Math 217 Fall 2013 Homework 7 Solutions

Due Thursday Nov. 7, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $f(x, y)=x^{3}+y^{3}+x y^{2}$. Calculate its Taylor expansion to degree 2 with remainder (that is $n=2$, the remainder involves $3 r d$ order derivatives) at $(1,0)$.

Solution. We have

$$
\begin{gather*}
\frac{\partial f}{\partial x}=3 x^{2}+y^{2}, \quad \frac{\partial f}{\partial y}=3 y^{2}+2 x y, \tag{1}\\
\frac{\partial^{2} f}{\partial x^{2}}=6 x, \quad \frac{\partial^{2} f}{\partial x \partial y}=2 y, \quad \frac{\partial^{2} f}{\partial y^{2}}=6 y+2 x \tag{2}\\
\frac{\partial^{3} f}{\partial x^{3}}=6, \quad \frac{\partial^{3} f}{\partial x^{2} \partial y}=0, \quad \frac{\partial^{3} f}{\partial x \partial y^{2}}=2, \quad \frac{\partial^{3} f}{\partial y^{3}}=6 . \tag{3}
\end{gather*}
$$

Therefore the Taylor expansion with remainder is

$$
\begin{equation*}
f(x, y)=1+3(x-1)+\frac{1}{2}\left[6(x-1)^{2}+2 y^{2}\right]+\left[(x-1)^{3}+(x-1) y^{2}+y^{3}\right] \tag{4}
\end{equation*}
$$

Question 2. Let $f(x, y)=\frac{x^{2}}{y}$. Calculate its Taylor polynomial of degree 3 (that is P_{3}) at $(1,1)$.
Solution. We have

$$
\begin{gather*}
\frac{\partial f}{\partial x}=2 x y^{-1}, \quad \frac{\partial f}{\partial y}=-x^{2} y^{-2} ; \tag{5}\\
\frac{\partial^{2} f}{\partial x^{2}}=2 y^{-1}, \quad \frac{\partial^{2} f}{\partial x \partial y}=-2 x y^{-2}, \quad \frac{\partial^{2} f}{\partial y^{2}}=2 x^{2} y^{-3} ; \tag{6}\\
\frac{\partial^{3} f}{\partial x^{3}}=0, \quad \frac{\partial^{3} f}{\partial x^{2} \partial y}=-2 y^{-2}, \quad \frac{\partial^{3} f}{\partial x \partial y^{2}}=4 x y^{-3}, \quad \frac{\partial^{3} f}{\partial y^{3}}=-6 x^{2} y^{-4} . \tag{7}
\end{gather*}
$$

Thus P_{3} at $(1,1)$ is
$1+[2(x-1)-(y-1)]+\left[(x-1)^{2}-2(x-1)(y-1)+(y-1)^{2}\right]+\left[-(x-1)^{2}(y-1)+\right.$
$\left.2(x-1)(y-1)^{2}-(y-1)^{3}\right]$.
Question 3. Let $f(x, y, z)=\frac{\cos x \cos y}{\cos z}$. Calculate its Hessian matrix at $(0,0,0)$.
Solution. We have

$$
\begin{equation*}
\frac{\partial f}{\partial x}=-\frac{\sin x \cos y}{\cos z}, \quad \frac{\partial f}{\partial y}=-\frac{\cos x \sin y}{\cos z}, \quad \frac{\partial f}{\partial z}=\frac{\cos x \cos y \sin z}{(\cos z)^{2}} . \tag{9}
\end{equation*}
$$

Next

$$
\begin{gather*}
\frac{\partial^{2} f}{\partial x^{2}}=-\frac{\cos x \cos y}{\cos z}, \quad \frac{\partial^{2} f}{\partial y^{2}}=-\frac{\cos x \cos y}{\cos z}, \quad \frac{\partial^{2} f}{\partial z^{2}}=\frac{\cos x \cos y \cos z}{(\cos z)^{2}}+2 \frac{\cos x \cos y(\sin z)^{2}}{(\cos z)^{3}} ; \tag{10}\\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\sin x \sin y}{\cos z}, \quad \frac{\partial^{2} f}{\partial y \partial z}=-\frac{\cos x \sin y \sin z}{(\cos z)^{2}}, \quad \frac{\partial^{2} f}{\partial z \partial x}=-\frac{\sin x \cos y \sin z}{(\cos z)^{2}} . \tag{11}
\end{gather*}
$$

