bar{A}-A^{o}=\bar{A} \cap\left(A^{o}\right)^{c} \tag{81}
\end{equation*}
$$

Now

$$
\begin{equation*}
\partial(\partial A)=\overline{\partial A}-(\partial A)^{o}=\partial A-(\partial A)^{o} \subseteq \partial A \tag{82}
\end{equation*}
$$

- Counter-example for $\partial(\partial A) \subset \partial A$. Take $A=$ $\left\{\boldsymbol{x}_{0}\right\}$. Then $\bar{A}=A, A^{o}=\varnothing$. So $\partial A=A$. Then of course $\partial(\partial A)=\partial A$.
- Counter-example for $\partial(\partial A)=\partial A$. Take $A=$ $\mathbb{Q} \subset \mathbb{R}$. Then $A^{o}=\varnothing, \bar{A}=\mathbb{R}$ so $\partial A=\mathbb{R}$. Now $(\partial A)^{o}=\overline{\partial A}=\mathbb{R}$ so $\partial(\partial A)=\varnothing$.

Problem 4. For any $\boldsymbol{x} \in B$, there is $r_{x}>0$ such that

$$
\begin{equation*}
B\left(\boldsymbol{x}, r_{x}\right) \subseteq A \tag{83}
\end{equation*}
$$

Now consider the open covering of B :

$$
\begin{equation*}
B \subseteq \cup_{\boldsymbol{x} \in B} B\left(\boldsymbol{x}, r_{x} / 2\right) \tag{84}
\end{equation*}
$$

There is a finite sub-covering:

$$
\begin{equation*}
B \subseteq B\left(\boldsymbol{x}_{1}, r_{1} / 2\right) \cup \cdots \cup B\left(\boldsymbol{x}_{n}, r_{n} / 2\right) \tag{85}
\end{equation*}
$$

Now define

$$
\begin{equation*}
V:=B\left(\boldsymbol{x}_{1}, r_{1} / 2\right) \cup \cdots \cup B\left(\boldsymbol{x}_{n}, r_{n} / 2\right) \tag{86}
\end{equation*}
$$

Clearly V is open and $B \subseteq V$.
Now we prove $\bar{V} \subseteq A$. We have

$$
\begin{align*}
\bar{V} & =\overline{B\left(\boldsymbol{x}_{1}, r_{1} / 2\right)} \cup \cdots \cup \overline{B\left(\boldsymbol{x}_{n}, r_{n} / 2\right)} \\
& \subseteq B\left(\boldsymbol{x}_{1}, r_{1}\right) \cup \cdots \cup B\left(\boldsymbol{x}_{n}, r_{n}\right) \\
& \subseteq A \tag{87}
\end{align*}
$$

Problem 5.

- Proof of $\partial[f<0] \subset[f=0]$. Take any $\boldsymbol{x}_{0} \in$ $\partial[f<0]$. Then for any $r>0$,

$$
\begin{align*}
& B\left(\boldsymbol{x}_{0}, r\right) \cap[f<0] \neq \varnothing \tag{88}\\
& B\left(\boldsymbol{x}_{0}, r\right) \cap[f \geqslant 0] \neq \varnothing \tag{89}
\end{align*}
$$

Now we proceed via proof by contradiction. Assume $f\left(\boldsymbol{x}_{0}\right) \neq 0$. Consider two cases.

- Case 1. $f\left(\boldsymbol{x}_{0}\right)>0$. Then there is $r>0$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right),\left|f(\boldsymbol{x})-f\left(\boldsymbol{x}_{0}\right)\right|<$ $\left|f\left(\boldsymbol{x}_{0}\right)\right| \Longrightarrow f(\boldsymbol{x})>0$.
- Case 2. $f\left(\boldsymbol{x}_{0}\right)<0$. Then there is $r>0$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right),\left|f(\boldsymbol{x})-f\left(\boldsymbol{x}_{0}\right)\right|<$ $\left|f\left(\boldsymbol{x}_{0}\right)\right| \Longrightarrow f(\boldsymbol{x})<0$.

Either way we contradicts one of (88-89).

