Math 217 Fall 2013 Homework 3 Solutions

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. (Convexity)

a) Let $E \subset \mathbb{R}^{N}$ be defined by

$$
\begin{equation*}
E:=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid\|\boldsymbol{x}\|<1\right\} \cup\{(1,0, \ldots, 0)\} . \tag{1}
\end{equation*}
$$

Is E convex? Justify your answer.
b) Let $S \subseteq S(\mathbf{0}, 1):=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid\|\boldsymbol{x}\|=1\right\}$ be any subset of the unit sphere. Define

$$
\begin{equation*}
E:=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid\|\boldsymbol{x}\|<1\right\} \cup S . \tag{2}
\end{equation*}
$$

Is E convex? Justify your answer.

Solution.

a) Yes. Take any $\boldsymbol{x}, \boldsymbol{y} \in E$. Let $t \in[0,1]$ be arbitrary.

We discuss two cases.

- Case 1: Both $\boldsymbol{x}, \boldsymbol{y} \neq(1,0, \ldots, 0)$. Then $\|\boldsymbol{x}\|,\|\boldsymbol{y}\|<1$ and triangle inequality gives

$$
\begin{equation*}
\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\| \leqslant\|t \boldsymbol{x}\|+\|(1-t) \boldsymbol{y}\|<t+(1-t)=1 . \tag{3}
\end{equation*}
$$

Therefore $t \boldsymbol{x}+(1-t) \boldsymbol{y} \in E$.

- Case 2: One of $\boldsymbol{x}, \boldsymbol{y}=(1,0, \ldots, 0)$. Wlog assume it's \boldsymbol{x}. Then $\|\boldsymbol{y}\|<1$. Note that since $\boldsymbol{x}, \boldsymbol{y} \in E$. We only need to show

$$
\begin{equation*}
t \boldsymbol{x}+(1-t) \boldsymbol{y} \in E \tag{4}
\end{equation*}
$$

for all $t \in(0,1)$. This implies

$$
\begin{equation*}
\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\| \leqslant\|t \boldsymbol{x}\|+\|(1-t) \boldsymbol{y}\|<t+(1-t)<1 . \tag{5}
\end{equation*}
$$

Therefore $t \boldsymbol{x}+(1-t) \boldsymbol{y} \in E$.
b) Yes. Note that the difficulty here is that both $\|\boldsymbol{x}\|,\|\boldsymbol{y}\|$ may be 1 and the simple application of triangle inequality giving

$$
\begin{equation*}
\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\| \leqslant\|t \boldsymbol{x}\|+\|(1-t) \boldsymbol{y}\| \leqslant t+(1-t)=1 . \tag{6}
\end{equation*}
$$

is not enough to conclude $t \boldsymbol{x}+(1-t) \boldsymbol{y} \in E$.
Thus we try to prove that if $\boldsymbol{x} \neq \boldsymbol{y},\|\boldsymbol{x}\|=\|\boldsymbol{y}\|=1$, and $t \in(0,1)$, then $\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\|<1 .{ }^{1}$ We check:

$$
\begin{align*}
\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\|^{2} & =[t \boldsymbol{x}+(1-t) \boldsymbol{y}] \cdot[t \boldsymbol{x}+(1-t) \boldsymbol{y}] \\
& =t^{2} \boldsymbol{x} \cdot \boldsymbol{x}+2 t(1-t) \boldsymbol{x} \cdot \boldsymbol{y}+(1-t)^{2} \boldsymbol{y} \cdot \boldsymbol{y} \\
& \leqslant\left[t^{2}+(1-t)^{2}\right]+2 t(1-t) \boldsymbol{x} \cdot \boldsymbol{y} . \tag{7}
\end{align*}
$$

[^0]Now recall that

$$
\begin{equation*}
\left(x_{1} y_{1}+\cdots+x_{N} y_{N}\right)^{2}=\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)\left(y_{1}^{2}+\cdots+y_{N}^{2}\right)-\sum_{i \neq j}\left(x_{i} y_{j}-x_{j} y_{i}\right)^{2} \tag{8}
\end{equation*}
$$

which means

$$
\begin{equation*}
|\boldsymbol{x} \cdot \boldsymbol{y}|<\|\boldsymbol{x}\|\|\boldsymbol{y}\|=1 \tag{9}
\end{equation*}
$$

unless

$$
\begin{equation*}
x_{i} y_{j}=x_{j} y_{i} \tag{10}
\end{equation*}
$$

for all $i \neq j$. Taking square and sum over i, using the fact that $\sum_{i=1}^{N} x_{i}^{2}=\sum_{i=1}^{N} y_{i}^{2}=1$ we reach

$$
\begin{equation*}
y_{j}^{2}=x_{j}^{2} \quad \forall j=1,2, \ldots, N \tag{11}
\end{equation*}
$$

