
Math 217 Fall 2013 Homework 3 Solutions

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answer – prove that your function indeed has the specified
property – for each problem.

• Please read this week’s lecture notes before working on the problems.

Question 1. (Convexity)

a) Let E ⊂R
N be defined by

E7 {x∈R
N O ‖x‖< 1}∪ {(1, 0,	 , 0)}. (1)

Is E convex? Justify your answer.

b) Let S ⊆S(0, 1)7 {x∈R
N O ‖x‖= 1} be any subset of the unit sphere. Define

E 7 {x∈R
N O ‖x‖< 1}∪S. (2)

Is E convex? Justify your answer.

Solution.

a) Yes. Take any x, y ∈E. Let t∈ [0, 1] be arbitrary.
We discuss two cases.

• Case 1: Both x, y � (1, 0,	 , 0). Then ‖x‖, ‖y‖< 1 and triangle inequality gives

‖tx +(1− t) y‖6 ‖tx‖+ ‖(1− t) y‖< t+(1− t) = 1. (3)

Therefore t x+(1− t) y ∈E.

• Case 2: One of x, y =(1,0,	 ,0). Wlog assume it’s x. Then ‖y‖< 1. Note that since
x, y ∈E. We only need to show

tx +(1− t) y ∈E (4)

for all t∈ (0, 1). This implies

‖tx +(1− t) y‖6 ‖tx‖+ ‖(1− t) y‖< t+(1− t) < 1. (5)

Therefore t x+(1− t) y ∈E.

b) Yes. Note that the difficulty here is that both ‖x‖,‖y‖ may be 1 and the simple application
of triangle inequality giving

‖tx+ (1− t) y‖6 ‖t x‖+ ‖(1− t) y‖6 t+ (1− t) = 1. (6)

is not enough to conclude t x+ (1− t) y ∈E.
Thus we try to prove that if x� y, ‖x‖=‖y‖=1, and t∈(0,1), then ‖t x+(1− t) y‖<1.1

We check:

‖tx+ (1− t) y‖2 = [t x+ (1− t) y] · [tx +(1− t) y]

= t2 x ·x +2 t (1− t) x · y + (1− t)2 y · y
6 [t2 + (1− t)2] + 2 t (1− t) x · y. (7)

1. This is a property of the norm itself. Such norms are called “strictly convex”.
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Now recall that

(x1 y1 +
 +xN yN)2 = (x1
2 +
 +xN

2 ) (y1
2 +
 + yN

2 )−
∑

i� j

(xi yj − xj yi)
2 (8)

which means

|x · y |< ‖x‖ ‖y‖=1 (9)

unless

xi yj =xj yi (10)

for all i� j. Taking square and sum over i, using the fact that
∑

i=1
N

xi
2=

∑

i=1
N

yi
2=1 we reach

yj
2 = xj

2 ∀j =1, 2,	 , N. (11)

Now reviewing xi yj =xj yi we see that there are only two cases, either x= y or x=−y. The
former is excluded by assumption. In the latter case, we have

x · y =−‖x‖2 =−1 < 1. (12)

Thus we have show that

‖tx +(1− t) y‖< 1 (13)

which gives t x+ (1− t) y ∈E when both x, y ∈S.
When ‖x‖< 1 or ‖y‖< 1 the proof is the same as in a).

Question 2. (Limit) Let k, l, m, n∈N. Consider the following function:

f (x, y)=
xk yl

x2m + y2n
. (14)

Find all k, l, m, n such that the limit lim(x,y)� (0,0)f(x, y) exist. Justify your answer. (You may

find the following Young’s inequality useful: p, q > 0,
1

p
+

1

q
=1� |x y |6 |x|p

p
+

|y |q
q
.)

Solution. We claim that the limit is 0 when
k

m
+

l

n
> 2 and does not exist for all other k, l, m, n.

• k

m
+

l

n
>2. There are r<

k

m
, s<

l

n
such that r+s=2. Denote µ7 k

m
−r>0 and ν7 l

n
−s>0.

Now apply Young’s inequality:

|xk yl|= |xm|r |yn|s |xmµ| |ynν |6 |xmµ| |ynν |
(

2
r

x2m +
2
s

y2n

)

. (15)

This gives

|f(x, y)| 6 max

(

2
r
,
2
s

)

|xmµ| |ynν |

6 max

(

2
r
,
2
s

)

(x2 + y2)
mµ+nν

2 . (16)

Now for any ε > 0, take δ > 0 such that

max

(

2
r
,
2
s

)

δmµ+nν < ε. (17)

We have whenever ‖(x, y)‖< δ, |f(x, y)|<ε.

• k

m
+

l

n
6 2. We show that for every δ > 0, there are (x1, y1), (x2, y2) satisfying ‖(x1, y1)‖<δ,

‖(x2, y2)‖<δ, and |f(x1, y1)− f(x2, y2)|> 1/2.
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Take any δ > 0.

◦ Take (x1, y1)=
(

δ

2
, 0

)

. Then ‖(x1, y1)‖< δ and f(x1, y1) = 0.

