MATH 217 FALL 2013 HOMEWORK 3 SOLUTIONS

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. (Convexity)

a) Let $E \subset \mathbb{R}^N$ be defined by

$$E := \{ \boldsymbol{x} \in \mathbb{R}^N | \| \boldsymbol{x} \| < 1 \} \cup \{ (1, 0, ..., 0) \}.$$
(1)

Is E convex? Justify your answer.

b) Let $S \subseteq S(\mathbf{0}, 1) := \{ \mathbf{x} \in \mathbb{R}^N | \|\mathbf{x}\| = 1 \}$ be any subset of the unit sphere. Define

$$E := \{ \boldsymbol{x} \in \mathbb{R}^N | \| \boldsymbol{x} \| < 1 \} \cup S.$$

$$\tag{2}$$

Is E convex? Justify your answer.

Solution.

- a) Yes. Take any $\boldsymbol{x}, \boldsymbol{y} \in E$. Let $t \in [0, 1]$ be arbitrary. We discuss two cases.
 - Case 1: Both $\boldsymbol{x}, \boldsymbol{y} \neq (1, 0, ..., 0)$. Then $\|\boldsymbol{x}\|, \|\boldsymbol{y}\| < 1$ and triangle inequality gives

$$||t \mathbf{x} + (1-t) \mathbf{y}|| \leq ||t \mathbf{x}|| + ||(1-t) \mathbf{y}|| < t + (1-t) = 1.$$
 (3)

Therefore $t \boldsymbol{x} + (1-t) \boldsymbol{y} \in E$.

• Case 2: One of $\boldsymbol{x}, \boldsymbol{y} = (1, 0, ..., 0)$. Wlog assume it's \boldsymbol{x} . Then $\|\boldsymbol{y}\| < 1$. Note that since $\boldsymbol{x}, \boldsymbol{y} \in E$. We only need to show

$$t \, \boldsymbol{x} + (1 - t) \, \boldsymbol{y} \in E \tag{4}$$

for all $t \in (0, 1)$. This implies

$$||t \boldsymbol{x} + (1-t) \boldsymbol{y}|| \leq ||t \boldsymbol{x}|| + ||(1-t) \boldsymbol{y}|| < t + (1-t) < 1.$$
(5)

Therefore $t \boldsymbol{x} + (1-t) \boldsymbol{y} \in E$.

b) Yes. Note that the difficulty here is that both $||\boldsymbol{x}||, ||\boldsymbol{y}||$ may be 1 and the simple application of triangle inequality giving

$$||t \boldsymbol{x} + (1-t) \boldsymbol{y}|| \leq ||t \boldsymbol{x}|| + ||(1-t) \boldsymbol{y}|| \leq t + (1-t) = 1.$$
(6)

is not enough to conclude $t \boldsymbol{x} + (1-t) \boldsymbol{y} \in E$.

Thus we try to prove that if $\boldsymbol{x} \neq \boldsymbol{y}$, $\|\boldsymbol{x}\| = \|\boldsymbol{y}\| = 1$, and $t \in (0, 1)$, then $\|t \boldsymbol{x} + (1-t) \boldsymbol{y}\| < 1.^{1}$ We check:

$$\|t \, \boldsymbol{x} + (1-t) \, \boldsymbol{y}\|^2 = [t \, \boldsymbol{x} + (1-t) \, \boldsymbol{y}] \cdot [t \, \boldsymbol{x} + (1-t) \, \boldsymbol{y}] = t^2 \, \boldsymbol{x} \cdot \boldsymbol{x} + 2 \, t \, (1-t) \, \boldsymbol{x} \cdot \boldsymbol{y} + (1-t)^2 \, \boldsymbol{y} \cdot \boldsymbol{y} \leqslant [t^2 + (1-t)^2] + 2 \, t \, (1-t) \, \boldsymbol{x} \cdot \boldsymbol{y}.$$
(7)

^{1.} This is a property of the norm itself. Such norms are called "strictly convex".