So its Hessian matrix at $(0,0,0)$ is

$$
H_{f}(0,0,0)=\left(\begin{array}{ccc}
-1 & 0 & 0 \tag{12}\\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Question 4. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ belong to C^{2}, that is all of its second order partial derivatives exist and are continuous. Let $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$. Assume

$$
\begin{equation*}
\forall \boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v} \neq \mathbf{0} \quad \boldsymbol{v}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{v}>0 \tag{13}
\end{equation*}
$$

where $H\left(\boldsymbol{x}_{0}\right)$ is the Hessian matrix of f at \boldsymbol{x}_{0}. Prove that there is $r>0$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right)$, there holds

$$
\begin{equation*}
\forall \boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v} \neq \mathbf{0} \quad \boldsymbol{v}^{T} H(\boldsymbol{x}) \boldsymbol{v}>0 \tag{14}
\end{equation*}
$$

Solution. Since $f \in C^{2}$, each entry $h_{i j}(\boldsymbol{x})$ of the Hessian matrix $H(\boldsymbol{x})$ is continuous. Now define

$$
\begin{equation*}
g(\boldsymbol{x}, \boldsymbol{v}): \mathbb{R}^{2 N} \mapsto \mathbb{R}^{N \times N} \tag{15}
\end{equation*}
$$

as

$$
\begin{equation*}
g(\boldsymbol{x}, \boldsymbol{v})=\boldsymbol{v}^{T} H(\boldsymbol{x}) \boldsymbol{v}=\sum_{i, j=1}^{N} v_{i} h_{i j}(\boldsymbol{x}) v_{j} . \tag{16}
\end{equation*}
$$

Since g is the sum of products $\sum_{i, j=1}^{N} v_{i} h_{i j}(\boldsymbol{x}) v_{j}$ and $v_{i}, v_{j}, h_{i j}(\boldsymbol{x})$ are all continuous as functions of $(\boldsymbol{x}, \boldsymbol{v}), g$ is a continuous function of $(\boldsymbol{x}, \boldsymbol{v})$.

Now consider the bounded closed set $A:=\left\{(\boldsymbol{x}, \boldsymbol{v}) \mid \boldsymbol{x}=\boldsymbol{x}_{0},\|\boldsymbol{v}\|=1\right\}$. By assumption we have

$$
\begin{equation*}
g(\boldsymbol{x}, \boldsymbol{v})>0 \tag{17}
\end{equation*}
$$

for all $(\boldsymbol{x}, \boldsymbol{v}) \in A$. By continuity for each point $\left(\boldsymbol{x}_{0}, \boldsymbol{v}_{0}\right)$ in A there is $r_{\boldsymbol{x}_{0}, \boldsymbol{v}_{0}}>0$ such that

$$
\begin{equation*}
\forall(\boldsymbol{x}, \boldsymbol{v}) \in B\left(\left(\boldsymbol{x}_{0}, \boldsymbol{v}_{0}\right), r_{x_{0}, v_{0}}\right), \quad g(\boldsymbol{x}, \boldsymbol{v})>0 \tag{18}
\end{equation*}
$$

By Heine-Borel A is compact, so there are finitely many such balls covering A. Now take r to be the smallest of their radius. We have, in particular,

$$
\begin{equation*}
\forall(\boldsymbol{x}, \boldsymbol{v}) \text { with } \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right),\|\boldsymbol{v}\|=1, \quad g(\boldsymbol{x}, \boldsymbol{v})>0 . \tag{19}
\end{equation*}
$$

Now for any $\boldsymbol{u} \in \mathbb{R}^{N}, \boldsymbol{u} \neq \mathbf{0}$, we have $\left\|\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}\right\|=1$ and therefore

$$
\begin{equation*}
\boldsymbol{u}^{T} H(\boldsymbol{x}) \boldsymbol{u}=\|\boldsymbol{u}\|^{2}\left[\left(\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}\right)^{T} H(\boldsymbol{x})\left(\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}\right)\right]>0 . \tag{20}
\end{equation*}
$$

