Math 217 Fall 2013 Homework 5 Solutions

Due Thursday Oct. 17, 2013 5Pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Consider $\boldsymbol{f}: \mathbb{R} \mapsto \mathbb{R}^{3}$ defined through

$$
\boldsymbol{f}(t)=\left(\begin{array}{c}
\cos t \tag{1}\\
\sin t \\
t
\end{array}\right) .
$$

Find $t_{1}<t_{2}$ such that there is no $\xi \in\left(t_{1}, t_{2}\right)$ satisfying

$$
\begin{equation*}
\boldsymbol{f}\left(t_{2}\right)-\boldsymbol{f}\left(t_{1}\right)=\boldsymbol{f}^{\prime}(\xi)\left(t_{2}-t_{1}\right) . \tag{2}
\end{equation*}
$$

Explain why this is not contradicting Mean Value Theorem.
Solution. Take $t_{1}=0, t_{2}=2 \pi$. Then

On the other hand,

$$
\boldsymbol{f}\left(t_{2}\right)-\boldsymbol{f}\left(t_{1}\right)=\left(\begin{array}{c}
0 \tag{3}\\
0 \\
2 \pi
\end{array}\right) .
$$

$$
f^{\prime}(t)=\left(\begin{array}{c}
-\sin t \tag{4}\\
\cos t \\
1
\end{array}\right) .
$$

If there is $\xi \in(0,2 \pi)$ such that

$$
\left(\begin{array}{c}
0 \tag{5}\\
0 \\
2 \pi
\end{array}\right)=\left(\begin{array}{c}
-\sin \xi \\
\cos \xi \\
1
\end{array}\right) 2 \pi
$$

then necessarily

$$
\begin{equation*}
\cos \xi=\sin \xi=0 \tag{6}
\end{equation*}
$$

which contradicts the identity

$$
\begin{equation*}
(\cos \xi)^{2}+(\sin \xi)^{2}=1 \tag{7}
\end{equation*}
$$

Question 2. Find $f(x, y)$ such that f is differentiable (meaning differentiable everywhere) but $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ are not continuous.
Solution. Take $f(x, y)=\left\{\begin{array}{ll}x^{2} y^{2} \sin \frac{1}{x} \sin \frac{1}{y} & x \neq 0, y \neq 0 \\ 0 & x=0 \text { or } y=0\end{array}\right.$.

- We first show that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ exists at all $\left(x_{0}, y_{0}\right)$.

At $x_{0} \neq 0, y_{0} \neq 0$, direct calculation gives

$$
\begin{align*}
& \frac{\partial f}{\partial x}=2 x y^{2} \sin \frac{1}{x} \sin \frac{1}{y}-y^{2} \cos \frac{1}{x} \sin \frac{1}{y} \tag{8}\\
& \frac{\partial f}{\partial y}=2 x^{2} y \sin \frac{1}{x} \sin \frac{1}{y}-x^{2} \sin \frac{1}{x} \cos \frac{1}{y} . \tag{9}
\end{align*}
$$

At $x_{0}=0, y_{0} \neq 0$, we have clearly $\frac{\partial f}{\partial y}=0$. To calculate $\frac{\partial f}{\partial x}$ write

$$
f\left(x, y_{0}\right)= \begin{cases}x^{2} y_{0}^{2} \sin \frac{1}{x} \sin \frac{1}{y_{0}} & x \neq 0 \tag{10}\\ 0 & x=0\end{cases}
$$

which gives

$$
\begin{equation*}
\frac{\partial f}{\partial x}\left(0, y_{0}\right)=0 . \tag{11}
\end{equation*}
$$

Similarly at $x_{0} \neq 0, y_{0}=0$ we have $\frac{\partial f}{\partial x}\left(x_{0}, 0\right)=\frac{\partial f}{\partial y}\left(x_{0}, 0\right)=0$.
Finally clearly $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$.

- Now we show that they are not continuous.

Summarizing the above, we have

$$
\frac{\partial f}{\partial x}=\left\{\begin{array}{ll}
2 x y^{2} \sin \frac{1}{x} \sin \frac{1}{y}-y^{2} \sin \frac{1}{x} \sin \frac{1}{y} & x \neq 0, y \neq 0 \tag{12}\\
0 & x=0 \text { or } y=0
\end{array} .\right.
$$

Now we show that $\frac{\partial f}{\partial x}$ is not continuous at any $\left(0, y_{0}\right)$ with $y_{0} \neq 0$. This is clear since $\lim _{x \rightarrow 0} \frac{\partial f}{\partial x}\left(x, y_{9}\right)$ does not exist.

