
Math 217 Fall 2013 Homework 5 Solutions

Due Thursday Oct. 17, 2013 5pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answer – prove that your function indeed has the specified
property – for each problem.

• Please read this week’s lecture notes before working on the problems.

Question 1. Consider f :R� R
3 defined through

f(t) =





cos t

sin t

t



. (1)

Find t1 <t2 such that there is no ξ ∈ (t1, t2) satisfying

f(t2)− f(t1)= f ′(ξ) (t2− t1). (2)

Explain why this is not contradicting Mean Value Theorem.

Solution. Take t1 = 0, t2 =2 π. Then

f(t2)− f(t1) =





0
0

2 π



. (3)

On the other hand,

f ′(t) =





−sin t

cos t

1



. (4)

If there is ξ ∈ (0, 2 π) such that




0
0

2 π



=





−sin ξ

cos ξ

1



2 π (5)

then necessarily

cos ξ = sin ξ =0 (6)

which contradicts the identity

(cos ξ)2 + (sin ξ)2 =1. (7)

Question 2. Find f(x, y) such that f is differentiable (meaning differentiable everywhere) but
∂f

∂x
,

∂f

∂y
are not continuous.

Solution. Take f(x, y) =

{

x2 y2 sin
1

x
sin

1

y
x� 0, y� 0

0 x= 0 or y = 0
.

• We first show that
∂f

∂x
,

∂f

∂y
exists at all (x0, y0).

At x0� 0, y0� 0, direct calculation gives

∂f

∂x
= 2 x y2 sin

1
x
sin

1
y
− y2 cos

1
x
sin

1
y

(8)

∂f

∂y
= 2 x2 y sin

1
x
sin

1
y
−x2 sin

1
x
cos

1
y
. (9)

1



At x0 = 0, y0� 0, we have clearly
∂f

∂y
= 0. To calculate

∂f

∂x
write

f(x, y0) =







x2 y0
2 sin

1
x
sin

1
y0

x� 0

0 x =0
(10)

which gives
∂f

∂x
(0, y0) = 0. (11)

Similarly at x0� 0, y0 =0 we have
∂f

∂x
(x0, 0) =

∂f

∂y
(x0, 0) =0.

Finally clearly
∂f

∂x
(0, 0) =

∂f

∂y
(0, 0)= 0.

• Now we show that they are not continuous.
Summarizing the above, we have

∂f

∂x
=







2 x y2 sin
1
x
sin

1
y
− y2 sin

1
x
sin

1
y

x� 0, y� 0

0 x =0 or y =0
. (12)

Now we show that
∂f

∂x
is not continuous at any (0, y0) with y0 � 0. This is clear since

limx� 0
∂f

∂x
(x, y9) does not exist.

Similarly it can be shown that
∂f

∂y
is not continuous at any (x0, 0) with x0� 0.

• Finally we prove that f is differentiable.

Since f(x, y)=
(

x2 sin
1

x

)(

y2 sin
1

y

)

, it suffices to show that both x2 sin
1

x
and y2 sin

1

x
are

differentiable as functions fromR
2 toR at every (x0, y0). We prove a more general statement:

If f(x):R� R is differentiable, then F :RN� R defined through F (x)8
f(x1) is differentiable too.

Take any x0∈R. Denote x0 =





x01
x0N



. We have

|F (x)−F (x0)− f ′(x01)(x1−x01)|
‖x−x0‖

=
|f(x1)− f(x01)− f ′(x01)(x1− x01)|

‖x−x0‖
6

|f(x1)− f(x01)− f ′(x01)(x1− x01)|
|x1− x01|

. (13)

This gives

lim
x�x0

|F (x)−F (x0)− f ′(x01)(x1−x01)|
‖x−x0‖

=0 (14)

and the differentiability of F .

Remark. A better example may be

f(x, y)=



































x2 sin
1

x
+ y2 sin

1

y
x� 0, y� 0

x2 sin
1
x

y =0

y2 sin
1
y

x =0

0 x = y =0

. (15)
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Question 3. Let f(x, y)= sin (2 x) sin y sin (2 x+ y) and A8 {(x, y)P x>0, y >0,2 x+ y 6π}. Find
max(x,y)∈Ef(x, y).

Solution. First notice that f(x, y) = 0 on ∂A while f(x, y) > 0 in Ao. Therefore the maximizer

must be in Ao and should satisfy the equations
∂f

∂x
=

∂f

∂y
=0. This gives

0 =
∂f

∂x
= 2 cos (2 x) sin y sin (2 x+ y) + 2 sin (2 x) sin y cos (2x + y) (16)

0 =
∂f

∂y
= sin (2 x) cos y sin (2 x+ y) + sin (2 x) sin y cos (2x + y) (17)

These simplify to

sin (4 x + y) sin y = 0 (18)

sin (2 x) sin (2 x +2 y) = 0. (19)

Now as we are considering x > 0, y > 0, 2 x+ y < π, there must hold

4 x + y = π (20)

2 x +2 y = π (21)

which leads to x =π/6, y =π/3. Since this is the only candidate and

f(π/6, π/3) =
3 3
√

8
> 0, (22)

the maximum is
3 3
√

8
.

Question 4. Let z = Z(x, y) be determined through the equation

x y + y z + z x =1. (23)

Find
∂Z

∂x
,

∂Z

∂y
without solving Z explicitly.