Now reviewing $x_{i} y_{j}=x_{j} y_{i}$ we see that there are only two cases, either $\boldsymbol{x}=\boldsymbol{y}$ or $\boldsymbol{x}=-\boldsymbol{y}$. The former is excluded by assumption. In the latter case, we have

$$
\begin{equation*}
\boldsymbol{x} \cdot \boldsymbol{y}=-\|\boldsymbol{x}\|^{2}=-1<1 . \tag{12}
\end{equation*}
$$

Thus we have show that

$$
\begin{equation*}
\|t \boldsymbol{x}+(1-t) \boldsymbol{y}\|<1 \tag{13}
\end{equation*}
$$

which gives $t \boldsymbol{x}+(1-t) \boldsymbol{y} \in E$ when both $\boldsymbol{x}, \boldsymbol{y} \in S$.
When $\|\boldsymbol{x}\|<1$ or $\|\boldsymbol{y}\|<1$ the proof is the same as in a).
Question 2. (Limit) Let $k, l, m, n \in \mathbb{N}$. Consider the following function:

$$
\begin{equation*}
f(x, y)=\frac{x^{k} y^{l}}{x^{2 m}+y^{2 n}} . \tag{14}
\end{equation*}
$$

Find all k, l, m, n such that the $\operatorname{limit} \lim _{(x, y) \longrightarrow(0,0)} f(x, y)$ exist. Justify your answer. (You may find the following Young's inequality useful: $p, q>0, \frac{1}{p}+\frac{1}{q}=1 \Longrightarrow|x y| \leqslant \frac{|x|^{p}}{p}+\frac{|y|^{q}}{q}$.)

Solution. We claim that the limit is 0 when $\frac{k}{m}+\frac{l}{n}>2$ and does not exist for all other k, l, m, n.

- $\frac{k}{m}+\frac{l}{n}>2$. There are $r<\frac{k}{m}, s<\frac{l}{n}$ such that $r+s=2$. Denote $\mu:=\frac{k}{m}-r>0$ and $\nu:=\frac{l}{n}-s>0$.

Now apply Young's inequality:

$$
\begin{equation*}
\left|x^{k} y^{l}\right|=\left|x^{m}\right|^{r}\left|y^{n}\right|^{s}\left|x^{m \mu}\right|\left|y^{n \nu}\right| \leqslant\left|x^{m \mu}\right|\left|y^{n \nu}\right|\left(\frac{2}{r} x^{2 m}+\frac{2}{s} y^{2 n}\right) \tag{15}
\end{equation*}
$$

This gives

$$
\begin{align*}
|f(x, y)| & \leqslant \max \left(\frac{2}{r}, \frac{2}{s}\right)\left|x^{m \mu}\right|\left|y^{n \nu}\right| \\
& \leqslant \max \left(\frac{2}{r}, \frac{2}{s}\right)\left(x^{2}+y^{2}\right)^{\frac{m \mu+n \nu}{2}} \tag{16}
\end{align*}
$$

Now for any $\varepsilon>0$, take $\delta>0$ such that

$$
\begin{equation*}
\max \left(\frac{2}{r}, \frac{2}{s}\right) \delta^{m \mu+n \nu}<\varepsilon \tag{17}
\end{equation*}
$$

We have whenever $\|(x, y)\|<\delta,|f(x, y)|<\varepsilon$.

- $\frac{k}{m}+\frac{l}{n} \leqslant 2$. We show that for every $\delta>0$, there are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ satisfying $\left\|\left(x_{1}, y_{1}\right)\right\|<\delta$, $\left\|\left(x_{2}, y_{2}\right)\right\|<\delta$, and $\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right| \geqslant 1 / 2$.

Take any $\delta>0$.

