Math 217 Fall 2013 Homework 8 Solutions

Due Thursday Nov. 14, 2013 5Pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $A:=\left\{(x, y) \in[0,1]^{2} \mid x \in \mathbb{Q}, y \notin \mathbb{Q}\right\}$. Is A Jordan measurable? Justify.
Solution. Since both $\mathbb{Q} \cap[0,1]$ and $[0,1]-\mathbb{Q}$ are dense in $[0,1], A$ is dense in $[0,1]^{2}$. Therefore $\bar{A}=[0,1]^{2}$ and $\mu_{\text {out }}(A)=1$.

On the other hand, $A^{c}=\left\{(x, y) \in[0,1]^{2} \mid x \notin \mathbb{Q}, y \in \mathbb{Q}\right\}$ is also dense in $[0,1]^{2}$ so $A^{o}=\varnothing$. Consequently $\mu_{\text {in }}(A)=0$.

So A is not Jordan measurable.
Question 2. Let $A:=\left\{\left.\left(\frac{1}{m}, \frac{1}{n}\right) \right\rvert\, m, n \in \mathbb{N}\right\}$. Prove that $\mu(A)=0$.
Solution. We have

$$
\begin{equation*}
\bar{A} \subseteq A \cup(\{0\} \times[0,1]) \cup([0,1] \times\{0\}) \tag{1}
\end{equation*}
$$

Now for any $\varepsilon>0$, define

$$
\begin{equation*}
I:=\left[0, \frac{\varepsilon}{4}\right] \times[0,1] ; \quad J:=[0,1] \times\left[0, \frac{\varepsilon}{4}\right] . \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\bar{A} \subseteq Q:=(I \cup J) \cup\left\{\left.\left(\frac{1}{m}, \frac{1}{n}\right) \right\rvert\, m<\frac{4}{\varepsilon}, n<\frac{4}{\varepsilon}\right\} . \tag{3}
\end{equation*}
$$

Clearly Q is a simple graph with $\mu(Q)=\frac{\varepsilon}{2}<\varepsilon$. So $\mu(A)=0$.
Question 3. Let $f(x)$ be Riemann integrable on $[a, b]$. Let $A:=\{(x, f(x)) \mid x \in[a, b]\}$. Prove that $\mu(A)=0$. Is the converse $-\mu(A)=0 \Longrightarrow f$ Riemann integrable - true? Justify.

Solution. Since f is Riemann integrable then for any $\varepsilon>0$ there is a partition $P=\left\{x_{0}=a<\right.$ $\left.x_{1}<\cdots<x_{m}=b\right\}$ such that

$$
\begin{equation*}
\sum_{j=0}^{m-1}\left(\sup _{x \in\left[x_{j}, x_{j+1}\right]} f(x)\right)\left(x_{j+1}-x_{j}\right)-\sum_{j=1}^{m-1}\left(\inf _{x \in\left[x_{j}, x_{j+1}\right]} f(x)\right)\left(x_{j+1}-x_{j}\right)<\varepsilon . \tag{4}
\end{equation*}
$$

But if we denote for each $j \in\{0,1,2, \ldots, m-1\}$,

$$
\begin{equation*}
J_{j}:=\left[x_{j}, x_{j+1}\right] \times\left[\inf _{x \in\left[x_{j}, x_{j+1}\right]} f(x), \sup _{x \in\left[x_{j}, x_{j+1}\right]} f(x)\right] . \tag{5}
\end{equation*}
$$

We have

$$
\begin{equation*}
A \subseteq \cup_{j=0}^{m-1} J_{j} \tag{6}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
\bar{A} \subseteq \cup_{j=0}^{m-1} J_{j} \tag{7}
\end{equation*}
$$

since $\cup_{j=0}^{m-1} J_{j}$ is closed. Now (4) gives

$$
\begin{equation*}
\sum_{j=1}^{m-1} \mu\left(J_{j}\right)<\varepsilon \tag{8}
\end{equation*}
$$

Thus $\mu(A)=0$.
The converse is not true. For example let $f(x)$ be the Dirichlet function. It is not integrable but its graph has closure $[0,1] \times(\{0\} \cup\{1\})$ which clearly has Jordan measure 0 . However see the following problem.