Now recall that

$$(x_1 y_1 + \dots + x_N y_N)^2 = (x_1^2 + \dots + x_N^2) (y_1^2 + \dots + y_N^2) - \sum_{i \neq j} (x_i y_j - x_j y_i)^2$$
(8)

which means

$$|\boldsymbol{x} \cdot \boldsymbol{y}| < \|\boldsymbol{x}\| \|\boldsymbol{y}\| = 1 \tag{9}$$

unless

$$x_i y_j = x_j y_i \tag{10}$$

for all $i \neq j$. Taking square and sum over *i*, using the fact that $\sum_{i=1}^{N} x_i^2 = \sum_{i=1}^{N} y_i^2 = 1$ we reach

$$y_j^2 = x_j^2 \qquad \forall j = 1, 2, ..., N.$$
 (11)

Now reviewing $x_i y_j = x_j y_i$ we see that there are only two cases, either x = y or x = -y. The former is excluded by assumption. In the latter case, we have

$$x \cdot y = -\|x\|^2 = -1 < 1.$$
 (12)

Thus we have show that

$$||t x + (1-t) y|| < 1$$
 (13)

which gives $t \boldsymbol{x} + (1-t) \boldsymbol{y} \in E$ when both $\boldsymbol{x}, \boldsymbol{y} \in S$. When $\|\boldsymbol{x}\| < 1$ or $\|\boldsymbol{y}\| < 1$ the proof is the same as in a).

Question 2. (Limit) Let $k, l, m, n \in \mathbb{N}$. Consider the following function:

$$f(x,y) = \frac{x^k y^l}{x^{2m} + y^{2n}}.$$
(14)

Find all k, l, m, n such that the limit $\lim_{(x,y)\longrightarrow(0,0)} f(x, y)$ exist. Justify your answer. (You may find the following Young's inequality useful: $p, q > 0, \frac{1}{p} + \frac{1}{q} = 1 \Longrightarrow |x y| \leq \frac{|x|^p}{p} + \frac{|y|^q}{q}$.)

Solution. We claim that the limit is 0 when $\frac{k}{m} + \frac{l}{n} > 2$ and does not exist for all other k, l, m, n.

• $\frac{k}{m} + \frac{l}{n} > 2$. There are $r < \frac{k}{m}$, $s < \frac{l}{n}$ such that r + s = 2. Denote $\mu := \frac{k}{m} - r > 0$ and $\nu := \frac{l}{n} - s > 0$. Now apply Young's inequality:

$$|x^{k}y^{l}| = |x^{m}|^{r} |y^{n}|^{s} |x^{m\mu}| |y^{n\nu}| \leq |x^{m\mu}| |y^{n\nu}| \left(\frac{2}{r} x^{2m} + \frac{2}{s} y^{2n}\right).$$
(15)

This gives

$$|f(x,y)| \leq \max\left(\frac{2}{r},\frac{2}{s}\right)|x^{m\mu}||y^{n\nu}|$$

$$\leq \max\left(\frac{2}{r},\frac{2}{s}\right)(x^2+y^2)^{\frac{m\mu+n\nu}{2}}.$$
 (16)

Now for any $\varepsilon > 0$, take $\delta > 0$ such that

$$\max\left(\frac{2}{r},\frac{2}{s}\right)\delta^{m\mu+n\nu} < \varepsilon.$$
(17)

We have whenever $||(x, y)|| < \delta$, $|f(x, y)| < \varepsilon$.

• $\frac{k}{m} + \frac{l}{n} \leq 2$. We show that for every $\delta > 0$, there are $(x_1, y_1), (x_2, y_2)$ satisfying $||(x_1, y_1)|| < \delta$, $||(x_2, y_2)|| < \delta$, and $|f(x_1, y_1) - f(x_2, y_2)| \ge 1/2$.