- Take $\left(x_{1}, y_{1}\right)=\left(\frac{\delta}{2}, 0\right)$. Then $\left\|\left(x_{1}, y_{1}\right)\right\|<\delta$ and $f\left(x_{1}, y_{1}\right)=0$.
- Take $\left(x_{2}, y_{2}\right)=\left(t^{1 / m}, t^{1 / n}\right)$ where $t=\min \left(1, \frac{\delta^{m+n}}{2}\right)$. We have $\left\|\left(x_{2}, y_{2}\right)\right\|<\delta$ and

$$
\begin{equation*}
\left|f\left(x_{2}, y_{2}\right)\right|=\frac{1}{2} t^{2-\left(\frac{k}{m}+\frac{l}{n}\right)} \geqslant \frac{1}{2} . \tag{18}
\end{equation*}
$$

Question 3. (Limit at infinity) Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$. We define its limit at infinity as follows. $\lim _{\boldsymbol{x} \longrightarrow \infty} \boldsymbol{f}(\boldsymbol{x})=\boldsymbol{L} \in \mathbb{R}^{M}$ if and only if

$$
\begin{equation*}
\forall \varepsilon>0 \exists R>0 \forall \boldsymbol{x} \text { satisfying }\|\boldsymbol{x}\|>R \quad\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{L}\|<\varepsilon . \tag{19}
\end{equation*}
$$

Study the limit

$$
\begin{equation*}
\lim _{(x, y) \longrightarrow \infty} x y e^{-x^{2} y^{2}} . \tag{20}
\end{equation*}
$$

Does it exist? If it does, what is the limit? Justify your answer.
Solution. It does not exist. For any $R>0$, consider $\left(x_{1}, y_{1}\right)=\left(R, \frac{1}{R}\right)$ and $\left(x_{2}, y_{2}\right)=\left(R, \frac{2}{R}\right)$. Then we have $\left\|\left(x_{1}, y_{1}\right)\right\|>R,\left\|\left(x_{2}, y_{2}\right)\right\|>R$, but

$$
\begin{equation*}
\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right|=\left|e^{-1}-2 e^{-2}\right|=(e-2) e^{-2}>0 . \tag{21}
\end{equation*}
$$

Thus the limit cannot exist.
Question 4. (Continuity) Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ be a linear function. Prove that it is continuous (that is, it is continuous at every point in its domain.)

Proof. Let $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$ be arbitrary. Since \boldsymbol{f} is linear, it is a matrix representation $A=\left(a_{i j}\right)$. Now we have, for any $\boldsymbol{x} \in \mathbb{R}^{N}$,

$$
\begin{align*}
\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\| & =\left\|A \boldsymbol{x}-A \boldsymbol{x}_{0}\right\| \\
& =\left\|A\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right\| \\
& =\left[\left(a_{11}\left(x_{1}-x_{01}\right)+\cdots+a_{1 N}\left(x_{N}-x_{0 N}\right)\right)^{2}+\cdots+\left(a_{M 1}\left(x_{1}-x_{01}\right)^{2}+\cdots\right)^{2}\right]^{1 / 2} \\
& \leqslant\left[M N^{2}\left(\max \left|a_{i j}\right|\right)^{2}\left(\max \left|x_{l}-x_{0 l}\right|\right)^{2}\right]^{1 / 2} \\
& \leqslant \sqrt{M} N \max \left|a_{i j}\right|\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\| . \tag{22}
\end{align*}
$$

Now for any $\varepsilon>0$, take $\delta=\frac{\varepsilon}{2 \sqrt{M} N \max \left|a_{i j}\right|}$, we have

$$
\begin{equation*}
\left\|\boldsymbol{f}(\boldsymbol{x})-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right\| \leqslant \frac{\varepsilon}{2}<\varepsilon . \tag{23}
\end{equation*}
$$

Therefore f is continuous.
Question 5. (Open/closed sets) Let $A:=\left\{(x, y) \in \mathbb{R}^{2} \mid x<y\right\}$.
a) Is it open? Is it closed?
b) Find its interior.
c) Find its closure.
d) Find its boundary.
e) Find its cluster points.

Justify all your answers.

Solution.

a) A is open but not closed.

- A is open.

Take any $\left(x_{0}, y_{0}\right) \in A$. Take $r=\frac{y_{0}-x_{0}}{2}$. Then for all $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$, we have

$$
\begin{equation*}
\left|x-x_{0}\right|<r,\left|y-y_{0}\right|<r \tag{24}
\end{equation*}
$$

which gives

$$
\begin{equation*}
y-x \geqslant\left(y_{0}-x_{0}\right)-\left|x-x_{0}\right|-\left|y-y_{0}\right|>0 . \tag{25}
\end{equation*}
$$

Thus $B\left(\left(x_{0}, y_{0}\right), r\right) \subseteq A$.

- A is not closed. We prove $A^{c}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant y\right\}$ is not open.

Take $\left(x_{0}, y_{0}\right)=(0,0) \in A^{c}$. Then for any $r>0$, the point $\left(\frac{r}{2}, 0\right) \in B(\mathbf{0}, r)$ but is not a member of A.
b) Since A is open, $A^{o}=A$.
c) We claim it's closure is $B:=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leqslant y\right\}$. First similar to a) we can prove that B^{c} is open so B is closed. As $A \subseteq B, \bar{A} \subseteq B$ by definition of closure.

