MATH 217 FALL 2013 HOMEWORK 4 SOLUTIONS

DUE THURSDAY OCT. 10, 2013 5PM

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $f: [0,1) \times [0,1)$ be defined as

$$f(x,y) = \frac{1}{1 - x y}.$$
 (1)

Prove that f is continuous (not necessarily by definition) but not uniformly continuous.

Question 2. Prove by definition (without using Heine-Borel):

- a) $E = \{\boldsymbol{x}_1, ..., \boldsymbol{x}_n\} \subseteq \mathbb{R}^N$ is compact;
- b) $E = \{(x, y) | x \in \mathbb{N}, y \in \mathbb{N}\}$ is not compact;

Question 3. Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$ be continuous. Let $A \subseteq \mathbb{R}^N$.

- a) Prove that $f(\overline{A}) \subseteq \overline{f(A)}$;
- b) Give an example where $f(\overline{A}) \subset \overline{f(A)}$ (that is $f(\overline{A}) \subseteq \overline{f(A)}$ but $f(\overline{A}) \neq \overline{f(A)}$).
- c) What is the weakest additional assumption on E you can find that guarantees $f(\overline{A}) = \overline{f(A)}$ for all continuous f? Justify your answer.

Question 4. Let $f(x, y, z) = x^2 + y^2 + z^2$. Prove by definition that f is differentiable at (1, 1, 1) and find its differential there.

Question 5. Let $f(x, y, z) = y^2 z + \sin(5xy)$. Calculate its three partial derivatives.

Question 6. Let f(x, y) = |x + y|. Find all directions $v \in \mathbb{R}^3$ such that $\frac{\partial f}{\partial v}$ exists. Justify your answer. Note that the answer may be different at different points (x, y).