Take any $\delta > 0$.

• Take $(x_1, y_1) = \left(\frac{\delta}{2}, 0\right)$. Then $||(x_1, y_1)|| < \delta$ and $f(x_1, y_1) = 0$. • Take $(x_2, y_2) = \left(t^{1/m}, t^{1/n}\right)$ where $t = \min\left(1, \frac{\delta^{m+n}}{2}\right)$. We have $||(x_2, y_2)|| < \delta$ and

$$|f(x_2, y_2)| = \frac{1}{2} t^{2 - \left(\frac{k}{m} + \frac{l}{n}\right)} \ge \frac{1}{2}.$$
(18)

Question 3. (Limit at infinity) Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$. We define its limit at infinity as follows. $\lim_{x \to \infty} f(x) = L \in \mathbb{R}^M$ if and only if

$$\forall \varepsilon > 0 \; \exists R > 0 \; \forall \boldsymbol{x} \; satisfying \; \|\boldsymbol{x}\| > R \qquad \|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{L}\| < \varepsilon.$$
⁽¹⁹⁾

Study the limit

$$\lim_{(x,y)\longrightarrow\infty} x \, y \, e^{-x^2 y^2}.\tag{20}$$

Does it exist? If it does, what is the limit? Justify your answer.

Solution. It does not exist. For any R > 0, consider $(x_1, y_1) = \left(R, \frac{1}{R}\right)$ and $(x_2, y_2) = \left(R, \frac{2}{R}\right)$. Then we have $||(x_1, y_1)|| > R$, $||(x_2, y_2)|| > R$, but

$$|f(x_1, y_1) - f(x_2, y_2)| = |e^{-1} - 2e^{-2}| = (e - 2)e^{-2} > 0.$$
(21)

Thus the limit cannot exist.

Question 4. (Continuity) Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$ be a linear function. Prove that it is continuous (that is, it is continuous at every point in its domain.)

Proof. Let $x_0 \in \mathbb{R}^N$ be arbitrary. Since f is linear, it is a matrix representation $A = (a_{ij})$. Now we have, for any $x \in \mathbb{R}^N$,

$$\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_{0})\| = \|A\,\boldsymbol{x} - A\,\boldsymbol{x}_{0}\| \\ = \|A\,(\boldsymbol{x} - \boldsymbol{x}_{0})\| \\ = [(a_{11}\,(x_{1} - x_{01}) + \dots + a_{1N}\,(x_{N} - x_{0N}))^{2} + \dots + (a_{M1}\,(x_{1} - x_{01})^{2} + \dots)^{2}]^{1/2} \\ \leqslant [MN^{2}\,(\max|a_{ij}|)^{2}\,(\max|x_{l} - x_{0l}|)^{2}]^{1/2} \\ \leqslant \sqrt{M}N\max|a_{ij}|\,\|\boldsymbol{x} - \boldsymbol{x}_{0}\|.$$
(22)

Now for any $\varepsilon > 0$, take $\delta = \frac{\varepsilon}{2\sqrt{M}N \max|a_{ij}|}$, we have

$$\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0)\| \leqslant \frac{\varepsilon}{2} < \varepsilon.$$
 (23)

Therefore f is continuous.

Question 5. (Open/closed sets) Let $A := \{(x, y) \in \mathbb{R}^2 | x < y\}.$

- a) Is it open? Is it closed?
- b) Find its interior.
- c) Find its closure.
- d) Find its boundary.
- e) Find its cluster points.

Justify all your answers.

Solution.

- a) A is open but not closed.
 - A is open. Take any $(x_0, y_0) \in A$. Take $r = \frac{y_0 - x_0}{2}$. Then for all $(x, y) \in B((x_0, y_0), r)$, we have

$$|x - x_0| < r, |y - y_0| < r \tag{24}$$

which gives

$$y - x \ge (y_0 - x_0) - |x - x_0| - |y - y_0| > 0.$$
⁽²⁵⁾

Thus $B((x_0, y_0), r) \subseteq A$.

