Math 217 Fall 2013 Homework 6 Solutions

Due Thursday Oct. 31, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $A \subseteq \mathbb{R}^{N}$ be convex. Let $r>0$ and $B:=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid \operatorname{dist}(\boldsymbol{x}, A)<r\right\}$, where $\operatorname{dist}(\boldsymbol{x}, A):=\inf _{\boldsymbol{y} \in A}\|\boldsymbol{x}-\boldsymbol{y}\|$. Prove that B is convex.

Solution. Take any $\boldsymbol{x}, \boldsymbol{y} \in B$ and $t \in[0,1]$. We need to show $\operatorname{dist}(t \boldsymbol{x}+(1-t) \boldsymbol{y}, A)<r$, that is, we need to find $\boldsymbol{z} \in A$ such that $\operatorname{dist}(t \boldsymbol{x}+(1-t) \boldsymbol{y}, \boldsymbol{z})<r$. Sincer $\boldsymbol{x}, \boldsymbol{y} \in B$, there are $\boldsymbol{u}, \boldsymbol{v} \in A$ such that $\|\boldsymbol{x}-\boldsymbol{u}\|<r,\|\boldsymbol{y}-\boldsymbol{v}\|<r$. Then we have

$$
\begin{align*}
\|(t \boldsymbol{x}+(1-t) \boldsymbol{y})-(t \boldsymbol{u}+(1-t) \boldsymbol{v})\| & =\|t(\boldsymbol{x}-\boldsymbol{u})+(1-t)(\boldsymbol{y}-\boldsymbol{v})\| \\
& \leqslant\|t(\boldsymbol{x}-\boldsymbol{u})\|+\|(1-t)(\boldsymbol{y}-\boldsymbol{v})\| \\
& =t\|\boldsymbol{x}-\boldsymbol{u}\|+(1-t)\|\boldsymbol{y}-\boldsymbol{v}\| \\
& <r . \tag{1}
\end{align*}
$$

Since A is convex, $t \boldsymbol{u}+(1-t) \boldsymbol{v} \in A$. Thus ends the proof.
Question 2. Consider $f: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ defined through

$$
\begin{equation*}
\boldsymbol{f}(x, y):=\binom{x^{3}-3 x y^{2}}{3 x^{2} y-y^{3}} \tag{2}
\end{equation*}
$$

Prove:
a) For every $\left(x_{0}, y_{0}\right) \neq(0,0)$ there is open set $U \ni\left(x_{0}, y_{0}\right)$ such that \boldsymbol{f} is one-to-one on U;
b) Let U be open and $(0,0) \in U$. Then \boldsymbol{f} is not one-to-one on U.

Solution.

a) We calculate the Jacobian matrix

$$
\frac{\partial \boldsymbol{f}}{\partial(x, y)}=\left(\begin{array}{cc}
3 x^{2}-3 y^{2} & -6 x y \tag{3}\\
6 x y & 3 x^{2}-3 y^{2}
\end{array}\right) .
$$

Therefore

$$
\begin{equation*}
\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial(x, y)}\right)=9\left(x^{2}-y^{2}\right)^{2}+36 x^{2} y^{2} . \tag{4}
\end{equation*}
$$

Now if the determinant is 0 , then necessarily $x^{2}=y^{2}$ and $x^{2} y^{2}=0$ which means $x^{2}=y^{2}=0$. Therefore the determinant is not 0 at every $\left(x_{0}, y_{0}\right) \neq(0,0)$.

Since the partial derivatives of \boldsymbol{f} are polynomials they are continuous. Application of Implicit function theorem gives the desired result.
b) For any $r>0$, let

$$
\begin{equation*}
\binom{x_{1}}{y_{1}}=\frac{r}{2}\binom{1}{0} ; \quad\binom{x_{2}}{y_{2}}=\frac{r}{2}\binom{-\frac{1}{2}}{\frac{\sqrt{3}}{2}} . \tag{5}
\end{equation*}
$$

Then both points are inside $B(\mathbf{0}, r)$ but

$$
\begin{equation*}
\boldsymbol{f}\left(x_{1}, y_{1}\right)=\frac{r^{3}}{8}\binom{1}{0}, \quad \boldsymbol{f}\left(x_{2}, y_{2}\right)=\frac{r^{3}}{8}\binom{1}{0} . \tag{6}
\end{equation*}
$$

Therefore f is not one-to-one.
Question 3. Let $f:(a, b) \mapsto \mathbb{R}$ such that $f^{(n+1)}(x)$ is continuous. For any $x_{0}, x \in(a, b)$, write
$f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+R_{n}\left(x, x_{0}\right)$.
a) Prove that $\frac{\partial R_{n}}{\partial x_{0}}$ exists;
b) Calculate $\frac{\partial R_{n}}{\partial x_{0}}$;
c) Prove that

$$
\begin{equation*}
R_{n}\left(x, x_{0}\right)=\frac{1}{n!} \int_{x_{0}}^{x}(x-y)^{n} f^{(n+1)}(y) \mathrm{d} y . \tag{8}
\end{equation*}
$$