Similarly it can be shown that $\frac{\partial f}{\partial y}$ is not continuous at any $\left(x_{0}, 0\right)$ with $x_{0} \neq 0$.

- Finally we prove that f is differentiable.

Since $f(x, y)=\left(x^{2} \sin \frac{1}{x}\right)\left(y^{2} \sin \frac{1}{y}\right)$, it suffices to show that both $x^{2} \sin \frac{1}{x}$ and $y^{2} \sin \frac{1}{x}$ are differentiable as functions from \mathbb{R}^{2} to \mathbb{R} at every $\left(x_{0}, y_{0}\right)$. We prove a more general statement:

If $f(x): \mathbb{R} \mapsto \mathbb{R}$ is differentiable, then $F: \mathbb{R}^{N} \mapsto \mathbb{R}$ defined through $F(\boldsymbol{x}):=$ $f\left(x_{1}\right)$ is differentiable too.
Take any $\boldsymbol{x}_{0} \in \mathbb{R}$. Denote $\boldsymbol{x}_{0}=\left(\begin{array}{c}x_{01} \\ \vdots \\ x_{0 N}\end{array}\right)$. We have

$$
\begin{align*}
\frac{\left|F(\boldsymbol{x})-F\left(\boldsymbol{x}_{0}\right)-f^{\prime}\left(x_{01}\right)\left(x_{1}-x_{01}\right)\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|} & =\frac{\left|f\left(x_{1}\right)-f\left(x_{01}\right)-f^{\prime}\left(x_{01}\right)\left(x_{1}-x_{01}\right)\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|} \\
& \leqslant \frac{\left|f\left(x_{1}\right)-f\left(x_{01}\right)-f^{\prime}\left(x_{01}\right)\left(x_{1}-x_{01}\right)\right|}{\left|x_{1}-x_{01}\right|} . \tag{13}
\end{align*}
$$

This gives

$$
\begin{equation*}
\lim _{\boldsymbol{x} \longrightarrow \boldsymbol{x}_{0}} \frac{\left|F(\boldsymbol{x})-F\left(\boldsymbol{x}_{0}\right)-f^{\prime}\left(x_{01}\right)\left(x_{1}-x_{01}\right)\right|}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|}=0 \tag{14}
\end{equation*}
$$

and the differentiability of F.
Remark. A better example may be

$$
f(x, y)= \begin{cases}x^{2} \sin \frac{1}{x}+y^{2} \sin \frac{1}{y} & x \neq 0, y \neq 0 \tag{15}\\ x^{2} \sin \frac{1}{x} & y=0 \\ y^{2} \sin \frac{1}{y} & x=0 \\ 0 & x=y=0\end{cases}
$$

Question 3. Let $f(x, y)=\sin (2 x) \sin y \sin (2 x+y)$ and $A:=\{(x, y) \mid x \geqslant 0, y \geqslant 0,2 x+y \leqslant \pi\}$. Find $\max _{(x, y) \in E} f(x, y)$.

Solution. First notice that $f(x, y)=0$ on ∂A while $f(x, y)>0$ in A^{o}. Therefore the maximizer must be in A^{o} and should satisfy the equations $\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0$. This gives

$$
\begin{align*}
& 0=\frac{\partial f}{\partial x}=2 \cos (2 x) \sin y \sin (2 x+y)+2 \sin (2 x) \sin y \cos (2 x+y) \tag{16}\\
& 0=\frac{\partial f}{\partial y}=\sin (2 x) \cos y \sin (2 x+y)+\sin (2 x) \sin y \cos (2 x+y) \tag{17}
\end{align*}
$$

These simplify to

$$
\begin{align*}
\sin (4 x+y) \sin y & =0 \tag{18}\\
\sin (2 x) \sin (2 x+2 y) & =0 . \tag{19}
\end{align*}
$$

