Math 217 Fall 2013 Homework 8

Due Thursday Nov. 14, 2013 5PM

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $A := \{(x, y) \in [0, 1]^2 | x \in \mathbb{Q}, y \notin \mathbb{Q}\}$. Is A Jordan measurable? Justify.

Question 2. Let $A := \left\{ \left(\frac{1}{m}, \frac{1}{n}\right) | m, n \in \mathbb{N} \right\}$. Prove that $\mu(A) = 0$.

Question 3. Let f(x) be Riemann integrable on [a, b]. Let $A := \{(x, f(x)) | x \in [a, b]\}$. Prove that $\mu(A) = 0$. Is the converse $-\mu(A) = 0 \Longrightarrow f$ Riemann integrable - true? Justify.

Question 4. Let $f(x) \ge 0$ be Riemann integrable on [a, b] and let $A := \{(x, y) | x \in [a, b], y \le f(x)\}$. Prove that A is Jordan measurable and

$$\mu(A) = \int_{a}^{b} f(x) \,\mathrm{d}x. \tag{1}$$

Is the converse – A is Jordan measurable \implies f is Riemann integrable – true? Justify.

Question 5. Find a bounded open set that is not Jordan measurable. Justify your answer.

Question 6. Prove by definition that $f(x, y) = \sin(x y)$ is Riemann integrable on $I := [0, 1] \times [0, 1]$.