
Math 217 Fall 2013 Homework 7 Solutions

Due Thursday Nov. 7, 2013 5pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answer – prove that your function indeed has the specified
property – for each problem.

• Please read this week’s lecture notes before working on the problems.

Question 1. Let f(x, y)=x3+ y3+x y2. Calculate its Taylor expansion to degree 2 with remainder
(that is n =2, the remainder involves 3rd order derivatives) at (1, 0).

Solution. We have
∂f

∂x
=3 x2 + y2,

∂f

∂y
=3 y2 + 2 x y, (1)

∂2f

∂x2
= 6 x,

∂2f

∂x∂y
=2 y,

∂2f

∂y2
= 6 y + 2 x (2)

∂3f

∂x3
=6,

∂3f

∂x2∂y
=0,

∂3f

∂x∂y2
=2,

∂3f

∂y3
=6. (3)

Therefore the Taylor expansion with remainder is

f(x, y) = 1 +3 (x− 1)+
1
2

[6 (x− 1)2 +2 y2] + [(x− 1)3 + (x− 1) y2 + y3]. (4)

Question 2. Let f(x, y) =
x2

y
. Calculate its Taylor polynomial of degree 3 (that is P3) at (1, 1).

Solution. We have
∂f

∂x
= 2x y−1,

∂f

∂y
=−x2 y−2; (5)

∂2f

∂x2
=2 y−1,

∂2f

∂x∂y
=−2 x y−2,

∂2f

∂y2
=2 x2 y−3; (6)

∂3f

∂x3
=0,

∂3f

∂x2∂y
=−2 y−2,

∂3f

∂x∂y2
=4 x y−3,

∂3f

∂y3
=−6x2 y−4. (7)

Thus P3 at (1, 1) is

1 + [2 (x − 1) − (y − 1)] + [(x − 1)2 − 2 (x − 1) (y − 1) + (y − 1)2] + [−(x − 1)2 (y − 1) +

2 (x− 1) (y − 1)2− (y − 1)3]. (8)

Question 3. Let f(x, y, z)=
cosx cos y

cosz
. Calculate its Hessian matrix at (0, 0, 0).

Solution. We have

∂f

∂x
=−

sinx cos y

cos z
,

∂f

∂y
=−

cosx sin y

cos z
,

∂f

∂z
=

cosx cos y sin z

(cos z)2
. (9)

1



Next

∂2f

∂x2
=−

cosx cos y

cos z
,

∂2f

∂y2
=−

cosx cos y

cos z
,

∂2f

∂z2
=

cosx cos y cos z

(cos z)2
+2

cosx cos y (sin z)2

(cos z)3
; (10)

∂2f

∂x∂y
=

sinx sin y

cos z
,

∂2f

∂y∂z
=−

cosx sin y sin z

(cos z)2
,

∂2f

∂z∂x
=−

sinx cos y sin z

(cos z)2
. (11)

So its Hessian matrix at (0, 0, 0) is

Hf(0, 0, 0) =





−1 0 0
0 −1 0
0 0 1



. (12)

Question 4. Let f : RN � R belong to C2, that is all of its second order partial derivatives exist

and are continuous. Let x0∈R
N. Assume

∀v ∈RN ,v � 0 vT H(x0) v > 0 (13)

where H(x0) is the Hessian matrix of f at x0. Prove that there is r>0 such that for all x∈B(x0, r),
there holds

∀v ∈R
N ,v � 0 vT H(x) v > 0. (14)

Solution. Since f ∈C2, each entry hij(x) of the Hessian matrix H(x) is continuous. Now define

g(x, v):R2N� R
N×N (15)

as

g(x,v)= vT H(x) v =
∑

i,j=1

N

vi hij(x) vj. (16)

Since g is the sum of products
∑

i,j=1

N
vi hij(x) vj and vi, vj , hij(x) are all continuous as functions

of (x, v), g is a continuous function of (x, v).
Now consider the bounded closed set A8 {(x,v)P x =x0, ‖v‖= 1}. By assumption we have

g(x, v) > 0 (17)

for all (x,v)∈A. By continuity for each point (x0,v0) in A there is rx0,v0
> 0 such that

∀(x, v)∈B((x0, v0), rx0,v0
), g(x,v)> 0 (18)

By Heine-Borel A is compact, so there are finitely many such balls covering A. Now take r to be
the smallest of their radius. We have, in particular,

∀(x,v) with x∈B(x0, r), ‖v‖=1, g(x, v) > 0. (19)