Now as we are considering $x>0, y>0,2 x+y<\pi$, there must hold

$$
\begin{align*}
4 x+y & =\pi \tag{20}\\
2 x+2 y & =\pi \tag{21}
\end{align*}
$$

which leads to $x=\pi / 6, y=\pi / 3$. Since this is the only candidate and

$$
\begin{equation*}
f(\pi / 6, \pi / 3)=\frac{3 \sqrt{3}}{8}>0, \tag{22}
\end{equation*}
$$

the maximum is $\frac{3 \sqrt{3}}{8}$.
Question 4. Let $z=Z(x, y)$ be determined through the equation

$$
\begin{equation*}
x y+y z+z x=1 \text {. } \tag{23}
\end{equation*}
$$

Find $\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}$ without solving Z explicitly.
Solution. Differentiating

$$
\begin{equation*}
x y+y Z(x, y)+Z(x, y) x=1 \tag{24}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& y+y \frac{\partial Z}{\partial x}+Z+x \frac{\partial Z}{\partial x}=0 \Longrightarrow \frac{\partial Z}{\partial x}=-\frac{y+z}{x+y} ; \tag{25}\\
& x+y \frac{\partial Z}{\partial y}+Z+x \frac{\partial Z}{\partial y}=0 \Longrightarrow \frac{\partial Z}{\partial y}=-\frac{x+z}{x+y} . \tag{26}
\end{align*}
$$

Question 5. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N} \in \mathbb{R}^{N}$ be such that $\left\|\boldsymbol{v}_{i}\right\|=1$ for all $i, \boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=0$ for all $i \neq j$. Let f : $\mathbb{R}^{N} \mapsto \mathbb{R}$ be differentiable. Prove

$$
\begin{equation*}
\left(\frac{\partial f}{\partial \boldsymbol{v}_{1}}\right)^{2}+\cdots+\left(\frac{\partial f}{\partial \boldsymbol{v}_{N}}\right)^{2}=\left(\frac{\partial f}{\partial x_{1}}\right)^{2}+\cdots+\left(\frac{\partial f}{\partial x_{N}}\right)^{2} . \tag{27}
\end{equation*}
$$

Solution. Since f is differentiable, we have

This means

$$
\begin{equation*}
\frac{\partial f}{\partial \boldsymbol{v}_{i}}=(\operatorname{grad} f)^{T} \boldsymbol{v}_{i}=\boldsymbol{v}_{i}^{T}(\operatorname{grad} f) . \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial f}{\partial \boldsymbol{v}_{i}}\right)^{2}=(\operatorname{grad} f)^{T}\left(\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}\right)(\operatorname{grad} f) . \tag{29}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\left(\frac{\partial f}{\partial \boldsymbol{v}_{1}}\right)^{2}+\cdots+\left(\frac{\partial f}{\partial \boldsymbol{v}_{N}}\right)^{2}=(\operatorname{grad} f)^{T}\left(\sum_{i=1}^{N}\left(\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}\right)\right)(\operatorname{grad} f) . \tag{30}
\end{equation*}
$$

and all we need to show is

$$
\begin{equation*}
A:=\sum_{i=1}^{N}\left(\boldsymbol{v}_{i} \boldsymbol{v}_{i}^{T}\right)=I . \tag{31}
\end{equation*}
$$

We check

$$
\begin{equation*}
A \boldsymbol{v}_{k}=\sum_{i=1}^{N}\left(\boldsymbol{v}_{i}^{T} \boldsymbol{v}_{k}\right) \boldsymbol{v}_{i}=\boldsymbol{v}_{k} \tag{32}
\end{equation*}
$$

for every $k=1,2,3, \ldots, N$. Now denote $V \in \mathbb{R}^{N \times N}$ by

$$
V=\left(\begin{array}{lll}
\boldsymbol{v}_{1} & \cdots & \boldsymbol{v}_{N} \tag{33}
\end{array}\right)
$$

we have

$$
\begin{equation*}
A V=V . \tag{34}
\end{equation*}
$$

Now we show that $\boldsymbol{v}_{1}, \ldots \boldsymbol{v}_{N}$ are linearly independent. Once this is done we know V is invertible and can conclude

$$
\begin{equation*}
A=A\left(V V^{-1}\right)=(A V) V^{-1}=V V^{-1}=I . \tag{35}
\end{equation*}
$$

