Math 217 Fall 2013 Homework 6 Solutions

DUE THURSDAY OCT. 31, 2013 5PM

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $A \subseteq \mathbb{R}^N$ be convex. Let r > 0 and $B := \{ \boldsymbol{x} \in \mathbb{R}^N | \operatorname{dist}(\boldsymbol{x}, A) < r \}$, where $\operatorname{dist}(\boldsymbol{x}, A) := \inf_{\boldsymbol{y} \in A} \| \boldsymbol{x} - \boldsymbol{y} \|$. Prove that B is convex.

Solution. Take any $\boldsymbol{x}, \boldsymbol{y} \in B$ and $t \in [0, 1]$. We need to show dist $(t \boldsymbol{x} + (1 - t) \boldsymbol{y}, A) < r$, that is, we need to find $\boldsymbol{z} \in A$ such that dist $(t \boldsymbol{x} + (1 - t) \boldsymbol{y}, \boldsymbol{z}) < r$. Since $\boldsymbol{x}, \boldsymbol{y} \in B$, there are $\boldsymbol{u}, \boldsymbol{v} \in A$ such that $\|\boldsymbol{x} - \boldsymbol{u}\| < r, \|\boldsymbol{y} - \boldsymbol{v}\| < r$. Then we have

$$\|(t \, \boldsymbol{x} + (1-t) \, \boldsymbol{y}) - (t \, \boldsymbol{u} + (1-t) \, \boldsymbol{v})\| = \|t \, (\boldsymbol{x} - \boldsymbol{u}) + (1-t) \, (\boldsymbol{y} - \boldsymbol{v})\| \\ \leqslant \|t \, (\boldsymbol{x} - \boldsymbol{u})\| + \|(1-t) \, (\boldsymbol{y} - \boldsymbol{v})\| \\ = t \, \|\boldsymbol{x} - \boldsymbol{u}\| + (1-t) \, \|\boldsymbol{y} - \boldsymbol{v}\| \\ < r.$$
(1)

Since A is convex, $t \mathbf{u} + (1-t) \mathbf{v} \in A$. Thus ends the proof.

Question 2. Consider $f: \mathbb{R}^2 \mapsto \mathbb{R}^2$ defined through

$$\boldsymbol{f}(x,y) := \begin{pmatrix} x^3 - 3x y^2 \\ 3x^2 y - y^3 \end{pmatrix}.$$
 (2)

Prove:

- a) For every $(x_0, y_0) \neq (0, 0)$ there is open set $U \ni (x_0, y_0)$ such that **f** is one-to-one on U;
- b) Let U be open and $(0,0) \in U$. Then **f** is not one-to-one on U.

Solution.

a) We calculate the Jacobian matrix

$$\frac{\partial f}{\partial (x,y)} = \begin{pmatrix} 3x^2 - 3y^2 & -6xy \\ 6xy & 3x^2 - 3y^2 \end{pmatrix}.$$
 (3)

Therefore

$$\det\left(\frac{\partial \boldsymbol{f}}{\partial(x,y)}\right) = 9\left(x^2 - y^2\right)^2 + 36\,x^2\,y^2.\tag{4}$$

Now if the determinant is 0, then necessarily $x^2 = y^2$ and $x^2 y^2 = 0$ which means $x^2 = y^2 = 0$. Therefore the determinant is not 0 at every $(x_0, y_0) \neq (0, 0)$.

Since the partial derivatives of f are polynomials they are continuous. Application of Implicit function theorem gives the desired result.

b) For any r > 0, let

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \frac{r}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \qquad \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \frac{r}{2} \begin{pmatrix} -\frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}.$$
 (5)

Then both points are inside $B(\mathbf{0}, r)$ but

$$\boldsymbol{f}(x_1, y_1) = \frac{r^3}{8} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \qquad \boldsymbol{f}(x_2, y_2) = \frac{r^3}{8} \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$
(6)

Therefore f is not one-to-one.