Question 4. Let $f(x) \geqslant 0$ be Riemann integrable on $[a, b]$ and let $A:=\{(x, y) \mid x \in[a, b], y \leqslant f(x)\}$. Prove that A is Jordan measurable and

$$
\begin{equation*}
\mu(A)=\int_{0}^{1} f(x) \mathrm{d} x . \tag{9}
\end{equation*}
$$

Is the converse $-A$ is Jordan measurable $\Longrightarrow f$ is Riemann integrable -true? Justify.
Solution. From Question 4 we see that $\mu(\partial A)=0$ so A is Jordan measurable. Define

$$
\begin{equation*}
g(x)=f(x)+1, \quad B:=\{(x, y) \mid x \in[a, b], y \leqslant g(x)\} . \tag{10}
\end{equation*}
$$

Then it suffices to prove

$$
\begin{equation*}
\mu(B)=\int_{0}^{1} g(x) \mathrm{d} x \tag{11}
\end{equation*}
$$

Take any partition of $[a, b], P=\left\{x_{0}=a<x_{1}<\cdots<x_{n}=b\right\}$. Fix any $0<\varepsilon<1 / 2$. For every $i=0, \ldots$, $n-1$, Define

$$
\begin{equation*}
I_{i}:=\left[x_{i}+\varepsilon\left(x_{i+1}-x_{i}\right), x_{i+1}-\varepsilon\left(x_{i+1}-x_{i}\right)\right] \times\left[\varepsilon, \inf _{\left[x_{i}, x_{i+1}\right]} g-\varepsilon\right] . \tag{12}
\end{equation*}
$$

We see that $I_{i} \subseteq B^{o}$ and

This means

$$
\begin{equation*}
\mu\left(I_{i}\right)=(1-2 \varepsilon)\left(x_{i+1}-x_{i}\right)\left(\inf _{\left[x_{i}, x_{i+1}\right]} g-2 \varepsilon\right) \tag{13}
\end{equation*}
$$

$$
\begin{align*}
\mu(B) & \geqslant \mu\left(\cup I_{i}\right) \\
& \geqslant \sum \mu\left(I_{i}\right) \\
& =(1-2 \varepsilon) \sum_{i}\left(x_{i+1}-x_{i}\right)\left(\inf _{\left[x_{i}, x_{i+1}\right]} g-2 \varepsilon\right) \tag{14}\\
& =(1-2 \varepsilon)\left[\sum_{i}\left(\inf _{\left[x_{i}, x_{i+1}\right]} g\right)\left(x_{i+1}-x_{i}\right)-2 \varepsilon(b-a)\right] .
\end{align*}
$$

By the arbitrariness of ε we have

$$
\begin{equation*}
\mu(B) \geqslant \sum_{i}\left(\inf _{\left[x_{i}, x_{i+1}\right]} g\right)\left(x_{i+1}-x_{i}\right) . \tag{15}
\end{equation*}
$$

Taking supreme over all partitions we have

$$
\begin{equation*}
\mu(B) \geqslant \int_{a}^{b} g(x) \mathrm{d} x \tag{16}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
\mu(B) \leqslant \sum_{i}\left(\sup _{\left[x_{i}, x_{i+1}\right]} g\right)\left(x_{i+1}-x_{i}\right), \tag{17}
\end{equation*}
$$

taking infimum we have

$$
\begin{equation*}
\mu(B) \leqslant \int_{a}^{b} g(x) \mathrm{d} x . \tag{18}
\end{equation*}
$$

Thus ends the proof.
The converse is true this time. Assume A is Jordan measurable. Then for every $\varepsilon>0$ there are simple graphs B, C such that $B \subseteq A^{o}, \bar{A} \subseteq C$, with $\mu(B) \geqslant \mu(A)-\varepsilon, \mu(C) \leqslant \mu(A)+\varepsilon$.

Now write $B=\cup_{i=1}^{n} I_{i}$ with $I_{i}^{o} \cap I_{j}^{o}=\varnothing$. Denote $I_{i}=\left[a_{i}, b_{i}\right] \times\left[c_{i}, d_{i}\right]$. Then we have

Define

$$
\begin{equation*}
I_{i} \subseteq A \Longrightarrow\left[a_{i}, b_{i}\right] \subseteq[a, b],\left[c_{i}, d_{i}\right] \subseteq\left[0, \inf _{x \in\left[a_{i}, b_{i}\right]} f(x)\right] \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
h(x):=\max _{i=1, \ldots, n, x \in\left[a_{i}, b_{i}\right]} d_{i} . \tag{20}
\end{equation*}
$$

Note that the maximum is taken over all i 's such that $x \in\left[a_{i}, b_{i}\right]$. Also note that h is a piecewise constant function.