◦ Take (x2, y2)=
(

t1/m, t1/n
)

where t =min
(

1,
δm+n

2

)

. We have ‖(x2, y2)‖<δ and

|f(x2, y2)|= 1
2

t
2−

(

k

m
+

l

n

)

>
1
2
. (18)

Question 3. (Limit at infinity) Let f : RN � R
M. We define its limit at infinity as follows.

limx�∞f(x) =L∈R
M if and only if

∀ε > 0 ∃R > 0 ∀x satisfying ‖x‖>R ‖f (x)−L‖<ε. (19)

Study the limit

lim
(x,y)�∞

x y e−x2y2

. (20)

Does it exist? If it does, what is the limit? Justify your answer.

Solution. It does not exist. For any R> 0, consider (x1, y1)=
(

R,
1

R

)

and (x2, y2)=
(

R,
2

R

)

. Then

we have ‖(x1, y1)‖>R, ‖(x2, y2)‖>R, but

|f(x1, y1)− f(x2, y2)|= |e−1− 2 e−2|= (e− 2) e−2 > 0. (21)

Thus the limit cannot exist.

Question 4. (Continuity) Let f :RN�R
M be a linear function. Prove that it is continuous (that

is, it is continuous at every point in its domain.)

Proof. Let x0 ∈R
N be arbitrary. Since f is linear, it is a matrix representation A = (aij). Now

we have, for any x∈R
N,

‖f(x)− f(x0)‖ = ‖A x−A x0‖
= ‖A (x−x0)‖
= [(a11 (x1−x01) +
 + a1N (xN −x0N))2 +
 +(aM1 (x1− x01)2 +
 )2]1/2

6 [M N 2 (max |aij |)2 (max |xl −x0l|)2]1/2

6 M
√

N max |aij | ‖x−x0‖. (22)

Now for any ε > 0, take δ =
ε

2 M
√

N max |aij |
, we have

‖f(x)− f(x0)‖6
ε

2
<ε. (23)

Therefore f is continuous. �

Question 5. (Open/closed sets) Let A7 {(x, y)∈R2O x < y}.
a) Is it open? Is it closed?

b) Find its interior.

c) Find its closure.

d) Find its boundary.

e) Find its cluster points.
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Justify all your answers.

Solution.

a) A is open but not closed.

• A is open.
Take any (x0, y0)∈A. Take r =

y0− x0

2
. Then for all (x, y)∈B((x0, y0), r), we have

|x−x0|<r, |y − y0|<r (24)

which gives

y − x> (y0− x0)− |x−x0| − |y − y0|> 0. (25)

Thus B((x0, y0), r)⊆A.

• A is not closed. We prove Ac = {(x, y)∈R2O x> y} is not open.

Take (x0, y0)= (0,0)∈Ac. Then for any r >0, the point
( r

2
,0

)

∈B(0, r) but is not
a member of A.

b) Since A is open, Ao = A.

c) We claim it’s closure is B7 {(x, y)∈R
2O x6 y}. First similar to a) we can prove that Bc is

open so B is closed. As A⊆B, A⊆B by definition of closure.
Let F be any closed set, A⊆F , we now prove B ⊆F . Once this is done, we can conclude

that B ⊆∩A⊆F ,F closedF =A and consequently B = A.
We show B ⊆F through proving F c ⊆Bc, that is, if (x0, y0)∈F c, then x0 > y0. Take any

(x0, y0)∈F c. Then since F c is open there is r > 0 such that

B((x0, y0), r)⊆F c ⊆Ac = {(x, y)∈R
2O x > y}. (26)

Now consider (x, y) = (x0− r/2, y0)∈B((x0, y0), r). We have

x0− r

2
> y0� x0 > y0� (x0, y0)∈Bc. (27)

Thus the proof ends.

d) The boundary is {(x, y)∈R
2O x= y}.

e) The cluster points are {(x, y) ∈R
2O x 6 y}. Take any (x0, y0) satisfying x0 6 y0. Let U be

any open set containing (x0, y0). Then there is r > 0 such that

B((x0, y0), r)⊆U. (28)

All we need to show is

[B((x0, y0), r)−{(x0, y0)}]∩A� ∅ (29)

or equivalently, there is (x, y)∈B((x0, y0), r) different from (x0, y0) such that x< y. This is
easy: Take

x =x0− r/2, y = y0. (30)

Question 6. (Open/closed sets) Let A⊆RN. Prove (Ac)c =Ao.

Proof. We prove through two steps:

1. (Ac)c ⊆Ao.
Since Ac ⊆ Ac, (Ac)c ⊆ (Ac)c = A. Furthermore as Ac is closed, (Ac)c is open. Now by

definition of Ao, (Ac)c ⊆Ao.
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2. Ao ⊆ (Ac)c.
Let x∈Ao. Then there is an open set U such that x∈U ⊆A. This means U ∩ (Ac)=∅�

Ac⊆U c. But U c is closed. Therefore Ac⊆U c which means U ⊆ (Ac)c. Consequently x∈ (Ac)c

and the proof ends. �

Remark. A better way to prove 2. is the following.
(Ao)c is closed. And since Ao ⊆A, Ac ⊆ (Ao)c. Now by definition of closure we have

Ac ⊆ (Ao)c� (Ac )c ⊇Ao. (31)
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