Question 3. Let $f:(a,b) \mapsto \mathbb{R}$ such that $f^{(n+1)}(x)$ is continuous. For any $x_0, x \in (a,b)$, write

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x, x_0).$$
(7)

- a) Prove that $\frac{\partial R_n}{\partial x_0}$ exists;
- b) Calculate $\frac{\partial R_n}{\partial x_0}$;
- c) Prove that

$$R_n(x,x_0) = \frac{1}{n!} \int_{x_0}^x (x-y)^n f^{(n+1)}(y) \,\mathrm{d}y.$$
(8)

Solution.

a) Since

$$R_n(x,x_0) = f(x) - \left[f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right]$$
(9)

and each term on the RHS is partially differentiable with respect to x_0 , $\frac{\partial R_n}{\partial x_0}$ exists. b) Taking $\frac{\partial}{\partial x_0}$ of both sides of (9), we have

$$\frac{\partial R_n(x,x_0)}{\partial x_0} = 0 - f'(x_0) - [f''(x_0)(x-x_0) - f'(x_0)]
- \left[\frac{f'''(x_0)}{2!}(x-x_0)^2 - \frac{f''(x_0)}{1!}(x-x_0)\right]
- \dots - \left[\frac{f^{(n+1)}(x_0)}{n!}(x-x_0)^n - \frac{f^{(n)}(x_0)}{(n-1)!}(x-x_0)^{n-1}\right]
= -\frac{f^{(n+1)}(x_0)}{n!}(x-x_0)^n.$$
(10)

c) Now we have proved:

$$\frac{\partial R_n(x,y)}{\partial y} = -\frac{f^{(n+1)}(y)}{n!} (x-y)^n.$$
 (11)

Now for any fixed $x \in (a, b)$, since by assumption $f^{(n+1)}(y)$ is continuous, $\frac{\partial R_n(x, y)}{\partial y}$ is continuous as a function of y. Application of fundamental theorem of calculus then gives

$$R(x,x) - R(x,x_0) = \int_{x_0}^x \frac{\partial R_n(x,y)}{\partial y} \,\mathrm{d}y = -\frac{1}{n!} \int_{x_0}^x (x-y)^n f^{(n+1)}(y) \,\mathrm{d}y.$$
(12)

The proof ends through noticing

$$R(x,x) = 0. \tag{13}$$

Question 4. Calculate all third order partial derivatives for $f(x, y) = x^4 + y^4 + 4x^2y^2$.

Solution. We have

$$\begin{aligned} \frac{\partial f}{\partial x} &= 4 x^3 + 8 x y^2; \\ \frac{\partial f}{\partial y} &= 4 y^3 + 8 x^2 y; \\ \frac{\partial f}{\partial y} &= 4 y^3 + 8 x^2 y; \\ \frac{\partial^2 f}{\partial x^2} &= 12 x^2 + 8 y^2; \\ \frac{\partial^2 f}{\partial x \partial y} &= \frac{\partial^2 f}{\partial y \partial x} &= 16 x y; \\ \frac{\partial^2 f}{\partial y^2} &= 12 y^2 + 8 x^2; \\ \frac{\partial^3 f}{\partial x^3} &= 24 x; \\ \frac{\partial^3 f}{\partial x^2 \partial y} &= \frac{\partial^3 f}{\partial x \partial y \partial x} &= \frac{\partial^3 f}{\partial y \partial x^2} &= 16 y; \\ \frac{\partial^3 f}{\partial x \partial y^2} &= \frac{\partial^3 f}{\partial y \partial x \partial y} &= \frac{\partial^3 f}{\partial y^2 \partial x} &= 16 x; \\ \frac{\partial^3 f}{\partial y^3} &= 24 y. \end{aligned}$$

Question 5. Let $f(x, y, z) := x y z e^{x+y+z}$. Find $\frac{\partial^{p+q+r}f}{\partial x^p \partial y^q \partial z^r}$. Here $p, q, r \in \mathbb{N} \cup \{0\}$.

Solution. We notice that

$$f(x, y, z) = (x e^x) (y e^y) (z e^z).$$
(14)

Thus

$$\frac{\partial^{p+q+r}f}{\partial x^p \partial y^q \partial z^r} = \left[\frac{\mathrm{d}^p}{\mathrm{d}x^p}(x\,e^x)\right] \left[\frac{\mathrm{d}^q}{\mathrm{d}y^q}(y\,e^y)\right] \left[\frac{\mathrm{d}^r}{\mathrm{d}z^r}(z\,e^z)\right].\tag{15}$$

Now we prove

$$\frac{\mathrm{d}^p}{\mathrm{d}x^p}(x\,e^x) = (x+p)\,e^x\tag{16}$$

using induction.