Now define

$$
\begin{equation*}
B^{\prime}:=\{(x, y) \mid x \in[a, b], 0 \leqslant y \leqslant h(x)\} . \tag{21}
\end{equation*}
$$

Then we have $h(x) \leqslant f(x)$ and

$$
\begin{equation*}
B \subseteq B^{\prime} \subseteq A, \quad \mu\left(B^{\prime}\right)=\int_{a}^{b} h(x) \mathrm{d} x \leqslant L(f,[a, b]) \tag{22}
\end{equation*}
$$

where $L(f,[a, b])$ is the lower integral of f over $[a, b]$. This gives

$$
\begin{equation*}
\mu(A)-\varepsilon \leqslant \mu(B) \leqslant \mu\left(B^{\prime}\right)=\int_{a}^{b} h(x) \mathrm{d} x \leqslant L(f,[a, b]) . \tag{23}
\end{equation*}
$$

Similarly we can prove

$$
\begin{equation*}
\mu(A)+\varepsilon \geqslant \mu(C) \geqslant U(f,[a, b]) . \tag{24}
\end{equation*}
$$

Thus

$$
\begin{equation*}
U(f,[a, b])-L(f,[a, b]) \leqslant 2 \varepsilon \tag{25}
\end{equation*}
$$

for any $\varepsilon>0$. Consequently $U(f,[a, b])=L(f,[a, b])=\mu(A)$ and the conclusion follows.
Question 5. Find a bounded open set that is not Jordan measurable. Justify your answer.
Solution. List all rational numbers in $[0,1]$ and r_{1}, r_{2}, \ldots. Define

$$
\begin{equation*}
A:=\left[\cup_{i=1}^{\infty}\left(r_{i}-\frac{1}{2^{i+2}}, r_{i}+\frac{1}{2^{i+2}}\right)\right] \cap[0,1] . \tag{26}
\end{equation*}
$$

Clearly A is open. Assume A is Jordan measurable. Then since $\bar{A}=[0,1]$ we have $\mu(A)=1$.
On the other hand, since A is Jordan measurable, there is a simple graph $B \subseteq A^{o}=A$, with $\mu(B) \geqslant \frac{3}{4}$. Note that B is compact, so there are finitely many i_{1}, \ldots, i_{n} such that

$$
\begin{equation*}
B \subseteq \cup_{k=1}^{n}\left(r_{i_{k}}-\frac{1}{2^{i_{k}+2}}, r_{i_{k}}+\frac{1}{2^{i_{k}+2}}\right) . \tag{27}
\end{equation*}
$$

This means

$$
\begin{equation*}
\mu(B) \leqslant \sum_{k=1}^{n} \frac{1}{2^{i_{k}+1}} \leqslant \sum_{n=1}^{\infty} \frac{1}{2^{n+1}}=\frac{1}{2} . \tag{28}
\end{equation*}
$$

Contradiction.

Question 6. Prove by definition that $f(x, y)=\sin (x y)$ is Riemann integrable on $I:=[0,1] \times[0,1]$.
Solution. We try to prove $U(f, I)=L(f, I)$.
For any $n \in \mathbb{N}$, set $I_{i j}:=\left[\frac{i}{n}, \frac{i+1}{n}\right] \times\left[\frac{j}{n}, \frac{j+1}{n}\right]$ for $i, j \in\{0,1,2, \ldots, n-1\}$. Let

$$
\begin{equation*}
f_{i j}:=\min _{(x, y) \in I_{i j}} f(x, y), \quad F_{i j}:=\max _{(x, y) \in I_{i j}} F(x, y) . \tag{29}
\end{equation*}
$$

Since $f(x, y)=\sin (x y)$ is continuous over $I_{i j}$, there are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ such that

$$
\begin{equation*}
\sin \left(x_{1} y_{1}\right)=f_{i j}, \quad \sin \left(x_{2} y_{2}\right)=F_{i j} . \tag{30}
\end{equation*}
$$

Now (single variable) MVT gives

$$
\begin{equation*}
\left|F_{i j}-f_{i j}\right|=|\cos (\xi)|\left|x_{2} y_{2}-x_{1} y_{1}\right| \leqslant\left|x_{2}-x_{1}\right|\left|y_{2}\right|+\left|y_{2}-y_{1}\right|\left|x_{1}\right| \leqslant \frac{2}{n} . \tag{31}
\end{equation*}
$$

Next define simple functions:

$$
\begin{equation*}
h_{n}(x, y):=\min _{i, j} f_{i j} 1_{I_{i j}}(x, y) ; \quad g_{n}(x, y):=\max _{i, j} F_{i j} 1_{I_{i j}}(x, y) . \tag{32}
\end{equation*}
$$

We have $h_{n}(x, y) \leqslant f(x, y) \leqslant g_{n}(x, y)$ on I and furthermore

$$
\begin{equation*}
\int_{I}\left[g_{n}(x, y)-h_{n}(x, y)\right] \mathrm{d}(x, y)=\sum_{i, j}\left(F_{i j}-f_{i j}\right) \frac{1}{n^{2}} \leqslant \frac{2}{n} . \tag{33}
\end{equation*}
$$

This gives

$$
\begin{equation*}
U(f, I)-L(f, I) \leqslant \frac{2}{n} . \tag{34}
\end{equation*}
$$

Since $U(f, I)-L(f, I) \geqslant 0$ by definition, the arbitrariness of n now gives $U(f, I)-L(f, I)=0$ and integrability follows.