Solution.

a) Since

$$
\begin{equation*}
R_{n}\left(x, x_{0}\right)=f(x)-\left[f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}\right] \tag{9}
\end{equation*}
$$

and each term on the RHS is partially differentiable with respect to $x_{0}, \frac{\partial R_{n}}{\partial x_{0}}$ exists.
b) Taking $\frac{\partial}{\partial x_{0}}$ of both sides of (9), we have

$$
\begin{align*}
\frac{\partial R_{n}\left(x, x_{0}\right)}{\partial x_{0}}= & 0-f^{\prime}\left(x_{0}\right)-\left[f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)-f^{\prime}\left(x_{0}\right)\right] \\
& -\left[\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}-\frac{f^{\prime \prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)\right] \\
& -\cdots-\left[\frac{f^{(n+1)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}-\frac{f^{(n)}\left(x_{0}\right)}{(n-1)!}\left(x-x_{0}\right)^{n-1}\right] \\
= & -\frac{f^{(n+1)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n} . \tag{10}
\end{align*}
$$

c) Now we have proved:

$$
\begin{equation*}
\frac{\partial R_{n}(x, y)}{\partial y}=-\frac{f^{(n+1)}(y)}{n!}(x-y)^{n} . \tag{11}
\end{equation*}
$$

Now for any fixed $x \in(a, b)$, since by assumption $f^{(n+1)}(y)$ is continuous, $\frac{\partial R_{n}(x, y)}{\partial y}$ is continuous as a function of y. Application of fundamental theorem of calculus then gives

$$
\begin{equation*}
R(x, x)-R\left(x, x_{0}\right)=\int_{x_{0}}^{x} \frac{\partial R_{n}(x, y)}{\partial y} \mathrm{~d} y=-\frac{1}{n!} \int_{x_{0}}^{x}(x-y)^{n} f^{(n+1)}(y) \mathrm{d} y . \tag{12}
\end{equation*}
$$

The proof ends through noticing

$$
\begin{equation*}
R(x, x)=0 . \tag{13}
\end{equation*}
$$

Question 4. Calculate all third order partial derivartives for $f(x, y)=x^{4}+y^{4}+4 x^{2} y^{2}$.

Solution. We have

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =4 x^{3}+8 x y^{2} ; \\
\frac{\partial f}{\partial y} & =4 y^{3}+8 x^{2} y ; \\
\frac{\partial^{2} f}{\partial x^{2}} & =12 x^{2}+8 y^{2} ; \\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x} & =16 x y ; \\
\frac{\partial^{2} f}{\partial y^{2}} & =12 y^{2}+8 x^{2} ; \\
\frac{\partial^{3} f}{\partial x^{3}} & =24 x ; \\
\frac{\partial^{3} f}{\partial x^{2} \partial y}=\frac{\partial^{3} f}{\partial x \partial y \partial x}=\frac{\partial^{3} f}{\partial y \partial x^{2}} & =16 y ; \\
\frac{\partial^{3} f}{\partial x \partial y^{2}}=\frac{\partial^{3} f}{\partial y \partial x \partial y}=\frac{\partial^{3} f}{\partial y^{2} \partial x} & =16 x ; \\
\frac{\partial^{3} f}{\partial y^{3}} & =24 y
\end{aligned}
$$

Question 5. Let $f(x, y, z):=x y z e^{x+y+z}$. Find $\frac{\partial^{p+q+r} f}{\partial x^{p} \partial y^{q} \partial z^{r}}$. Here $p, q, r \in \mathbb{N} \cup\{0\}$.
Solution. We notice that

$$
\begin{equation*}
f(x, y, z)=\left(x e^{x}\right)\left(y e^{y}\right)\left(z e^{z}\right) . \tag{14}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\frac{\partial^{p+q+r} f}{\partial x^{p} \partial y^{q} \partial z^{r}}=\left[\frac{\mathrm{d}^{p}}{\mathrm{~d} x^{p}}\left(x e^{x}\right)\right]\left[\frac{\mathrm{d}^{q}}{\mathrm{~d} y^{q}}\left(y e^{y}\right)\right]\left[\frac{\mathrm{d}^{r}}{\mathrm{~d} z^{r}}\left(z e^{z}\right)\right] . \tag{15}
\end{equation*}
$$

