Math 217 Fall 2013 Homework 4 Solutions

Due Thursday Oct. 10, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $f:[0,1) \times[0,1)$ be defined as

$$
\begin{equation*}
f(x, y)=\frac{1}{1-x y} . \tag{1}
\end{equation*}
$$

Prove that f is continuous (not necessarily by definition) but not uniformly continuous.

Solution.

- $\quad f$ is continuous. This follows directly from the fact that f is the ratio of two continuous functions $1,1-x y$ and $1-x y \neq 0$ for all $(x, y) \in[0,1) \times[0,1)$.
- f is not uniformly continuous. For any $1>\delta>0$, let $x_{1}=1-\delta / 2, x_{2}=1-\delta$. Then

$$
\begin{equation*}
\left\|\left(x_{1}, x_{1}\right)-\left(x_{2}, x_{2}\right)\right\|=\frac{\sqrt{2}}{2} \delta<\delta \tag{2}
\end{equation*}
$$

but

$$
\begin{equation*}
\left|f\left(x_{1}, x_{1}\right)-f\left(x_{2}, x_{2}\right)\right|=\frac{1}{\delta-\delta^{2} / 4}-\frac{1}{2 \delta-\delta^{2}}>\frac{1}{\delta / 2-\delta^{2} / 4}-\frac{1}{2 \delta-\delta^{2}}>\frac{1}{\delta-\delta^{2} / 2}>2 . \tag{3}
\end{equation*}
$$

Question 2. Prove by definition (without using Heine-Borel):
a) $E=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subseteq \mathbb{R}^{N}$ is compact;
b) $E=\{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}\}$ is not compact;

Proof.

a) Let W be any open covering of E. Then for each $i \in\{1,2, \ldots, n\}$, since $\boldsymbol{x}_{i} \in \cup_{O \in W} O$, there is $O_{i} \in W$ such that $\boldsymbol{x}_{i} \in O_{i}$. Now we have the desired finite covering

$$
\begin{equation*}
E \subseteq \cup_{i=1}^{n} O_{i} \tag{4}
\end{equation*}
$$

b) Consider the open covering

$$
\begin{equation*}
E \subseteq \cup_{i, j=1}^{\infty} O_{i j} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
O_{i j}:=B((i, j), 1) . \tag{6}
\end{equation*}
$$

Then we see that each $(i, j) \in E$ satisfies $(i, j) \in O_{i j}$ but

$$
\begin{equation*}
\forall(k, l) \neq(i, j) \quad(i, j) \notin O_{k l} . \tag{7}
\end{equation*}
$$

Therefore any finite covering can only cover finitely many points in E and cannot cover E.
Question 3. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ be continuous. Let $A \subseteq \mathbb{R}^{N}$.
a) Prove that $\boldsymbol{f}(\overline{A)} \subseteq \overline{\boldsymbol{f}(A)}$;
b) Give an example where $\boldsymbol{f}(\overline{A)} \subset \overline{\boldsymbol{f}(A)}$ (that is $\boldsymbol{f}(\overline{A)} \subseteq \overline{\boldsymbol{f}(A)}$ but $\boldsymbol{f}(\overline{A)} \neq \overline{\boldsymbol{f}(A)})$.
c) What is the weakest additional assumption on E you can find that guarantees $\boldsymbol{f}(\bar{A})=\overline{\boldsymbol{f}(A)}$ for all continuous \boldsymbol{f} ? Justify your answer.

Solution.

a) Take any $\boldsymbol{y}_{0} \in \boldsymbol{f}(\bar{A})$. Then there is $\boldsymbol{x} \in \bar{A}$ such that $\boldsymbol{y}_{0}=\boldsymbol{f}(\boldsymbol{x})$. Two cases:

1. $\boldsymbol{x}_{0} \in A$. Then $\boldsymbol{y}_{0} \in \boldsymbol{f}(A) \subseteq \overline{\boldsymbol{f}(A)}$;
2. $\boldsymbol{x}_{0} \notin A$. Then we claim that for every $r>0, B\left(\boldsymbol{x}_{0}, r\right) \cap A \neq \varnothing$. To see this, assume otherwise. Then there is $r_{0}>0$ such that $B\left(\boldsymbol{x}_{0}, r_{0}\right) \cap A=\varnothing \Longrightarrow A \subseteq B\left(\boldsymbol{x}_{0}, r_{0}\right)^{c}$. Now we have $A \subseteq \bar{A} \cap B\left(\boldsymbol{x}_{0}, r_{0}\right)^{c} \subset \bar{A}$. Note that the middle set is closed. This contradicts the definition of closure as the intersection of all closed sets containing A.