Remark. Alternatively we can prove by contradiction. Assume that for every $r>0$, there is $\boldsymbol{x}_{r} \in B\left(\boldsymbol{x}_{0}, r\right)$ and nonzero $\boldsymbol{v}_{r} \in \mathbb{R}^{N}$ such that $\boldsymbol{v}_{r}^{T} H\left(\boldsymbol{x}_{r}\right) \boldsymbol{v}_{r} \leqslant 0$. Then setting $\boldsymbol{u}_{r}:=\frac{\boldsymbol{v}_{r}}{\left\|\boldsymbol{v}_{r}\right\|}$ we have

$$
\begin{equation*}
\boldsymbol{u}_{r}^{T} H\left(\boldsymbol{x}_{r}\right) \boldsymbol{u}_{r} \leqslant 0 . \tag{21}
\end{equation*}
$$

But $\boldsymbol{u}_{r} \in S:=\{\|\boldsymbol{x}\|=1\}$ which is bounded and closed and is therefore compact. Thus there is a cluster point \boldsymbol{u} such that for some $r_{n} \longrightarrow 0, \boldsymbol{u}_{r_{n}} \longrightarrow \boldsymbol{u}$. Clearly $\boldsymbol{x}_{r} \longrightarrow \boldsymbol{x}_{0}$. Thus

$$
\begin{equation*}
\boldsymbol{u}_{r_{n}}^{T} H\left(\boldsymbol{x}_{r_{n}}\right) \boldsymbol{u}_{r_{n}} \longrightarrow \boldsymbol{u}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{u} \Longrightarrow \boldsymbol{u}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{u} \leqslant 0 . \tag{22}
\end{equation*}
$$

Finally as $\left\|\boldsymbol{u}_{r_{n}}\right\|=1$ for all $n, \boldsymbol{u} \neq 0$. Contradiction.
Question 5. Prove

$$
\begin{equation*}
a, b \geqslant 0, n \geqslant 1 \Longrightarrow\left(\frac{a+b}{2}\right)^{n} \leqslant \frac{a^{n}+b^{n}}{2} \tag{23}
\end{equation*}
$$

through solving $\min f(x, y)=x^{n}+y^{n}$ subject to the constraint $x+y=l>0$.
Solution. Form the Lagrange function

$$
\begin{equation*}
L(x, y, \lambda)=\left(x^{n}+y^{n}\right)-\lambda(x+y-l) . \tag{24}
\end{equation*}
$$

Then the necessary conditions are

$$
\begin{align*}
n x^{n-1}-\lambda & =\frac{\partial L}{\partial x}=0 \tag{25}\\
n y^{n-1}-\lambda & =\frac{\partial L}{\partial y}=0 \tag{26}\\
x+y-l & =\frac{\partial L}{\partial \lambda}=0 . \tag{27}
\end{align*}
$$

Solving this we have $x^{n-1}=y^{n-1}, x+y=l>0$. The only solution is $x=y=l / 2$. Now the Hessian matrix at $\left(\frac{l}{2}, \frac{l}{2}\right)$ is $n(n-1)(l / 2)^{n-2} I$ where I is the identity matrix. It is easy to check that this matrix is positive definite. Therefore $\left(\frac{l}{2}, \frac{l}{2}\right)$ is the only stationary point and a strict local minimizer.

Now we show that it is the global minimizer. Assume otherwise, that is there is $x_{1}+y_{1}=l$ such that $f\left(x_{1}, y_{1}\right)<f\left(\frac{l}{2}, \frac{l}{2}\right)$. Since $\left(\frac{l}{2}, \frac{l}{2}\right)$ is a strict local minimizer, the supreme between $\left(\frac{l}{2}, \frac{l}{2}\right)$ and $\left(x_{1}, y_{1}\right)$ is reached and has to be different from both $\left(x_{1}, y_{1}\right)$ and $\left(\frac{l}{2}, \frac{l}{2}\right)$. This point must be a local maximum and is then a stationary point, contradiction.

So we have proved

$$
\begin{equation*}
f(x, y) \geqslant f\left(\frac{l}{2}, \frac{l}{2}\right) . \tag{28}
\end{equation*}
$$

This means

$$
\begin{equation*}
x^{n}+y^{n} \geqslant\left(\frac{x+y}{2}\right)^{n}+\left(\frac{x+y}{2}\right)^{n} \tag{29}
\end{equation*}
$$

and the conclusion follows.
Question 6. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ belong to C^{2}. Let $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$ be a local maximizer for f. Prove
a) $(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$;
b) $\forall \boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{v} \leqslant 0$ where $H\left(\boldsymbol{x}_{0}\right)$ is the Hessian matrix of f at \boldsymbol{x}_{0}.

