MATH 217 FALL 2013 HOMEWORK 5

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Consider $f: \mathbb{R} \mapsto \mathbb{R}^3$ defined through

$$\boldsymbol{f}(t) = \begin{pmatrix} \cos t \\ \sin t \\ t \end{pmatrix}. \tag{1}$$

Find $t_1 < t_2$ such that there is no $\xi \in (t_1, t_2)$ satisfying

$$f(t_2) - f(t_1) = f'(\xi) (t_2 - t_1).$$
(2)

Explain why this is not contradicting Mean Value Theorem.

Question 2. Find f(x, y) such that f is differentiable (meaning differentiable everywhere) but $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ are not continuous.

Question 3. Let $f(x, y) = \sin(2x) \sin y \sin(2x+y)$ and $A := \{(x, y) | x \ge 0, y \ge 0, 2x+y \le \pi\}$. Find $\max_{(x,y)\in A} f(x, y)$.

Question 4. Let z = Z(x, y) be determined through the equation

$$x \, y + y \, z + z \, x = 1. \tag{3}$$

Find $\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}$ without solving Z explicitly.

Question 5. Let $v_1, v_2, ..., v_N \in \mathbb{R}^N$ be such that $||v_i|| = 1$ for all $i, v_i \cdot v_j = 0$ for all $i \neq j$. Let $f: \mathbb{R}^N \mapsto \mathbb{R}$ be differentiable. Prove

$$\left(\frac{\partial f}{\partial \boldsymbol{v}_1}\right)^2 + \dots + \left(\frac{\partial f}{\partial \boldsymbol{v}_N}\right)^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 + \dots + \left(\frac{\partial f}{\partial x_N}\right)^2.$$
(4)

Question 6. Let $f: \mathbb{R}^N \mapsto \mathbb{R}^N$ have continuous partial derivatives. Let $\alpha > 0$. Assume that f satisfies

$$\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{y})\| \ge \alpha \|\boldsymbol{x} - \boldsymbol{y}\|$$
(5)

for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^N$. Prove

- a) det $\left(\frac{\partial f}{\partial x}\right) \neq 0$ for all x;
- b) For any fixed $y_0 \in \mathbb{R}^N$, $F(x) := \|y f(x)\|$ reaches minimum but not maximum;
- c) $\boldsymbol{f}(\mathbb{R}^N) = \mathbb{R}^N$.