Since \boldsymbol{f} is continuous, for every $\varepsilon>0$, there is $\delta>0$ such that $\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|<\delta \Longrightarrow$ $\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\|<\varepsilon$. We know that $B\left(\boldsymbol{x}_{0}, \delta\right) \cap A \neq \varnothing$ therefore $\boldsymbol{f}(A) \cap B\left(\boldsymbol{y}_{0}, \varepsilon\right) \neq \varnothing$. This is true for all $\varepsilon>0$, so $\boldsymbol{y}_{0} \in \overline{\boldsymbol{f}(A)}$.
b) Consider

$$
\begin{equation*}
f(\boldsymbol{x})=e^{-\|\boldsymbol{x}\|} . \tag{8}
\end{equation*}
$$

and $\bar{A}=A=\mathbb{R}^{N}$ and $f(A)=(0,1]$.
c) The weakest addition condition is " \bar{A} is compact".

- If \bar{A} is further compact, then $\boldsymbol{f}(\bar{A})=\overline{\boldsymbol{f}(A)}$.

Since $\boldsymbol{f}(A) \subseteq \boldsymbol{f}(\bar{A})$, all we need to show is $\boldsymbol{f}(\bar{A})$ is closed. By Heine-Borel it suffices to show $\boldsymbol{f}(\bar{A})$ is compact. Let W be an open covering of $\boldsymbol{f}(\bar{A})$. Then

$$
\begin{equation*}
W^{\prime}:=\left\{\boldsymbol{f}^{-1}(O) \mid O \in W\right\} \tag{9}
\end{equation*}
$$

is an open covering of \bar{A}. By compactness there is a subcovering

$$
\begin{equation*}
\bar{A} \subseteq \cup_{k=1}^{n} \boldsymbol{f}^{-1}\left(O_{k}\right) . \tag{10}
\end{equation*}
$$

Now this gives

$$
\begin{equation*}
\boldsymbol{f}(\bar{A}) \subseteq \boldsymbol{f}\left(\cup_{k=1}^{n} \boldsymbol{f}^{-1}\left(O_{k}\right)\right) \subseteq \cup_{k=1}^{n} \boldsymbol{f}\left(\boldsymbol{f}^{-1}\left(O_{k}\right)\right) \subseteq \cup_{k=1}^{n} O_{k} . \tag{11}
\end{equation*}
$$

This is a finite covering of $f(\bar{A})$.

- Now we show that if $\boldsymbol{f}(\bar{A})=\overline{\boldsymbol{f}(A)}$ for all continuous \boldsymbol{f}, then \bar{A} must be compact.

Assume otherwise. By Heine-Borel, \bar{A} is not bounded. We claim that A is not bounded either. Assume otherwise, then there is $R>0$ such that $A \subseteq B(\mathbf{0}, R)$. Since \bar{A} is not bounded, there is $\boldsymbol{x} \in \bar{A}$ such that $\|\boldsymbol{x}\|>R+1$. Note that $\boldsymbol{x} \notin A$. Now consider the set

$$
\begin{equation*}
B:=\bar{A} \cap B(\boldsymbol{x}, 1)^{c} . \tag{12}
\end{equation*}
$$

Then clearly

1. B is closed;
2. $A \subseteq B \subset \bar{A}$.

This contradicts the fact that \bar{A} is the intersection of all closed sets containing A.
Now define $f(\boldsymbol{x}):=\exp (-\|\boldsymbol{x}\|)$ and obviously $0 \in \overline{f(A)}$ but $0 \notin f(\bar{A})$.
Remark. Sets $A \subseteq \mathbb{R}^{N}$ satisfying \bar{A} is compact are called "precompact".

