Math 217 Fall 2013 Homework 8 Solutions

DuE THURSDAY Nov. 14, 2013 5pMm

e This homework consists of 6 problems of 5 points each. The total is 30.
e You need to fully justify your answer for each problem.

e Please read this week’s lecture notes before working on the problems.
Question 1. Let A:={(z,y)€[0,1*|r € Q,y¢ Q}. Is A Jordan measurable? Justify.

Solution. Since both Q@ N[0, 1] and [0, 1] — @ are dense in [0, 1], A is dense in [0, 1]2. Therefore
A=10,1]? and pout(A) = 1.

On the other hand, A¢= {(x, y) € [0, 1]}| * ¢ Q, y € Q} is also dense in [0, 1]? so A° = &
Consequently puin(A)=0.

So A is not Jordan measurable.

Question 2. Let A:= {(%,%N m,nGlN}. Prove that u(A)=0.

Solution. We have

AC AU {0} x[0,1]) U ([0,1] x {0}). (1)
Now for any € > 0, define
= [0, i] 0,1;  J:=[0,1] x [o,ﬂ. 2)
Then
AQQ::(IUJ)U{(%,%>|m<§,n<§}. (3)

Clearly @ is a simple graph with u(Q)= % <e. So u(A)=0.

Question 3. Let f(z) be Riemann integrable on |a,b]. Let A:={(x, f(x))| = € [a,b]}. Prove that
w(A)=0. Is the converse — u(A) =0= f Riemann integrable — true? Justify.

Solution. Since f is Riemann integrable then for any ¢ > 0 there is a partition P = {zp = a <
x1 <+ <Xy =">0} such that

mZ:: ( sup  f(x )> Tjp1— Tj) — 3

Z‘E[CCJ7Z‘J+1] 7j=1

1

inf  f(@) ) (zj41—2;) <e. (4)
(cealt, )

T€[zTj,T)11

But if we denote for each j€{0,1,2,...,m — 1},

Jji= w5, xj4] x inf  f(z), sup f(z)]. (5)
xe[xj7xj+1} xe[:cj,xj+1]
We have
Acurty; (6)
which leads to
ACUll; (7)
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since UT:_OlJ ; is closed. Now (4) gives
m—1

> HuJj) <e. (8)
Thus pu(A)=0. 7=

The converse is not true. For example let f(z) be the Dirichlet function. It is not integrable
but its graph has closure [0, 1] x ({0} U{1}) which clearly has Jordan measure 0. However see the
following problem.

Question 4. Let f(x) >0 be Riemann integrable on [a,b] and let A:={(x,y)|z €[a,b],y< f(x)}.
Prove that A is Jordan measurable and

1
p( )= [ f@)da. Q)
Is the converse — A is Jordan measurable —> f is Riemann integrable — true? Justify.

Solution. From Question 4 we see that p(0A)=0 so A is Jordan measurable. Define

g(x)=f(x)+1,  B:={(z,y)lzcla,b],y<g(2)}. (10)

Then it suffices to prove
1
u(B)= [ gta)da. (1)

Take any partition of [a,b], P={zp=a<z1 < <zp,=b}. Fix any 0<e <1/2. For every i =0,...,
n — 1, Define

Ii=[zi+e(Tiv1— i), Tip1 — € (41— 27)] ¥ [6,[ inf 19—6]- (12)
T4, Ti41
We see that I; C B° and
u(I)=(1-2¢) <xi+1—xi><[ inf ]g—zs). (13)
This means v
wB) = w(UL)
> > ()
= (1—25)Z(xi+1—:5,~)< inf }g—25>
i T, Ti41
= (1—26)[2 <[ inf ]g>(:£i+1—xi)—25(b—a)]. (14)
p Ti,Tit1

By the arbitrariness of € we have

p(B)= Y ({ inf Jg><a:,-+1 ). (15)

LiyTi41

Taking supreme over all partitions we have

b
W(B)> / g(z)da. (16)
Similarly we have “

uB<Y < sup g)mﬂ—xi), a7

[zi,2i41]

7
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taking infimum we have

b
w(B)< / g(x) da. (18)
Thus ends the proof. ¢
The converse is true this time. Assume A is Jordan measurable. Then for every € > 0 there are
simple graphs B, C such that B C A°, A C C, with u(B) > u(A) —&, u(C) < u(A) +¢.
Now write B =Uj=; with I{ NI =@. Denote I; = [a;, b;] X [c;i,d;]. Then we have

I, C A= [a;, b C [, 1], [es, di] C [o, inf  f(x) (19)

re [ai,bi] :| ’
Define

h(z):= max d;. (20)

i:17”'7n7x€[ai7bi}

Note that the maximum is taken over all i’s such that x € [a;, b;]. Also note that h is a piecewise
constant function.
Now define

B':={(z,y)|z €a,b,0<y<h(z)}. (21)
Then we have h(x) < f(z) and

BCB/CA, M(B’)—/b h(z) dz < L(f, [a,B]) (22)

where L(f,[a,b]) is the lower integral of f over [a,b]. This gives

()~ < u(B) < B = [ hie)do< LS ) 2
Similarly we can prove
w(A) +e=pu(C) = U(f,a,b]). (24)
Thus
U(f,[a,b]) = L(f,[a,b]) <2¢ (25)

for any € >0. Consequently U(f,[a,b])=L(f,[a,b]) = u(A) and the conclusion follows.
Question 5. Find a bounded open set that is not Jordan measurable. Justify your answer.

Solution. List all rational numbers in [0, 1] and r1, rg, .... Define

o 1 1
Azz[ i:1<ri_Wari+W>:|m[oal]' (26)

Clearly A is open. Assume A is Jordan measurable. Then since A = [0, 1] we have u(A) = 1.
On the other hand, since A is Jordan measurable, there is a simple graph B C A° = A, with
w(B) > %. Note that B is compact, so there are finitely many 41, ..., 7, such that

1 1
BQUQ=1<7’ik—W,7’ik+W>- (27)
This means
1 =1 1
HB)SY 5 <D =y (28)
k=1 n=1

Contradiction.
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Question 6. Prove by definition that f(x,y)=sin(z y) is Riemann integrable on I:=10,1] x [0,1].

Solution. We try to prove U(f,I)=L(f,I).
For any n € N, set I, := [i Ll] X [lﬂ] for i,5€{0,1,2,....n —1}. Let

n’ n n’ n

;7:= min z,Yy), F;i:= max Fl(x,y).
i (xvy)elmf( v) ’ (x,y)elij( v)

Since f(z,y)=sin(xy) is continuous over I;;, there are (z1, y1), (2, y2) such that
sin (331 yl) = fij, Sin(a:g yg) = Fij.
Now (single variable) MVT gives
2
|Eij = fijl = leos (O] |2 y2 — z1 ya] S w2 — 2] |yo] + [y2 — [ 1] <
Next define simple functions:

hn(xa y) = mln fl] 1Iij(xa y)a gn(l‘a y) = maXFZ] 1Iij(xa y)
1,] 2¥)

We have hy(z,y) < f(z,y) < gn(z,y) on I and furthermore

1 2
om0 = o ) o) = 3 (5= i) 3 <2
This gives 7

(31)

(32)

(33)

(34)

Since U(f,I)— L(f,I) >0 by definition, the arbitrariness of n now gives U(f,I)—L(f,I)=0 and

integrability follows.



