Math 217 Fall 2013 Homework 6

Due Thursday Oct. 31, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $A \subseteq \mathbb{R}^{N}$ be convex. Let $r>0$ and $B:=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid \operatorname{dist}(\boldsymbol{x}, A)<r\right\}$, where $\operatorname{dist}(\boldsymbol{x}, A):=\inf _{\boldsymbol{y} \in A}\|\boldsymbol{x}-\boldsymbol{y}\|$. Prove that B is convex.

Question 2. Consider $\boldsymbol{f}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ defined through

$$
\begin{equation*}
\boldsymbol{f}(x, y):=\binom{x^{3}-3 x y^{2}}{3 x^{2} y-y^{3}} . \tag{1}
\end{equation*}
$$

Prove:
a) For every $\left(x_{0}, y_{0}\right) \neq(0,0)$ there is open set $U \ni\left(x_{0}, y_{0}\right)$ such that \boldsymbol{f} is one-to-one on U;
b) Let U be open and $(0,0) \in U$. Then \boldsymbol{f} is not one-to-one on U.

Question 3. Let $f:(a, b) \mapsto \mathbb{R}$ such that $f^{(n+1)}(x)$ is continuous. For any $x_{0}, x \in(a, b)$, write

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+R_{n}\left(x, x_{0}\right) . \tag{2}
\end{equation*}
$$

a) Prove that $\frac{\partial R_{n}}{\partial x_{0}}$ exists;
b) Calculate $\frac{\partial R_{n}}{\partial x_{0}}$;
c) Prove that

$$
\begin{equation*}
R_{n}\left(x, x_{0}\right)=\frac{1}{n!} \int_{x_{0}}^{x}(x-y)^{n} f^{(n+1)}(y) \mathrm{d} y . \tag{3}
\end{equation*}
$$

Question 4. Calculate all third order partial derivartives for $f(x, y)=x^{4}+y^{4}+4 x^{2} y^{2}$.
Question 5. Let $f(x, y, z):=x y z e^{x+y+z}$. Find $\frac{\partial^{p+q+r} f}{\partial x^{p} \partial y^{q} \partial z^{r}}$. Here $p, q, r \in \mathbb{N} \cup\{0\}$.
Question 6. Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$. Assume $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are differentiable at $\left(x_{0}, y_{0}\right)$. Prove

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right) . \tag{4}
\end{equation*}
$$