Question 4. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Prove by definition that f is differentiable at $(1,1,1)$ and find its differential there.
Proof. Guess $D f(1,1,1)(u, v, w)=2 u+2 v+2 w$.
Now set $x=1+u, y=1+v, z=1+w$ and check

$$
\begin{equation*}
\frac{|f(x, y, z)-f(1,1,1)-(2 u+2 v+2 w)|}{\left(u^{2}+v^{2}+w^{2}\right)^{1 / 2}}=\frac{u^{2}+v^{2}+w^{2}}{\left(u^{2}+v^{2}+w^{2}\right)^{1 / 2}}=\left(u^{2}+v^{2}+w^{2}\right)^{1 / 2} . \tag{13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{(u, v, w) \longrightarrow(0,0,0)} \frac{|f(x, y, z)-f(1,1,1)-(2 u+2 v+2 w)|}{\left(u^{2}+v^{2}+w^{2}\right)^{1 / 2}}=0 \tag{14}
\end{equation*}
$$

and the proof ends.
Question 5. Let $f(x, y, z)=y^{2} z+\sin (5 x y)$. Calculate its three partial derivatives.
Solution. We have

$$
\begin{equation*}
\frac{\partial f}{\partial x}(x, y, z)=5 y \cos (5 x y), \frac{\partial f}{\partial y}(x, y, z)=2 y z+5 x \cos (5 x y), \frac{\partial f}{\partial z}(x, y, z)=y^{2} . \tag{15}
\end{equation*}
$$

Question 6. Let $f(x, y)=|x+y|$. Find all directions $\boldsymbol{v} \in \mathbb{R}^{3}$ such that $\frac{\partial f}{\partial \boldsymbol{v}}$ exists. Justify your answer. Note that the answer may be different at different points (x, y).
Solution. There are two cases. $x+y=0$ and $x+y \neq 0$. We denote $\boldsymbol{v}=\binom{u}{v}$.

1. $x+y=0$. In this case $\frac{\partial f}{\partial v}(x, y)$ exists if and only if $u+v=0$.

- If. In this case we have

$$
\begin{equation*}
f((x, y)+h(u, v))=f(x, y) \tag{16}
\end{equation*}
$$

so obviously

$$
\begin{equation*}
\frac{\partial f}{\partial \boldsymbol{v}}(x, y)=0 \tag{17}
\end{equation*}
$$

- Only if. We show that if $u+v \neq 0$, then $\frac{\partial f}{\partial \boldsymbol{v}}(x, y)$ does not exist.

Wlog assume $u+v>0$. Then since $x+y=0$, we have

The limit

$$
f((x, y)+h(u, v))=\left\{\begin{array}{ll}
h(u+v) & h>0 \tag{18}\\
-h(u+v) & h<0
\end{array}=|h|(u+v)\right.
$$

doesn't exist.

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{|h|(u+v)}{h} \tag{19}
\end{equation*}
$$

2. $x+y \neq 0$. In this case $\frac{\partial f}{\partial \boldsymbol{v}}(x, y)$ for all directions \boldsymbol{v}.

Wlog assume $x+y=: \delta>0$. Now for all $|h|<\frac{\delta}{\sqrt{2}\|\boldsymbol{v}\|}$, we have by Cauchy-Schwarz,

$$
\begin{equation*}
|u+v|=|1 \cdot u+1 \cdot v| \leqslant \sqrt{2}\left(u^{2}+v^{2}\right)^{1 / 2} . \tag{20}
\end{equation*}
$$

This gives

$$
\begin{equation*}
|h u+h v| \leqslant \sqrt{2}|h|\|\boldsymbol{v}\|<\delta \tag{21}
\end{equation*}
$$

and consequently

$$
\begin{equation*}
(x+h u)+(y+h v)>0 \Longrightarrow f(x+h u, y+h v)=(x+h u)+(y+h v) \tag{22}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{h \longrightarrow 0} \frac{f(x+h u, y+h v)-f(x, y)}{h}=\lim _{h \longrightarrow 0}(u+v)=u+v . \tag{23}
\end{equation*}
$$