Solution.

a) Assume grad $f \neq 0$ at \boldsymbol{x}_{0}. Denote $\boldsymbol{v}:=(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)$. Since $f \in C^{2}$ it is in particular differentiable at x_{0} and therefore

$$
\begin{equation*}
\frac{\partial f}{\partial \boldsymbol{v}}=(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right) \cdot \boldsymbol{v}=\left\|(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)\right\|^{2}>0 \tag{30}
\end{equation*}
$$

By definition

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{f\left(\boldsymbol{x}_{0}-h \boldsymbol{v}\right)-f\left(\boldsymbol{x}_{0}\right)}{h}>0 \tag{31}
\end{equation*}
$$

and consequently there is $\delta>0$ such that

$$
\begin{equation*}
\forall|h|<\delta, \quad \frac{f\left(\boldsymbol{x}_{0}-h \boldsymbol{v}\right)-f\left(\boldsymbol{x}_{0}\right)}{h}>0 \tag{32}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\forall h \in(0, \delta), \quad f\left(\boldsymbol{x}_{0}-h \boldsymbol{v}\right)>f\left(\boldsymbol{x}_{0}\right) . \tag{33}
\end{equation*}
$$

Now for any $r>0$, take $\boldsymbol{x}=\boldsymbol{x}_{0}-h \boldsymbol{v}$ with $0<h<\min \left(\frac{r}{\|\boldsymbol{v}\|}, \delta\right)$. Then

$$
\begin{equation*}
\|h \boldsymbol{v}\|<r \Longrightarrow \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right) \tag{34}
\end{equation*}
$$

but we have $f(\boldsymbol{x})>f\left(\boldsymbol{x}_{0}\right)$. Contradiction.
b) Assume there is $\boldsymbol{v} \in \mathbb{R}^{N}$ such that $\boldsymbol{v}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{v}>0$. Then since $f \in C^{2}$, each $h_{i j}(\boldsymbol{x})$ of the Hessian matrix is continuous. Consequently the function

$$
\begin{equation*}
g(\boldsymbol{x}):=\boldsymbol{v}^{T} H(\boldsymbol{x}) \boldsymbol{v}=\sum_{i, j=1}^{N} v_{i} h_{i j}(\boldsymbol{x}) v_{j} \tag{35}
\end{equation*}
$$

is continuous. Thus there is $\delta>0$ such that

$$
\begin{equation*}
\forall \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right), \quad \boldsymbol{v}^{T} H(\boldsymbol{x}) \boldsymbol{v}>0 \tag{36}
\end{equation*}
$$

Now for any $r>0$ consider

$$
\begin{equation*}
\boldsymbol{x}:=\boldsymbol{x}_{0}+h \boldsymbol{v} \tag{37}
\end{equation*}
$$

with

$$
\begin{equation*}
h=\frac{\min (r, \delta)}{2\|\boldsymbol{v}\|} . \tag{38}
\end{equation*}
$$

Clearly $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right) \cap B\left(\boldsymbol{x}_{0}, \delta\right)$.
Taylor expansion gives

$$
\begin{align*}
f(\boldsymbol{x}) & =f\left(\boldsymbol{x}_{0}\right)+(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} H(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \\
& =f\left(\boldsymbol{x}_{0}\right)+\frac{h^{2}}{2} \boldsymbol{v}^{T} H(\boldsymbol{\xi}) \boldsymbol{v} \\
& >f\left(\boldsymbol{x}_{0}\right) . \tag{39}
\end{align*}
$$

Here the last inequality is because $\boldsymbol{x}, \boldsymbol{x}_{0} \in B\left(\boldsymbol{x}_{0}, \delta\right) \Longrightarrow \boldsymbol{\xi} \in B\left(\boldsymbol{x}_{0}, \delta\right) \Longrightarrow \boldsymbol{v}^{T} H(\boldsymbol{\xi}) \boldsymbol{v}>0$. This contradicts \boldsymbol{x}_{0} being a local maximizer.