- Equality may not hold. For example take $f(\boldsymbol{x})=0$. Then $[f<0]=\varnothing$ and consequently $\partial[f<0]=\varnothing$. But $[f=0]=\mathbb{R}^{N}$.
- If continuity assumption is dropped, the conclusion does not hold. For example take $f(x)=\left\{\begin{array}{ll}-1 & x \neq 0 \\ 1 & x=0\end{array}\right.$. Then $\partial[f<0]=\{0\}$ but $[f=0]=\varnothing$.
Problem 6.
- Proof of " \boldsymbol{f} is continuous if and only if its graph $\{(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})\}$ is a closed set in $\mathbb{R}^{N+M \prime \prime}$. Denote the graph by $G \subseteq \mathbb{R}^{N+M}$.
- If. We prove by contradiction. Assume f is not continuous. Then there is $\varepsilon_{0}>0$ and $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$ such that there is $\boldsymbol{x}_{n} \longrightarrow \boldsymbol{x}_{0}$ with $\left\|\boldsymbol{f}\left(\boldsymbol{x}_{n}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\|>\varepsilon_{0}$. Now since $\boldsymbol{f}\left(\boldsymbol{x}_{n}\right)$ is bounded, there is a convergent subsequence

$$
\begin{equation*}
\boldsymbol{f}\left(\boldsymbol{x}_{n_{k}}\right) \longrightarrow \boldsymbol{L} . \tag{90}
\end{equation*}
$$

Necessarily $\boldsymbol{L} \neq \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$. But now we have

$$
\begin{equation*}
\left(\boldsymbol{x}_{n_{k}}, \boldsymbol{f}\left(\boldsymbol{x}_{n_{k}}\right)\right) \longrightarrow\left(\boldsymbol{x}_{0}, \boldsymbol{L}\right) \tag{91}
\end{equation*}
$$

which is not in graph of f. Contradiction.

- Only if. Still prove by contradiction. Assume there is $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \notin G$ such that for any $r>0, B\left(\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right), r\right) \cap G \neq \varnothing$. Then we can find $\boldsymbol{x}_{n} \longrightarrow \boldsymbol{x}_{0}$ such that $\boldsymbol{f}\left(\boldsymbol{x}_{n}\right) \longrightarrow$ \boldsymbol{y}_{0}. But then by continuity of \boldsymbol{f} it must hold that $\boldsymbol{y}_{0}=\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$. Contradiction.
- What if we remove the boundedness assumption?

The conclusion does not hold anymore. For example $f(x)=\left\{\begin{array}{ll}1 / x & x \neq 0 \\ 0 & x=0\end{array}\right.$. Then its graph is closed but f is not continuous.

Problem 7.

- \Longrightarrow. Fix $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$. For any $(x, y) \in \mathbb{R}^{2}$, by Mean Value Theorem, there are ξ_{1}, ξ_{2} such that

$$
\begin{align*}
f(x, y)-f\left(x_{0}, y_{0}\right)= & \frac{\partial f}{\partial x}\left(\xi_{1}, y_{0}\right)\left(x-x_{0}\right) \\
& +\frac{\partial f}{\partial y}\left(x, \xi_{2}\right)\left(y-y_{0}\right) \\
= & 0 . \tag{92}
\end{align*}
$$

Therefore f is a constant.
$-\Longleftarrow$. This direction is obvious.

Problem 8.

Take any $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}$. By MVT we have

$$
\begin{align*}
\left|f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{y})\right| & \leqslant K \sum_{j=1}^{N}\left|x_{j}-y_{j}\right| \\
& \leqslant K \sum_{j=1}^{N}\|\boldsymbol{x}-\boldsymbol{y}\| \\
& =K N\|\boldsymbol{x}-\boldsymbol{y}\| \tag{93}
\end{align*}
$$

This gives

$$
\begin{align*}
\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})\| & =\left[\sum_{i=1}^{M}\left(f_{i}(\boldsymbol{x})-f_{i}(\boldsymbol{y})\right)^{2}\right]^{1 / 2} \\
& \leqslant\left[\sum_{i=1}^{M}(K N\|\boldsymbol{x}-\boldsymbol{y}\|)^{2}\right]^{1 / 2} \\
& =\sqrt{M} N K\|\boldsymbol{x}-\boldsymbol{y}\| \tag{94}
\end{align*}
$$

Now for any $\varepsilon>0$, take $\delta=\frac{\varepsilon}{\sqrt{M} N K}$. We have whenever $\|\boldsymbol{x}-\boldsymbol{y}\|<\delta,\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})\|<\varepsilon$. So it is uniformly continuous.

Problem 9. Since $u^{2}+v^{2}=R^{2}$ we consider two cases.

