
Math 217 Fall 2013 Homework 9 Solutions

by Due Thursday Nov. 21, 2013 5pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answer – prove that your function indeed has the specified
property – for each problem.

• Please read this week’s lecture notes before working on the problems.

Question 1. Consider the following set:

A8 {(

p

q
,
r

q

)P p, q ∈N, (p, q), (r, q) co-prime

}

∩ [0, 1]2. (1)

Prove that for every α∈ [0, 1], µ(A∩{x =α}) = µ(A∩{y =α}) = 0, therefore

∫

0

1

µ(A∩{x = t}) dt =

∫

0

1

µ(A∩{y = t}) dt =0, (2)

but µ(A) does not exist. (This example is constructed by A. Pringsheim in 1898).

Solution.

Note that if α � Q, then A ∩ {x = α} = A ∩ {y = α} = ∅ so the (1-dimensional) measure is 0. If

α∈Q, then α=
m

n
for some (m,n) co-prime. But then both A∩{x=α} and A∩{y =α} are finite

set so again the measure is 0.

Since A⊆Q×Q, it is clear that Ao=∅ so µin(A)=0. To show that A is not measurable, we prove
Ā = [0, 1]2. For any (x, y)∈ [0, 1]2 and any r > 0, there is always n∈N and k, l odd such that

∣

∣

∣

∣

x− k

2n

∣

∣

∣

∣

<
r

2
,

∣

∣

∣

∣

y − l

2n

∣

∣

∣

∣

<
r

2
. (3)

Thus

B((x, y), r)∩A� ∅ (4)

and consequently (x, y)∈ Ā. Thus ends the proof.

Question 2. Calculate
∫

D

x2 y2 d(x, y) (5)

where D is the triangle enclosed by y =
b

a
x, y = 0, x = a.
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Solution. We have

∫

D

x2 y2 d(x, y) =

∫

0

a
[

∫

0

bx

a

x2 y2 dy

]

dx

=
1
3

b3

a3

∫

0

a

x5 dx=
a3 b3

18
. (6)

Question 3. Calculate
∫

D

(x2 + y2) d(x, y) (7)

where D is enclosed by

y = a +x, y =x, y = a, y =3 a. (8)

Solution. We have

∫

D

(x2 + y2) d(x, y) =

∫

a

3a
[

∫

y−a

y

(x2 + y2) dx

]

dy = 14 a4. (9)

Question 4. Calculate the area enclosed by y =x2 and y2 =x.

Solution. Let D be the set. We have

∫

D

1 d(x, y) =

∫

0

1
[

∫

x2

x
√

dy

]

dx=

∫

0

1

( x
√ −x2) dx=

1
3
. (10)

Question 5. Let f(x, y) be continuous on I 8 [a, b]× [c, d]. Define for (x, y)∈ I,

F (x, y)8 ∫

[a,x]×[c,y]
f(u, v) d(u, v). (11)

Prove that

∂2F (x, y)
∂x∂y

=
∂2F (x, y)

∂y∂x
= f(x, y). (12)

Solution. Since f(x, y) is continuous, by Fubini we have

F (x, y) =

∫

a

x
[
∫

c

y

f(u, v) dv

]

du. (13)

Now for fixed y, we show

Φ(u)8 ∫

c

y

f(u, v) dv (14)

is a continuous function of u. Fix u0. We show that Φ(u) is continuous at u0.
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Since f is continuous on I , it is uniformly continuous. Thus for every ε > 0, there is r > 0 such that
for all ‖(u1, v1)− (u2, v2)‖<r, |f(u1, v1)− f(u2, v2)|< ε

d− c
. Now for every |u−u0|<r, we have

|Φ(u)−Φ(u0)|=
∣

∣

∣

∣

∫

c

y

|f(u, v)− f(u0, v)|dv

∣

∣

∣

∣

<ε. (15)

Therefore Φ(u) is continuous.

Now by FTC (single variable),

∂F (x, y)
∂x

=
∂

∂x

[
∫

a

x

Φ(u) du

]

= Φ(x) =

∫

c

y

f(x, v) dv. (16)

Now since f(x, v) is clearly continuous in v, applying FTC again we have

∂2F (x, y)
∂y∂x

= f(x, y). (17)

The proof for
∂2F (x, y)

∂x∂y
= f(x, y) is similar.

Question 6. Let I 8 [a, b]× [c, d]. Let f(x): [a, b]� R, g(x): [c, d]� R. Let F (x, y)8 f(x) g(y).

a) Prove that F (x, y) is integrable on I if f , g are integrable on [a, b], [c, d] respectively.
Furthermore we have

∫

I

F (x, y) d(x, y) =

[

∫

a

b

f(x) dx

][

∫

c

d

g(x) dx

]

. (18)

b) Does it hold that F (x, y) is integrable only if f , g are integrable?

c) Prove
[

∫

a

b

f(x) dx

]

2

6 (b− a)

∫

a

b

f(x)2 dx (19)

though studying
∫

[a,b]2
[f(x)− f(y)]2 d(x, y). (20)

Solution.

a) Note that it suffices to prove for f , g > 0. For general f , g we use

f(x) g(y) = f+(x) g+(y)− f−(x) g+(y)− f+(x) g−(y) + f−(x) g−(y) (21)

where

f+(x)8 max (f(x), 0), f−(x)8 min (f(x), 0) (22)
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and g+, g− are defined similarly.

Let n∈N, h18 b−a

n
, h28 d− c

n
. Define

Ii,n8 [a+(i−1) h1, a+ i h1], Jj ,n8 [c+(j −1) h2, c+ j h2], Iij ,n 8 Ii,h×Jj,h. (23)

For each i we set

fi,n8 sup
x∈Ii,n

f(x); gi,n8 sup
x∈Ji,n

g(x). (24)

Then define

Gh(x, y)8 fi,n gj ,n (25)

for all (x, y)∈ Iij ,n. Now we have Gh > F (x, y) and is a simple function. Thus

U(F , I) 6

∫

I

Gh(x, y)=

(

∑

i=1

n

fi,n h1

)





∑

j=1

n

gj,n h2



. (26)

Taking n� ∞ we have

U(F , I) 6

[

∫

a

b

f(x) dx

][

∫

c

d

g(x) dx

]

(27)

by the integrability of f , g. Similarly we have

L(F , I) >

[

∫

a

b

f(x) dx

][

∫

c

d

g(x) dx

]

. (28)

Thus U(F , I) =L(F , I) =
[

∫

a

b
f(x) dx

][

∫

c

d
g(x) dx

]

and the conclusion follows.

b) ”Only if” does not hold. For example take f(x)=D(x) the Dirichlet function and g(x)= 0.

c) By a) f(x) f(y) is integrable on [a, b]2. Furthermore f(x) integrable on [a, b] means f(x)2

is integrable on [a, b]. Now by a) we have f(x)2 = f(x)2 · 1 is integrable on [a, b]2. Similarly
f(y)2 is integrable on [a, b]2.

We have, again through application of a),

0 6

∫

[a,b]2
[f(x)− f(y)]2 d(x, y)

=

∫

[a,b]2
f(x)2 d(x, y)+

∫

[a,b]2
f(y)2 d(x, y)− 2

∫

[a,b]2
f(x) f(y) d(x, y)

= 2 (b− a)

∫

a

b

f(x)2 dx− 2

[

∫

a

b

f(x) dx

]

2

(29)

and the conclusion follows.

Remark. For the “only if” part, in fact the only problem is that one of f , g can be 0. But formulating
a positive statement seems messy.
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