To see the linear independence, let $c_{1}, \ldots, c_{N} \in \mathbb{R}$ be such that

$$
\begin{equation*}
c_{1} \boldsymbol{v}_{1}+\cdots+c_{N} \boldsymbol{v}_{N}=\mathbf{0} . \tag{36}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
c_{1}=\boldsymbol{v}_{1} \cdot\left[c_{1} \boldsymbol{v}_{1}+\cdots+c_{N} \boldsymbol{v}_{N}\right]=0 . \tag{37}
\end{equation*}
$$

Similarly we have $c_{2}=\cdots=c_{N}=0$ and therefore $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}$ are linearly independent.
Question 6. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}$ have continuous partial derivatives. Let $\alpha>0$. Assume that \boldsymbol{f} satisfies

$$
\begin{equation*}
\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})\| \geqslant \alpha\|\boldsymbol{x}-\boldsymbol{y}\| \tag{38}
\end{equation*}
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}$. Prove
a) $\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right) \neq 0$ for all \boldsymbol{x};
b) For any fixed $\boldsymbol{y}_{0} \in \mathbb{R}^{N}, F(\boldsymbol{x}):=\|\boldsymbol{y}-\boldsymbol{f}(\boldsymbol{x})\|$ reaches minimum but not maximum;
c) $\boldsymbol{f}\left(\mathbb{R}^{N}\right)=\mathbb{R}^{N}$.

Solution.

a) Assume the contrary. There is $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$ such that $\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)=0$. Then from linear algebra we know that there is $\boldsymbol{v} \in \mathbb{R}^{N}$ with $\|\boldsymbol{v}\|=1$ such that

$$
\begin{equation*}
\left(\frac{\partial f}{\partial x}\right) \boldsymbol{v}=\mathbf{0} \tag{39}
\end{equation*}
$$

As \boldsymbol{f} has continuous partial derivatives, \boldsymbol{f} is differentiable and

$$
\begin{equation*}
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{v}}\left(\boldsymbol{x}_{0}\right)=\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right) \boldsymbol{v}=\mathbf{0} . \tag{40}
\end{equation*}
$$

In other words,
Now take $\delta>0$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{\left\|\boldsymbol{f}\left(\boldsymbol{x}_{0}+t \boldsymbol{v}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\|}{|t|}=0 . \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\left\|\boldsymbol{f}\left(\boldsymbol{x}_{0}+t \boldsymbol{v}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\|}{|t|}<\alpha \tag{42}
\end{equation*}
$$

for all $0<|t|<\delta$. Consider $\boldsymbol{x}=\boldsymbol{x}_{0}, \boldsymbol{y}=\boldsymbol{x}_{0}+\frac{\delta}{2} \boldsymbol{v}$. We have

$$
\begin{equation*}
\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})\|<\alpha|t|=\alpha\|\boldsymbol{x}-\boldsymbol{y}\|, \tag{43}
\end{equation*}
$$

contradiction.
b) Fix \boldsymbol{y}_{0}. Take any $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$. Denote $m:=\left\|\boldsymbol{y}_{0}-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\|$. Now for any $M>0$, take $R>0$ satisfying $R>M+m+\left\|\boldsymbol{x}_{0}\right\|$, then for any $\|\boldsymbol{x}\|>R$, we have

$$
\begin{align*}
\left\|\boldsymbol{y}_{0}-\boldsymbol{f}(\boldsymbol{x})\right\| & \geqslant\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\|-\left\|\boldsymbol{y}_{0}-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\| \\
& \geqslant\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|-m \\
& >R-\left\|\boldsymbol{x}_{0}\right\|-m>M . \tag{44}
\end{align*}
$$

Thus we see clearly that $\lim _{\|\boldsymbol{x}\|} \longrightarrow \infty\|\boldsymbol{f}(\boldsymbol{x})\|=\infty$ and therefore the maximum does not exist.
Now take $M=m$. We see that for all $\boldsymbol{x} \in \overline{B(\mathbf{0}, R)}^{c},\left\|\boldsymbol{y}_{0}-\boldsymbol{f}(\boldsymbol{x})\right\|>m$. Consider the function $\left\|\boldsymbol{y}_{0}-\boldsymbol{f}(\boldsymbol{x})\right\|$ on $\overline{B(\mathbf{0}, R)}$. It is continuous and therefore there the minimum is achieved. Since $\boldsymbol{x}_{0} \in B(\mathbf{0}, R)$ we know that this minimum $\leqslant m$ and has to be the global minimum.
c) Take any $\boldsymbol{y}_{0} \in \mathbb{R}^{N}$. All we need to prove is $\min _{\boldsymbol{x} \in \mathbb{R}^{N}}\left\|\boldsymbol{y}_{0}-\boldsymbol{f}(\boldsymbol{x})\right\|=0$. Assume the contrary. Take \boldsymbol{x}_{0} to be the minimizer that is

