MATH 217 FALL 2013 HOMEWORK 7 SOLUTIONS

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $f(x, y) = x^3 + y^3 + x y^2$. Calculate its Taylor expansion to degree 2 with remainder (that is n = 2, the remainder involves 3rd order derivatives) at (1, 0).

Question 2. Let $f(x, y) = \frac{x^2}{y}$. Calculate its Taylor polynomial of degree 3 (that is P_3) at (1,1).

Question 3. Let $f(x, y, z) = \frac{\cos x \cos y}{\cos z}$. Calculate its Hessian matrix at (0, 0, 0).

Question 4. Let $f: \mathbb{R}^N \to \mathbb{R}$ belong to C^2 , that is all of its second order partial derivatives exist and are continuous. Let $\mathbf{x}_0 \in \mathbb{R}^N$. Assume

$$\forall \boldsymbol{v} \in \mathbb{R}^N, \boldsymbol{v} \neq \boldsymbol{0} \quad \boldsymbol{v}^T H(\boldsymbol{x}_0) \, \boldsymbol{v} > 0 \tag{1}$$

where $H(\mathbf{x}_0)$ is the Hessian matrix of f at \mathbf{x}_0 . Prove that there is r > 0 such that for all $\mathbf{x} \in B(\mathbf{x}_0, r)$, there holds

$$\forall \boldsymbol{v} \in \mathbb{R}^N, \boldsymbol{v} \neq \boldsymbol{0} \quad \boldsymbol{v}^T H(\boldsymbol{x}) \, \boldsymbol{v} > 0.$$
(2)

Question 5. Prove

$$a, b \ge 0, n \ge 1 \Longrightarrow \left(\frac{a+b}{2}\right)^n \le \frac{a^n + b^n}{2} \tag{3}$$

through solving $f(x, y) = x^n + y^n$ subject to the constraint x + y = l > 0.

Question 6. Let $f: \mathbb{R}^N \mapsto \mathbb{R}$ belong to C^2 . Let $\mathbf{x}_0 \in \mathbb{R}^N$ be a local maximizer for f. Prove

- a) $(\operatorname{grad} f)(\boldsymbol{x}_0) = \boldsymbol{0};$
- b) $\forall \boldsymbol{v} \in \mathbb{R}^N$, $\boldsymbol{v}^T H(\boldsymbol{x}_0) \boldsymbol{v} \leq 0$ where $H(\boldsymbol{x}_0)$ is the Hessian matrix of f at \boldsymbol{x}_0 .