Math 217 Fall 2013 Homework 9 Solutions

by Due Thursday Nov. 21, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Consider the following set:

$$
\begin{equation*}
A:=\left\{\left.\left(\frac{p}{q}, \frac{r}{q}\right) \right\rvert\, p, q \in \mathbb{N},(p, q),(r, q) \text { co-prime }\right\} \cap[0,1]^{2} . \tag{1}
\end{equation*}
$$

Prove that for every $\alpha \in[0,1], \mu(A \cap\{x=\alpha\})=\mu(A \cap\{y=\alpha\})=0$, therefore

$$
\begin{equation*}
\int_{0}^{1} \mu(A \cap\{x=t\}) \mathrm{d} t=\int_{0}^{1} \mu(A \cap\{y=t\}) \mathrm{d} t=0 \tag{2}
\end{equation*}
$$

but $\mu(A)$ does not exist. (This example is constructed by A. Pringsheim in 1898).

Solution.

Note that if $\alpha \notin \mathbb{Q}$, then $A \cap\{x=\alpha\}=A \cap\{y=\alpha\}=\varnothing$ so the (1-dimensional) measure is 0 . If $\alpha \in \mathbb{Q}$, then $\alpha=\frac{m}{n}$ for some (m, n) co-prime. But then both $A \cap\{x=\alpha\}$ and $A \cap\{y=\alpha\}$ are finite set so again the measure is 0 .

Since $A \subseteq \mathbb{Q} \times \mathbb{Q}$, it is clear that $A^{o}=\varnothing$ so $\mu_{\text {in }}(A)=0$. To show that A is not measurable, we prove $\bar{A}=[0,1]^{2}$. For any $(x, y) \in[0,1]^{2}$ and any $r>0$, there is always $n \in \mathbb{N}$ and k, l odd such that

$$
\begin{equation*}
\left|x-\frac{k}{2^{n}}\right|<\frac{r}{2}, \quad\left|y-\frac{l}{2^{n}}\right|<\frac{r}{2} . \tag{3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
B((x, y), r) \cap A \neq \varnothing \tag{4}
\end{equation*}
$$

and consequently $(x, y) \in \bar{A}$. Thus ends the proof.

Question 2. Calculate

$$
\begin{equation*}
\int_{D} x^{2} y^{2} \mathrm{~d}(x, y) \tag{5}
\end{equation*}
$$

where D is the triangle enclosed by $y=\frac{b}{a} x, y=0, x=a$.

Solution. We have

$$
\begin{align*}
\int_{D} x^{2} y^{2} \mathrm{~d}(x, y) & =\int_{0}^{a}\left[\int_{0}^{\frac{b x}{a}} x^{2} y^{2} \mathrm{~d} y\right] \mathrm{d} x \\
& =\frac{1}{3} \frac{b^{3}}{a^{3}} \int_{0}^{a} x^{5} \mathrm{~d} x=\frac{a^{3} b^{3}}{18} \tag{6}
\end{align*}
$$

Question 3. Calculate

$$
\begin{equation*}
\int_{D}\left(x^{2}+y^{2}\right) \mathrm{d}(x, y) \tag{7}
\end{equation*}
$$

where D is enclosed by

$$
\begin{equation*}
y=a+x, y=x, y=a, y=3 a \tag{8}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
\int_{D}\left(x^{2}+y^{2}\right) \mathrm{d}(x, y)=\int_{a}^{3 a}\left[\int_{y-a}^{y}\left(x^{2}+y^{2}\right) \mathrm{d} x\right] \mathrm{d} y=14 a^{4} . \tag{9}
\end{equation*}
$$

Question 4. Calculate the area enclosed by $y=x^{2}$ and $y^{2}=x$.
Solution. Let D be the set. We have

$$
\begin{equation*}
\int_{D} 1 \mathrm{~d}(x, y)=\int_{0}^{1}\left[\int_{x^{2}}^{\sqrt{x}} \mathrm{~d} y\right] \mathrm{d} x=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) \mathrm{d} x=\frac{1}{3} \tag{10}
\end{equation*}
$$