The base case p = 0 is obvious. Assume $\frac{d^p}{dx^p}(x e^x) = (x + p) e^x$. We have

$$\frac{\mathrm{d}^{p+1}}{\mathrm{d}x^{p+1}}(x\,e^x) = \frac{\mathrm{d}}{\mathrm{d}x}[(x+p)\,e^x] = (x+p+1)\,e^x.$$
(17)

Therefore

$$\frac{\partial^{p+q+r}f}{\partial x^p \partial y^q \partial z^r} = (x+p) \left(y+q\right) \left(z+r\right) e^{x+y+z}.$$
(18)

Question 6. Let $f: \mathbb{R}^2 \mapsto \mathbb{R}$. Assume $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are differentiable at (x_0, y_0) . Then

$$\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0).$$
(19)

Solution. Let r > 0 be such that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist in $B((x_0, y_0), r)$. Consider any $(x, y) \in B((x_0, y_0), r)$. Let $A := f(x, y) - f(x_0, y) - [f(x, y_0) - f(x_0, y_0)].$ (20) Setting $\varphi(y) := f(x, y) - f(x_0, y)$ and apply MVT, we have

(x

$$A = \left[\frac{\partial f}{\partial y}(x,\eta) - \frac{\partial f}{\partial y}(x_0,\eta)\right](y-y_0).$$
(21)

Since $\frac{\partial f}{\partial y}$ is differentiable at (x_0, y_0) ,

$$\frac{\partial f}{\partial y}(x,\eta) - \frac{\partial f}{\partial y}(x_0,y_0) = \left(\operatorname{grad}\frac{\partial f}{\partial y}\right)(x_0,y_0) \cdot \left(\begin{array}{c}x-x_0\\\eta-y_0\end{array}\right) + R_1,\tag{22}$$

$$\frac{\partial f}{\partial y}(x_0,\eta) - \frac{\partial f}{\partial y}(x_0,y_0) = \left(\operatorname{grad}\frac{\partial f}{\partial y}\right)(x_0,y_0) \cdot \left(\begin{array}{c}x_0 - x_0\\\eta - y_0\end{array}\right) + R_2,\tag{23}$$

where

$$\lim_{(y)\to(x_0,y_0)} \frac{|R_1| + |R_2|}{\|(x - x_0, y - y_0)\|} = 0.$$
(24)

Taking difference we have

$$\frac{\partial f}{\partial y}(x,\eta) - \frac{\partial f}{\partial y}(x_0,\eta) = \frac{\partial^2 f}{\partial x \partial y}(x_0,y_0) (x-x_0) + R$$
(25)

and therefore

$$A = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) (x - x_0) (y - y_0) + R (y - y_0);$$
(26)

where R a function of x, y, x_0, y_0, f and satisfies

$$\lim_{(x,y)\to(x_0,y_0)} \frac{R}{\|(x-x_0,y-y_0)\|} = 0.$$
(27)

Similarly writing

$$A = f(x, y) - f(x, y_0) - [f(x_0, y) - f(x_0, y_0)]$$
(28)

we have

$$A = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) (x - x_0) (y - y_0) + R'(x - x_0)$$
(29)

with R' a function of x, y, x_0, y_0, f and satisfies

$$\lim_{(x,y)\to(x_0,y_0)} \frac{R'}{\|(x-x_0,y-y_0)\|} = 0.$$
(30)

Summarizing, we have

$$\left[\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) - \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)\right] = \frac{R'(x - x_0) + R(y - y_0)}{(x - x_0)(y - y_0)}.$$
(31)

Note that this holds for all $(x, y) \in B((x_0, y_0), r)$. Now taking $x = x_0 + t$, $y = y_0 + t$, and letting $t \longrightarrow 0$, we have $t = \frac{1}{\sqrt{2}} ||(x, y) - (x_0, y_0)||^2$ and then

$$\begin{bmatrix} \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) - \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \end{bmatrix} = \lim_{t \to 0} \begin{bmatrix} \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) - \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \end{bmatrix}$$
$$= \lim_{t \to 0} \frac{R' + R}{t}$$
$$= 0.$$
(32)

Thus ends the proof.