Solution. Differentiating

x y + y Z(x, y) +Z(x, y) x= 1 (24)

we obtain

y + y
∂Z

∂x
+ Z +x

∂Z

∂x
= 0� ∂Z

∂x
=− y + z

x+ y
; (25)

x + y
∂Z

∂y
+ Z +x

∂Z

∂y
= 0� ∂Z

∂y
=−x+ z

x+ y
. (26)

Question 5. Let v1, v2,
 , vN ∈R
N be such that ‖vi‖= 1 for all i, vi · vj = 0 for all i� j. Let f :

R
N� R be differentiable. Prove

(

∂f

∂v1

)

2

+� +

(

∂f

∂vN

)

2

=

(

∂f

∂x1

)

2

+� +

(

∂f

∂xN

)

2

. (27)

Solution. Since f is differentiable, we have

∂f

∂vi
= (grad f)Tvi = vi

T(grad f). (28)

This means
(

∂f

∂vi

)

2

=(grad f)T
(

vi vi
T
)

(grad f). (29)
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Now we have
(

∂f

∂v1

)

2

+� +

(

∂f

∂vN

)

2

= (grad f)T

(

∑

i=1

N
(

vi vi
T
)

)

(grad f). (30)

and all we need to show is

A8∑

i=1

N
(

vi vi
T
)

= I. (31)

We check

A vk =
∑

i=1

N
(

vi
T vk

)

vi = vk (32)

for every k =1, 2, 3,
 , N . Now denote V ∈RN×N by

V =( v1 � vN ) (33)

we have

AV = V . (34)

Now we show that v1,
vN are linearly independent. Once this is done we know V is invertible and
can conclude

A= A (V V −1) = (A V )V −1 =V V −1 = I. (35)

To see the linear independence, let c1,
 , cN ∈R be such that

c1 v1 +� + cN vN =0. (36)

Now we have

c1 =v1 · [c1 v1 +� + cN vN ] = 0. (37)

Similarly we have c2 =� = cN = 0 and therefore v1,
 ,vN are linearly independent.

Question 6. Let f :RN�R
N have continuous partial derivatives. Let α>0. Assume that f satisfies

‖f(x)− f(y)‖> α ‖x− y‖ (38)

for all x, y ∈RN. Prove

a) det
(

∂f

∂x

)� 0 for all x;

b) For any fixed y0∈R
N, F (x)8 ‖y − f(x)‖ reaches minimum but not maximum;

c) f(RN)=R
N.

Solution.

a) Assume the contrary. There is x0 ∈R
N such that det

(

∂f

∂x

)

= 0. Then from linear algebra

we know that there is v ∈R
N with ‖v‖=1 such that

(

∂f

∂x

)

v =0. (39)

As f has continuous partial derivatives, f is differentiable and

∂f

∂v
(x0) =

(

∂f

∂x

)

v = 0. (40)
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In other words,

lim
t� 0

‖f(x0 + tv)− f (x0)‖
|t| =0. (41)

Now take δ > 0 such that
‖f(x0 + tv)− f(x0)‖

|t| < α (42)

for all 0 < |t|< δ. Consider x =x0, y =x0 +
δ

2
v. We have

‖f(x)− f(y)‖<α |t|= α ‖x− y‖, (43)

contradiction.

b) Fix y0. Take any x0 ∈ RN. Denote m: =‖y0 − f(x0)‖. Now for any M > 0, take R > 0
satisfying R > M +m + ‖x0‖, then for any ‖x‖>R, we have

‖y0− f(x)‖ > ‖f(x)− f(x0)‖− ‖y0− f(x0)‖
> ‖x−x0‖−m

> R−‖x0‖−m > M. (44)

Thus we see clearly that lim‖x‖�∞‖f(x)‖=∞ and therefore the maximum does not exist.

Now take M = m. We see that for all x ∈ B(0, R)
c
, ‖y0 − f(x)‖ > m. Consider the

function ‖y0 − f(x)‖ on B(0, R). It is continuous and therefore there the minimum is
achieved. Since x0 ∈ B(0, R) we know that this minimum 6m and has to be the global
minimum.

c) Take any y0∈R
N. All we need to prove is minx∈RN ‖y0− f(x)‖=0. Assume the contrary.

Take x0 to be the minimizer that is

∀x∈RN , 0 < ‖y0− f (x0)‖6 ‖y0− f(x)‖. (45)

Now set v8 y0− f(x0)

‖y0− f(x0)‖
. Now as det

(

∂f

∂x

)

(x0)� 0, there is r>0 such that an inverse function

g exists: f(g(y))= y. Therefore B(y0, r)⊆ f(RN). In particular there is x∈R
N such that

f(x) = f(x0) +
r

2
v. (46)

Now we have

‖y0− f (x)‖< ‖y0− f (x0)‖. (47)

Contradiction.

Remark. Alternatively we can prove c) without proving b).

Since det
(

∂f

∂x

)� 0, by the inverse function theorem, for any y0 = f(x0), there is r > 0

such that an inverse function g exists: f(g(y))= y. Therefore B(y0, r)⊆ f(RN). This means
f(RN) is open.

One the other hand, if y0 ∈ (f(RN))c, and for any r > 0 there is y ∈B(y0, r)∩ f(RN),
then we can find xn such that yn = f(xn)� y0. This gives

‖xn −xm‖6α−1 ‖yn − ym‖. (48)

Since {yn} is Cauchy, so is {xn} and therefore there is x0 such that limn→∞xn = x0.
Now as f has continuous partial derivatives, it is differentiable and therefore continuous.

Consequently

y0 = lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)

= f(x0)∈ f(RN). (49)
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Contradiction. Therefore f(RN) is closed.
As f (RN) is both open and closed, it is either ∅ or R

N . Clearly it is non-empty and
therefore equals RN.

6 Math 217 Fall 2013 Homework 5 Solutions