Question 5. Let $f(x, y)$ be continuous on $I:=[a, b] \times[c, d]$. Define for $(x, y) \in I$,

$$
\begin{equation*}
F(x, y):=\int_{[a, x] \times[c, y]} f(u, v) \mathrm{d}(u, v) . \tag{11}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\frac{\partial^{2} F(x, y)}{\partial x \partial y}=\frac{\partial^{2} F(x, y)}{\partial y \partial x}=f(x, y) \tag{12}
\end{equation*}
$$

Solution. Since $f(x, y)$ is continuous, by Fubini we have

$$
\begin{equation*}
F(x, y)=\int_{a}^{x}\left[\int_{c}^{y} f(u, v) \mathrm{d} v\right] \mathrm{d} u . \tag{13}
\end{equation*}
$$

Now for fixed y, we show

$$
\begin{equation*}
\Phi(u):=\int_{c}^{y} f(u, v) \mathrm{d} v \tag{14}
\end{equation*}
$$

is a continuous function of u. Fix u_{0}. We show that $\Phi(u)$ is continuous at u_{0}.

Since f is continuous on I, it is uniformly continuous. Thus for every $\varepsilon>0$, there is $r>0$ such that for all $\left\|\left(u_{1}, v_{1}\right)-\left(u_{2}, v_{2}\right)\right\|<r,\left|f\left(u_{1}, v_{1}\right)-f\left(u_{2}, v_{2}\right)\right|<\frac{\varepsilon}{d-c}$. Now for every $\left|u-u_{0}\right|<r$, we have

$$
\begin{equation*}
\left|\Phi(u)-\Phi\left(u_{0}\right)\right|=\left|\int_{c}^{y}\right| f(u, v)-f\left(u_{0}, v\right)|\mathrm{d} v|<\varepsilon \tag{15}
\end{equation*}
$$

Therefore $\Phi(u)$ is continuous.
Now by FTC (single variable),

$$
\begin{equation*}
\frac{\partial F(x, y)}{\partial x}=\frac{\partial}{\partial x}\left[\int_{a}^{x} \Phi(u) \mathrm{d} u\right]=\Phi(x)=\int_{c}^{y} f(x, v) \mathrm{d} v . \tag{16}
\end{equation*}
$$

Now since $f(x, v)$ is clearly continuous in v, applying FTC again we have

$$
\begin{equation*}
\frac{\partial^{2} F(x, y)}{\partial y \partial x}=f(x, y) \tag{17}
\end{equation*}
$$

The proof for $\frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y)$ is similar.

Question 6. Let $I:=[a, b] \times[c, d]$. Let $f(x):[a, b] \mapsto \mathbb{R}, g(x):[c, d] \mapsto \mathbb{R}$. Let $F(x, y):=f(x) g(y)$.
a) Prove that $F(x, y)$ is integrable on I if f, g are integrable on $[a, b],[c, d]$ respectively. Furthermore we have

$$
\begin{equation*}
\int_{I} F(x, y) \mathrm{d}(x, y)=\left[\int_{a}^{b} f(x) \mathrm{d} x\right]\left[\int_{c}^{d} g(x) \mathrm{d} x\right] . \tag{18}
\end{equation*}
$$

b) Does it hold that $F(x, y)$ is integrable only if f, g are integrable?
c) Prove

$$
\begin{equation*}
\left[\int_{a}^{b} f(x) \mathrm{d} x\right]^{2} \leqslant(b-a) \int_{a}^{b} f(x)^{2} \mathrm{~d} x \tag{19}
\end{equation*}
$$

though studying

$$
\begin{equation*}
\int_{[a, b]^{2}}[f(x)-f(y)]^{2} \mathrm{~d}(x, y) . \tag{20}
\end{equation*}
$$

Solution.