- Case 1. $R=0$. Then clearly $u=v=0$.
- Case 2. $R \neq 0$. We have

$$
\begin{gather*}
0=\frac{\partial\left(u^{2}+v^{2}\right)}{\partial x} \\
=2 u \frac{\partial u}{\partial x}+2 v \frac{\partial v}{\partial x} \\
=2\left[u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}\right] \tag{95}\\
0=\frac{\partial\left(u^{2}+v^{2}\right)}{\partial y}=2\left[u \frac{\partial u}{\partial y}+v \frac{\partial u}{\partial x}\right] . \tag{96}
\end{gather*}
$$

Thus $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$ satisfy

$$
\begin{align*}
& u \frac{\partial u}{\partial x}-v \frac{\partial u}{\partial y}=0 \tag{97}\\
& v \frac{\partial u}{\partial x}+u \frac{\partial u}{\partial y}=0 \tag{98}
\end{align*}
$$

Solving this system we have

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0 \tag{99}
\end{equation*}
$$

which leads to u being constant. The proof for v being constant is similar and omitted.

Problem 10. Denote $D g\left(\boldsymbol{x}_{0}\right)$ by L.
First assume $f\left(\boldsymbol{x}_{0}\right) \neq 0$. For any $\varepsilon>0$, take $\delta>0$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$,

$$
\begin{gather*}
\left|f(\boldsymbol{x})-f\left(\boldsymbol{x}_{0}\right)\right|<\frac{\varepsilon}{2(L+1)} \tag{100}\\
\frac{\left|\boldsymbol{g}(\boldsymbol{x})-L\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|}<\min \left\{\frac{\varepsilon}{2\left|f\left(\boldsymbol{x}_{0}\right)\right|}, 1\right\} \tag{101}
\end{gather*}
$$

Then we have, for all such \boldsymbol{x},

$$
\begin{align*}
& \frac{\left|(f g)(\boldsymbol{x})-(f g)\left(\boldsymbol{x}_{0}\right)-f\left(\boldsymbol{x}_{0}\right) L\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|} \\
= & \frac{\left|f(\boldsymbol{x}) g(\boldsymbol{x})-f\left(\boldsymbol{x}_{0}\right) L\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|} \\
\leqslant & \frac{\left|f\left(\boldsymbol{x}_{0}\right)\left[g(\boldsymbol{x})-L\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right]\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|} \\
& +\frac{\left|\left[f(\boldsymbol{x})-f\left(\boldsymbol{x}_{0}\right)\right] g(\boldsymbol{x})\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|} \\
< & \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon . \tag{102}
\end{align*}
$$

The claim is proved.

In the case $f\left(\boldsymbol{x}_{0}\right)=0$ we can simply choose δ such and that

$$
\begin{equation*}
\frac{\left|\boldsymbol{g}(\boldsymbol{x})-L\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|}<1 \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial Z}{\partial y}=\frac{2 y-f+f^{\prime} Z / y}{f^{\prime}-2 Z} \tag{107}
\end{equation*}
$$

Problem 11. Taking $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ of $x^{2}+y^{2}+z^{2}=$ Now we calculate $y f\left(\frac{z}{y}\right)$ we have (all f^{\prime} are evaluated at Z / y):

$$
\begin{align*}
& 2 x+2 Z \frac{\partial Z}{\partial x}=f^{\prime} \frac{\partial Z}{\partial x} \tag{104}\\
& 2 y+2 Z \frac{\partial Z}{\partial y}=f+f^{\prime} \frac{\partial Z}{\partial y}-f^{\prime} \frac{Z}{y} \tag{105}
\end{align*}
$$

This gives

$$
\begin{equation*}
\frac{\partial Z}{\partial x}=\frac{2 x}{f^{\prime}-2 Z} \tag{106}
\end{equation*}
$$

$$
\begin{align*}
& \left(x^{2}-y^{2}-z^{2}\right) \frac{\partial Z}{\partial x}+2 x y \frac{\partial Z}{\partial y} \\
= & \frac{2 x\left(x^{2}-y^{2}-z^{2}\right)}{f^{\prime}-2 Z}+\frac{4 x y^{2}-2 x y f+2 x f^{\prime} Z}{f^{\prime}-2 z} \\
= & \frac{2 x\left(x^{2}+y^{2}-z^{2}\right)-2 x\left(x^{2}+y^{2}+z^{2}\right)+2 x f^{\prime} Z}{f^{\prime}-2 Z} \\
= & \frac{-4 x Z^{2}+2 x f^{\prime} Z}{f^{\prime}-2 Z}=2 x Z . \tag{108}
\end{align*}
$$