Let F be any closed set, $A \subseteq F$, we now prove $B \subseteq F$. Once this is done, we can conclude that $B \subseteq \cap_{A \subseteq F, F}$ closed $F=\bar{A}$ and consequently $B=\bar{A}$.

We show $B \subseteq F$ through proving $F^{c} \subseteq B^{c}$, that is, if $\left(x_{0}, y_{0}\right) \in F^{c}$, then $x_{0}>y_{0}$. Take any $\left(x_{0}, y_{0}\right) \in F^{c}$. Then since F^{c} is open there is $r>0$ such that

$$
\begin{equation*}
B\left(\left(x_{0}, y_{0}\right), r\right) \subseteq F^{c} \subseteq A^{c}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant y\right\} . \tag{26}
\end{equation*}
$$

Now consider $(x, y)=\left(x_{0}-r / 2, y_{0}\right) \in B\left(\left(x_{0}, y_{0}\right), r\right)$. We have

$$
\begin{equation*}
x_{0}-\frac{r}{2} \geqslant y_{0} \Longrightarrow x_{0}>y_{0} \Longrightarrow\left(x_{0}, y_{0}\right) \in B^{c} . \tag{27}
\end{equation*}
$$

Thus the proof ends.
d) The boundary is $\left\{(x, y) \in \mathbb{R}^{2} \mid x=y\right\}$.
e) The cluster points are $\left\{(x, y) \in \mathbb{R}^{2} \mid x \leqslant y\right\}$. Take any $\left(x_{0}, y_{0}\right)$ satisfying $x_{0} \leqslant y_{0}$. Let U be any open set containing $\left(x_{0}, y_{0}\right)$. Then there is $r>0$ such that

$$
\begin{equation*}
B\left(\left(x_{0}, y_{0}\right), r\right) \subseteq U . \tag{28}
\end{equation*}
$$

All we need to show is

$$
\begin{equation*}
\left[B\left(\left(x_{0}, y_{0}\right), r\right)-\left\{\left(x_{0}, y_{0}\right)\right\}\right] \cap A \neq \varnothing \tag{29}
\end{equation*}
$$

or equivalently, there is $(x, y) \in B\left(\left(x_{0}, y_{0}\right), r\right)$ different from $\left(x_{0}, y_{0}\right)$ such that $x<y$. This is easy: Take

$$
\begin{equation*}
x=x_{0}-r / 2, y=y_{0} . \tag{30}
\end{equation*}
$$

Question 6. (Open/closed sets) Let $A \subseteq \mathbb{R}^{N}$. Prove $\left(\overline{A^{c}}\right)^{c}=A^{o}$.
Proof. We prove through two steps:

1. $\left(\overline{A^{c}}\right)^{c} \subseteq A^{o}$.

Since $A^{c} \subseteq \overline{A^{c}},\left(\overline{A^{c}}\right)^{c} \subseteq\left(A^{c}\right)^{c}=A$. Furthermore as $\overline{A^{c}}$ is closed, $\left(\overline{A^{c}}\right)^{c}$ is open. Now by definition of $A^{o},\left(\overline{A^{c}}\right)^{c} \subseteq A^{o}$.
2. $A^{o} \subseteq\left(\overline{A^{c}}\right)^{c}$.

Let $\boldsymbol{x} \in A^{o}$. Then there is an open set U such that $\boldsymbol{x} \in U \subseteq A$. This means $U \cap\left(A^{c}\right)=\varnothing \Longrightarrow$ $A^{c} \subseteq U^{c}$. But U^{c} is closed. Therefore $\overline{A^{c}} \subseteq U^{c}$ which means $U \subseteq\left(\overline{A^{c}}\right)^{c}$. Consequently $\boldsymbol{x} \in\left(\overline{A^{c}}\right)^{c}$ and the proof ends.

Remark. A better way to prove 2. is the following.
$\left(A^{o}\right)^{c}$ is closed. And since $A^{o} \subseteq A, A^{c} \subseteq\left(A^{o}\right)^{c}$. Now by definition of closure we have

$$
\begin{equation*}
\overline{A^{c}} \subseteq\left(A^{o}\right)^{c} \Longleftrightarrow\left(\overline{A^{c}}\right)^{c} \supseteq A^{o} . \tag{31}
\end{equation*}
$$

[^0]: 1. This is a property of the norm itself. Such norms are called "strictly convex".
