Math 217 Fall 2013 Homework 9 Solutions

by Due Thursday Nov. 21, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Consider the following set:

$$
\begin{equation*}
A:=\left\{\left.\left(\frac{p}{q}, \frac{r}{q}\right) \right\rvert\, p, q \in \mathbb{N},(p, q),(r, q) \text { co-prime }\right\} \cap[0,1]^{2} . \tag{1}
\end{equation*}
$$

Prove that for every $\alpha \in[0,1], \mu(A \cap\{x=\alpha\})=\mu(A \cap\{y=\alpha\})=0$, therefore

$$
\begin{equation*}
\int_{0}^{1} \mu(A \cap\{x=t\}) \mathrm{d} t=\int_{0}^{1} \mu(A \cap\{y=t\}) \mathrm{d} t=0 \tag{2}
\end{equation*}
$$

but $\mu(A)$ does not exist. (This example is constructed by A. Pringsheim in 1898).

Question 2. Calculate

$$
\begin{equation*}
\int_{D} x^{2} y^{2} \mathrm{~d}(x, y) \tag{3}
\end{equation*}
$$

where D is the triangle enclosed by $y=\frac{b}{a} x, y=0, x=a$.
Question 3. Calculate

$$
\begin{equation*}
\int_{D}\left(x^{2}+y^{2}\right) \mathrm{d}(x, y) \tag{4}
\end{equation*}
$$

where D is enclosed by

$$
\begin{equation*}
y=a+x, y=x, y=a, y=3 a . \tag{5}
\end{equation*}
$$

Question 4. Calculate the area enclosed by $y=x^{2}$ and $y^{2}=x$.
Question 5. Let $f(x, y)$ be continuous on $I:=[a, b] \times[c, d]$. Define for $(x, y) \in I$,

$$
\begin{equation*}
F(x, y):=\int_{[a, x] \times[c, y]} f(u, v) \mathrm{d}(u, v) . \tag{6}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\frac{\partial^{2} F(x, y)}{\partial x \partial y}=\frac{\partial^{2} F(x, y)}{\partial y \partial x}=f(x, y) \tag{7}
\end{equation*}
$$

Question 6. Let $I:=[a, b] \times[c, d]$. Let $f(x):[a, b] \mapsto \mathbb{R}, g(x):[c, d] \mapsto \mathbb{R}$. Let $F(x, y):=f(x) g(y)$.
a) Prove that $F(x, y)$ is integrable on I if f, g are integrable on $[a, b],[c, d]$ respectively. Furthermore we have

$$
\begin{equation*}
\int_{I} F(x, y) \mathrm{d}(x, y)=\left[\int_{a}^{b} f(x) \mathrm{d} x\right]\left[\int_{c}^{d} g(x) \mathrm{d} x\right] \tag{8}
\end{equation*}
$$

b) Does it hold that $F(x, y)$ is integrable only if f, g are integrable?
c) Prove

$$
\begin{equation*}
\left[\int_{a}^{b} f(x) \mathrm{d} x\right]^{2} \leqslant(b-a) \int_{a}^{b} f(x)^{2} \mathrm{~d} x \tag{9}
\end{equation*}
$$

though studying

$$
\begin{equation*}
\int_{[a, b]^{2}}[f(x)-f(y)]^{2} \mathrm{~d}(x, y) \tag{10}
\end{equation*}
$$