Now for any u∈R
N,u� 0, we have

∥

∥

∥

u

‖u‖

∥

∥

∥ =1 and therefore

uT H(x) u = ‖u‖2

[(

u

‖u‖

)

T

H(x)

(

u

‖u‖

)]

> 0. (20)

Remark. Alternatively we can prove by contradiction. Assume that for every r > 0, there is

xr ∈B(x0, r) and nonzero vr ∈R
N such that vr

T H(xr) vr 6 0. Then setting ur 8 vr

‖vr‖
we have

ur
T H(xr) ur 6 0. (21)
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But ur ∈ S 8 {‖x‖ = 1} which is bounded and closed and is therefore compact. Thus there is a
cluster point u such that for some rn� 0, urn

� u. Clearly xr� x0. Thus

urn

T H(xrn
) urn
� uT H(x0) u� uT H(x0) u6 0. (22)

Finally as ‖urn
‖=1 for all n, u� 0. Contradiction.

Question 5. Prove

a, b > 0, n> 1�(

a + b

2

)n

6
an + bn

2
(23)

through solving min f(x, y)= xn + yn subject to the constraint x + y = l > 0.

Solution. Form the Lagrange function

L(x, y, λ)= (xn + yn)−λ (x + y − l). (24)

Then the necessary conditions are

nxn−1−λ =
∂L

∂x
=0 (25)

n yn−1−λ =
∂L

∂y
=0 (26)

x+ y − l =
∂L

∂λ
=0. (27)

Solving this we have xn−1 = yn−1, x + y = l > 0. The only solution is x= y = l/2. Now the Hessian

matrix at
(

l

2
,

l

2

)

is n (n− 1) (l/2)n−2 I where I is the identity matrix. It is easy to check that this

matrix is positive definite. Therefore
(

l

2
,

l

2

)

is the only stationary point and a strict local minimizer.

Now we show that it is the global minimizer. Assume otherwise, that is there is x1 + y1 = l such

that f(x1, y1)< f
(

l

2
,

l

2

)

. Since
(

l

2
,

l

2

)

is a strict local minimizer, the supreme between
(

l

2
,

l

2

)

and

(x1, y1) is reached and has to be different from both (x1, y1) and
(

l

2
,

l

2

)

. This point must be a local

maximum and is then a stationary point, contradiction.

So we have proved

f(x, y) > f

(

l

2
,
l

2

)

. (28)

This means

xn + yn >

(

x + y

2

)n

+
(

x + y

2

)n

(29)

and the conclusion follows.

Question 6. Let f :RN� R belong to C2. Let x0∈R
N be a local maximizer for f. Prove

a) (grad f)(x0) =0;

b) ∀v ∈R
N, vT H(x0)v 6 0 where H(x0) is the Hessian matrix of f at x0.

Solution.

a) Assume grad f � 0 at x0. Denote v 8 (grad f)(x0). Since f ∈ C2 it is in particular
differentiable at x0 and therefore

∂f

∂v
=(grad f)(x0) · v = ‖(grad f)(x0)‖2 > 0. (30)
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By definition

lim
h� 0

f(x0− h v)− f(x0)
h

> 0. (31)

and consequently there is δ > 0 such that

∀|h|< δ,
f(x0−h v)− f(x0)

h
> 0 (32)

which gives

∀h∈ (0, δ), f(x0−h v)> f(x0). (33)

Now for any r > 0, take x= x0− h v with 0 <h <min
(

r

‖v‖
, δ

)

. Then

‖h v‖<r� x∈B(x0, r) (34)

but we have f(x) > f(x0). Contradiction.

b) Assume there is v ∈ R
N such that vT H(x0) v > 0. Then since f ∈ C2, each hij(x) of the

Hessian matrix is continuous. Consequently the function

g(x)8 vT H(x)v =
∑

i,j=1

N

vi hij(x) vj (35)

is continuous. Thus there is δ > 0 such that

∀x∈B(x0, δ), vT H(x) v > 0. (36)

Now for any r > 0 consider

x8 x0 + h v (37)

with

h =
min (r, δ)

2 ‖v‖
. (38)

Clearly x∈B(x0, r)∩B(x0, δ).
Taylor expansion gives

f(x) = f(x0)+ (grad f)(x0) · (x−x0) +
1
2

(x−x0)T H(ξ) (x−x0)

= f(x0)+
h2

2
vT H(ξ) v

> f(x0). (39)

Here the last inequality is because x, x0∈B(x0, δ)� ξ ∈B(x0, δ)� vT H(ξ) v > 0. This
contradicts x0 being a local maximizer.
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