Math 217 Fall 2013 Homework 5

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Consider $\boldsymbol{f}: \mathbb{R} \mapsto \mathbb{R}^{3}$ defined through

$$
\boldsymbol{f}(t)=\left(\begin{array}{c}
\cos t \tag{1}\\
\sin t \\
t
\end{array}\right) .
$$

Find $t_{1}<t_{2}$ such that there is no $\xi \in\left(t_{1}, t_{2}\right)$ satisfying

$$
\begin{equation*}
\boldsymbol{f}\left(t_{2}\right)-\boldsymbol{f}\left(t_{1}\right)=\boldsymbol{f}^{\prime}(\xi)\left(t_{2}-t_{1}\right) . \tag{2}
\end{equation*}
$$

Explain why this is not contradicting Mean Value Theorem.
Question 2. Find $f(x, y)$ such that f is differentiable (meaning differentiable everywhere) but $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ are not continuous.
Question 3. Let $f(x, y)=\sin (2 x) \sin y \sin (2 x+y)$ and $A:=\{(x, y) \mid x \geqslant 0, y \geqslant 0,2 x+y \leqslant \pi\}$. Find $\max _{(x, y) \in A} f(x, y)$.

Question 4. Let $z=Z(x, y)$ be determined through the equation

$$
\begin{equation*}
x y+y z+z x=1 \text {. } \tag{3}
\end{equation*}
$$

Find $\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}$ without solving Z explicitly.
Question 5. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N} \in \mathbb{R}^{N}$ be such that $\left\|\boldsymbol{v}_{i}\right\|=1$ for all $i, \boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=0$ for all $i \neq j$. Let f : $\mathbb{R}^{N} \mapsto \mathbb{R}$ be differentiable. Prove

$$
\begin{equation*}
\left(\frac{\partial f}{\partial \boldsymbol{v}_{1}}\right)^{2}+\cdots+\left(\frac{\partial f}{\partial \boldsymbol{v}_{N}}\right)^{2}=\left(\frac{\partial f}{\partial x_{1}}\right)^{2}+\cdots+\left(\frac{\partial f}{\partial x_{N}}\right)^{2} . \tag{4}
\end{equation*}
$$

Question 6. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}$ have continuous partial derivatives. Let $\alpha>0$. Assume that \boldsymbol{f} satisfies

$$
\begin{equation*}
\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}(\boldsymbol{y})\| \geqslant \alpha\|\boldsymbol{x}-\boldsymbol{y}\| \tag{5}
\end{equation*}
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}$. Prove
a) $\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right) \neq 0$ for all \boldsymbol{x};
b) For any fixed $\boldsymbol{y}_{0} \in \mathbb{R}^{N}, F(\boldsymbol{x}):=\|\boldsymbol{y}-\boldsymbol{f}(\boldsymbol{x})\|$ reaches minimum but not maximum;
c) $\boldsymbol{f}\left(\mathbb{R}^{N}\right)=\mathbb{R}^{N}$.

