Math 217 Fall 2013 Homework 7 Solutions

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $f(x, y)=x^{3}+y^{3}+x y^{2}$. Calculate its Taylor expansion to degree 2 with remainder (that is $n=2$, the remainder involves 3 rd order derivatives) at $(1,0)$.

Question 2. Let $f(x, y)=\frac{x^{2}}{y}$. Calculate its Taylor polynomial of degree 3 (that is P_{3}) at $(1,1)$.
Question 3. Let $f(x, y, z)=\frac{\cos x \cos y}{\cos z}$. Calculate its Hessian matrix at $(0,0,0)$.
Question 4. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ belong to C^{2}, that is all of its second order partial derivatives exist and are continuous. Let $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$. Assume

$$
\begin{equation*}
\forall \boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v} \neq \mathbf{0} \quad \boldsymbol{v}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{v}>0 \tag{1}
\end{equation*}
$$

where $H\left(\boldsymbol{x}_{0}\right)$ is the Hessian matrix of f at \boldsymbol{x}_{0}. Prove that there is $r>0$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right)$, there holds

$$
\begin{equation*}
\forall \boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v} \neq \mathbf{0} \quad \boldsymbol{v}^{T} H(\boldsymbol{x}) \boldsymbol{v}>0 . \tag{2}
\end{equation*}
$$

Question 5. Prove

$$
\begin{equation*}
a, b \geqslant 0, n \geqslant 1 \Longrightarrow\left(\frac{a+b}{2}\right)^{n} \leqslant \frac{a^{n}+b^{n}}{2} \tag{3}
\end{equation*}
$$

through solving $f(x, y)=x^{n}+y^{n}$ subject to the constraint $x+y=l>0$.
Question 6. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ belong to C^{2}. Let $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$ be a local maximizer for f. Prove
a) $(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$;
b) $\forall \boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{v} \leqslant 0$ where $H\left(\boldsymbol{x}_{0}\right)$ is the Hessian matrix of f at \boldsymbol{x}_{0}.