- A is not closed. We prove $A^c = \{(x, y) \in \mathbb{R}^2 | x \ge y\}$ is not open. Take $(x_0, y_0) = (0, 0) \in A^c$. Then for any r > 0, the point $\left(\frac{r}{2}, 0\right) \in B(\mathbf{0}, r)$ but is not a member of A.
- b) Since A is open, $A^o = A$.
- c) We claim it's closure is $B := \{(x, y) \in \mathbb{R}^2 | x \leq y\}$. First similar to a) we can prove that B^c is open so B is closed. As $A \subseteq B$, $\overline{A} \subseteq B$ by definition of closure.

Let F be any closed set, $A \subseteq F$, we now prove $B \subseteq F$. Once this is done, we can conclude that $B \subseteq \bigcap_{A \subseteq F, F \text{ closed}} F = \overline{A}$ and consequently $B = \overline{A}$.

We show $B \subseteq F$ through proving $F^c \subseteq B^c$, that is, if $(x_0, y_0) \in F^c$, then $x_0 > y_0$. Take any $(x_0, y_0) \in F^c$. Then since F^c is open there is r > 0 such that

$$B((x_0, y_0), r) \subseteq F^c \subseteq A^c = \{(x, y) \in \mathbb{R}^2 | x \ge y\}.$$
(26)

Now consider $(x, y) = (x_0 - r/2, y_0) \in B((x_0, y_0), r)$. We have

$$x_0 - \frac{r}{2} \ge y_0 \Longrightarrow x_0 > y_0 \Longrightarrow (x_0, y_0) \in B^c.$$

$$\tag{27}$$

Thus the proof ends.

- d) The boundary is $\{(x, y) \in \mathbb{R}^2 | x = y\}$.
- e) The cluster points are $\{(x, y) \in \mathbb{R}^2 | x \leq y\}$. Take any (x_0, y_0) satisfying $x_0 \leq y_0$. Let U be any open set containing (x_0, y_0) . Then there is r > 0 such that

$$B((x_0, y_0), r) \subseteq U. \tag{28}$$

All we need to show is

$$[B((x_0, y_0), r) - \{(x_0, y_0)\}] \cap A \neq \emptyset$$
(29)

or equivalently, there is $(x, y) \in B((x_0, y_0), r)$ different from (x_0, y_0) such that x < y. This is easy: Take

$$x = x_0 - r/2, y = y_0. ag{30}$$

Question 6. (Open/closed sets) Let $A \subseteq \mathbb{R}^N$. Prove $(\overline{A^c})^c = A^o$.

Proof. We prove through two steps:

1. $(\overline{A^c})^c \subseteq A^o$.

Since $A^c \subseteq \overline{A^c}$, $(\overline{A^c})^c \subseteq (A^c)^c = A$. Furthermore as $\overline{A^c}$ is closed, $(\overline{A^c})^c$ is open. Now by definition of A^o , $(\overline{A^c})^c \subseteq A^o$.

2. $A^o \subseteq (\overline{A^c})^c$.

Let $\mathbf{x} \in A^o$. Then there is an open set U such that $\mathbf{x} \in U \subseteq A$. This means $U \cap (A^c) = \emptyset \Longrightarrow A^c \subseteq U^c$. But U^c is closed. Therefore $\overline{A^c} \subseteq U^c$ which means $U \subseteq (\overline{A^c})^c$. Consequently $\mathbf{x} \in (\overline{A^c})^c$ and the proof ends.

Remark. A better way to prove 2. is the following.

 $(A^o)^c$ is closed. And since $A^o \subseteq A$, $A^c \subseteq (A^o)^c$. Now by definition of closure we have

$$\overline{A^c} \subseteq (A^o)^c \Longleftrightarrow (\overline{A^c})^c \supseteq A^o.$$
(31)