a) Note that it suffices to prove for $f, g \geqslant 0$. For general f, g we use

$$
\begin{equation*}
f(x) g(y)=f^{+}(x) g^{+}(y)-f^{-}(x) g^{+}(y)-f^{+}(x) g^{-}(y)+f^{-}(x) g^{-}(y) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{+}(x):=\max (f(x), 0), f^{-}(x):=\min (f(x), 0) \tag{22}
\end{equation*}
$$

and g^{+}, g^{-}are defined similarly.
Let $n \in \mathbb{N}, h_{1}:=\frac{b-a}{n}, h_{2}:=\frac{d-c}{n}$. Define
$I_{i, n}:=\left[a+(i-1) h_{1}, a+i h_{1}\right], \quad J_{j, n}:=\left[c+(j-1) h_{2}, c+j h_{2}\right], \quad I_{i j, n}:=I_{i, h} \times J_{j, h}$.
For each i we set

$$
\begin{equation*}
f_{i, n}:=\sup _{x \in I_{i, n}} f(x) ; \quad g_{i, n}:=\sup _{x \in J_{i, n}} g(x) . \tag{24}
\end{equation*}
$$

Then define

$$
\begin{equation*}
G_{h}(x, y):=f_{i, n} g_{j, n} \tag{25}
\end{equation*}
$$

for all $(x, y) \in I_{i j, n}$. Now we have $G_{h} \geqslant F(x, y)$ and is a simple function. Thus

$$
\begin{equation*}
U(F, I) \leqslant \int_{I} G_{h}(x, y)=\left(\sum_{i=1}^{n} f_{i, n} h_{1}\right)\left(\sum_{j=1}^{n} g_{j, n} h_{2}\right) \tag{26}
\end{equation*}
$$

Taking $n \longrightarrow \infty$ we have

$$
\begin{equation*}
U(F, I) \leqslant\left[\int_{a}^{b} f(x) \mathrm{d} x\right]\left[\int_{c}^{d} g(x) \mathrm{d} x\right] \tag{27}
\end{equation*}
$$

by the integrability of f, g. Similarly we have

$$
\begin{equation*}
L(F, I) \geqslant\left[\int_{a}^{b} f(x) \mathrm{d} x\right]\left[\int_{c}^{d} g(x) \mathrm{d} x\right] . \tag{28}
\end{equation*}
$$

Thus $U(F, I)=L(F, I)=\left[\int_{a}^{b} f(x) \mathrm{d} x\right]\left[\int_{c}^{d} g(x) \mathrm{d} x\right]$ and the conclusion follows.
b) "Only if" does not hold. For example take $f(x)=D(x)$ the Dirichlet function and $g(x)=0$.
c) By a) $f(x) f(y)$ is integrable on $[a, b]^{2}$. Furthermore $f(x)$ integrable on $[a, b]$ means $f(x)^{2}$ is integrable on $[a, b]$. Now by a) we have $f(x)^{2}=f(x)^{2} \cdot 1$ is integrable on $[a, b]^{2}$. Similarly $f(y)^{2}$ is integrable on $[a, b]^{2}$.
We have, again through application of a),

$$
\begin{align*}
0 & \leqslant \int_{[a, b]^{2}}[f(x)-f(y)]^{2} \mathrm{~d}(x, y) \\
& =\int_{[a, b]^{2}} f(x)^{2} \mathrm{~d}(x, y)+\int_{[a, b]^{2}} f(y)^{2} \mathrm{~d}(x, y)-2 \int_{[a, b]^{2}} f(x) f(y) \mathrm{d}(x, y) \\
& =2(b-a) \int_{a}^{b} f(x)^{2} \mathrm{~d} x-2\left[\int_{a}^{b} f(x) \mathrm{d} x\right]^{2} \tag{29}
\end{align*}
$$

and the conclusion follows.
Remark. For the "only if" part, in fact the only problem is that one of f, g can be 0 . But formulating a positive statement seems messy.