Now we prove

$$
\begin{equation*}
\frac{\mathrm{d}^{p}}{\mathrm{~d} x^{p}}\left(x e^{x}\right)=(x+p) e^{x} \tag{16}
\end{equation*}
$$

using induction.
The base case $p=0$ is obvious.
Assume $\frac{\mathrm{d}^{p}}{\mathrm{~d} x^{p}}\left(x e^{x}\right)=(x+p) e^{x}$. We have

$$
\begin{equation*}
\frac{\mathrm{d}^{p+1}}{\mathrm{~d} x^{p+1}}\left(x e^{x}\right)=\frac{\mathrm{d}}{\mathrm{~d} x}\left[(x+p) e^{x}\right]=(x+p+1) e^{x} . \tag{17}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\partial^{p+q+r} f}{\partial x^{p} \partial y^{q} \partial z^{r}}=(x+p)(y+q)(z+r) e^{x+y+z} . \tag{18}
\end{equation*}
$$

Question 6. Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$. Assume $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are differentiable at $\left(x_{0}, y_{0}\right)$. Then

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right) . \tag{19}
\end{equation*}
$$

Solution. Let $r>0$ be such that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exist in $B\left(\left(x_{0}, y_{0}\right), r\right)$. Consider any $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$. Let

$$
\begin{equation*}
A:=f(x, y)-f\left(x_{0}, y\right)-\left[f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)\right] . \tag{20}
\end{equation*}
$$

Setting $\varphi(y):=f(x, y)-f\left(x_{0}, y\right)$ and apply MVT, we have

$$
\begin{equation*}
A=\left[\frac{\partial f}{\partial y}(x, \eta)-\frac{\partial f}{\partial y}\left(x_{0}, \eta\right)\right]\left(y-y_{0}\right) \tag{21}
\end{equation*}
$$

Since $\frac{\partial f}{\partial y}$ is differentiable at $\left(x_{0}, y_{0}\right)$,

$$
\begin{align*}
\frac{\partial f}{\partial y}(x, \eta)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) & =\left(\operatorname{grad} \frac{\partial f}{\partial y}\right)\left(x_{0}, y_{0}\right) \cdot\binom{x-x_{0}}{\eta-y_{0}}+R_{1} \tag{22}\\
\frac{\partial f}{\partial y}\left(x_{0}, \eta\right)-\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) & =\left(\operatorname{grad} \frac{\partial f}{\partial y}\right)\left(x_{0}, y_{0}\right) \cdot\binom{x_{0}-x_{0}}{\eta-y_{0}}+R_{2} \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{\left|R_{1}\right|+\left|R_{2}\right|}{\left\|\left(x-x_{0}, y-y_{0}\right)\right\|}=0 \tag{24}
\end{equation*}
$$

Taking difference we have

$$
\begin{equation*}
\frac{\partial f}{\partial y}(x, \eta)-\frac{\partial f}{\partial y}\left(x_{0}, \eta\right)=\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+R \tag{25}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
A=\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right)+R\left(y-y_{0}\right) \tag{26}
\end{equation*}
$$

where R a function of x, y, x_{0}, y_{0}, f and satisfies

$$
\begin{equation*}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{R}{\left\|\left(x-x_{0}, y-y_{0}\right)\right\|}=0 \tag{27}
\end{equation*}
$$

Similarly writing

$$
\begin{equation*}
A=f(x, y)-f\left(x, y_{0}\right)-\left[f\left(x_{0}, y\right)-f\left(x_{0}, y_{0}\right)\right] \tag{28}
\end{equation*}
$$

we have

$$
\begin{equation*}
A=\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right)+R^{\prime}\left(x-x_{0}\right) \tag{29}
\end{equation*}
$$

with R^{\prime} a function of x, y, x_{0}, y_{0}, f and satisfies

Summarizing, we have

$$
\begin{equation*}
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} \frac{R^{\prime}}{\left\|\left(x-x_{0}, y-y_{0}\right)\right\|}=0 \tag{30}
\end{equation*}
$$

$$
\begin{equation*}
\left[\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)-\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)\right]=\frac{R^{\prime}\left(x-x_{0}\right)+R\left(y-y_{0}\right)}{\left(x-x_{0}\right)\left(y-y_{0}\right)} \tag{31}
\end{equation*}
$$

Note that this holds for all $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$.
Now taking $x=x_{0}+t, y=y_{0}+t$, and letting $t \longrightarrow 0$, we have $t=\frac{1}{\sqrt{2}}\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\|^{2}$ and then

$$
\begin{align*}
{\left[\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)-\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)\right] } & =\lim _{t \longrightarrow 0}\left[\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)-\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)\right] \\
& =\lim _{t \rightarrow 0} \frac{R^{\prime}+R}{t} \\
& =0 \tag{32}
\end{align*}
$$

Thus ends the proof.