$$
\begin{equation*}
\forall \boldsymbol{x} \in \mathbb{R}^{N}, \quad 0<\left\|\boldsymbol{y}_{0}-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\| \leqslant\left\|\boldsymbol{y}_{0}-\boldsymbol{f}(\boldsymbol{x})\right\| . \tag{45}
\end{equation*}
$$

Now set $\boldsymbol{v}:=\frac{\boldsymbol{y}_{0}-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)}{\left\|\boldsymbol{y}_{0}-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\|}$. Now as $\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)\left(\boldsymbol{x}_{0}\right) \neq 0$, there is $r>0$ such that an inverse function \boldsymbol{g} exists: $\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{y}))=\boldsymbol{y}$. Therefore $B\left(\boldsymbol{y}_{0}, r\right) \subseteq \boldsymbol{f}\left(\mathbb{R}^{N}\right)$. In particular there is $\boldsymbol{x} \in \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)+\frac{r}{2} \boldsymbol{v} \tag{46}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\left\|\boldsymbol{y}_{0}-\boldsymbol{f}(\boldsymbol{x})\right\|<\left\|\boldsymbol{y}_{0}-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\| . \tag{47}
\end{equation*}
$$

Contradiction.
Remark. Alternatively we can prove c) without proving b).
Since $\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right) \neq 0$, by the inverse function theorem, for any $\boldsymbol{y}_{0}=\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$, there is $r>0$ such that an inverse function \boldsymbol{g} exists: $\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{y}))=\boldsymbol{y}$. Therefore $B\left(\boldsymbol{y}_{0}, r\right) \subseteq \boldsymbol{f}\left(\mathbb{R}^{N}\right)$. This means $f\left(\mathbb{R}^{N}\right)$ is open.

One the other hand, if $\boldsymbol{y}_{0} \in\left(\boldsymbol{f}\left(\mathbb{R}^{N}\right)\right)^{c}$, and for any $r>0$ there is $\boldsymbol{y} \in B\left(\boldsymbol{y}_{0}, r\right) \cap \boldsymbol{f}\left(\mathbb{R}^{N}\right)$, then we can find \boldsymbol{x}_{n} such that $\boldsymbol{y}_{n}=\boldsymbol{f}\left(\boldsymbol{x}_{n}\right) \longrightarrow \boldsymbol{y}_{0}$. This gives

$$
\begin{equation*}
\left\|\boldsymbol{x}_{n}-\boldsymbol{x}_{m}\right\| \leqslant \alpha^{-1}\left\|\boldsymbol{y}_{n}-\boldsymbol{y}_{m}\right\| . \tag{48}
\end{equation*}
$$

Since $\left\{\boldsymbol{y}_{n}\right\}$ is Cauchy, so is $\left\{\boldsymbol{x}_{n}\right\}$ and therefore there is \boldsymbol{x}_{0} such that $\lim _{n \rightarrow \infty} \boldsymbol{x}_{n}=\boldsymbol{x}_{0}$.
Now as \boldsymbol{f} has continuous partial derivatives, it is differentiable and therefore continuous. Consequently

$$
\begin{equation*}
\boldsymbol{y}_{0}=\lim _{n \rightarrow \infty} \boldsymbol{f}\left(\boldsymbol{x}_{n}\right)=\boldsymbol{f}\left(\lim _{n \rightarrow \infty} \boldsymbol{x}_{n}\right)=\boldsymbol{f}\left(\boldsymbol{x}_{0}\right) \in \boldsymbol{f}\left(\mathbb{R}^{N}\right) \tag{49}
\end{equation*}
$$

Contradiction. Therefore $\boldsymbol{f}\left(\mathbb{R}^{N}\right)$ is closed.
As $\boldsymbol{f}\left(\mathbb{R}^{N}\right)$ is both open and closed, it is either \varnothing or \mathbb{R}^{N}. Clearly it is non-empty and therefore equals \mathbb{R}^{N}.

