Math 217 Fall 2013 Homework 4 Solutions

Due Thursday Oct. 10, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $f:[0,1) \times[0,1)$ be defined as

$$
\begin{equation*}
f(x, y)=\frac{1}{1-x y} . \tag{1}
\end{equation*}
$$

Prove that f is continuous (not necessarily by definition) but not uniformly continuous.
Question 2. Prove by definition (without using Heine-Borel):
a) $E=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subseteq \mathbb{R}^{N}$ is compact;
b) $E=\{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}\}$ is not compact;

Question 3. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ be continuous. Let $A \subseteq \mathbb{R}^{N}$.
a) Prove that $\boldsymbol{f}(\overline{A)} \subseteq \overline{\boldsymbol{f}(A)}$;
b) Give an example where $\boldsymbol{f}(\overline{A)} \subset \overline{\boldsymbol{f}(A)}$ (that is $\boldsymbol{f}(\overline{A)} \subseteq \overline{\boldsymbol{f}(A)}$ but $\boldsymbol{f}(\overline{A)} \neq \overline{\boldsymbol{f}(A)})$.
c) What is the weakest additional assumption on E you can find that guarantees $\boldsymbol{f}(\bar{A})=\overline{\boldsymbol{f}(A)}$ for all continuous \boldsymbol{f} ? Justify your answer.

Question 4. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Prove by definition that f is differentiable at $(1,1,1)$ and find its differential there.

Question 5. Let $f(x, y, z)=y^{2} z+\sin (5 x y)$. Calculate its three partial derivatives.
Question 6. Let $f(x, y)=|x+y|$. Find all directions $\boldsymbol{v} \in \mathbb{R}^{3}$ such that $\frac{\partial f}{\partial \boldsymbol{v}}$ exists. Justify your answer. Note that the answer may be different at different points (x, y).

