Math 217 Fall 2013 Homework 2 Solutions

Due Thursday Sept. 26, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. The following are several possible strategies to prove Cauchy-Schwarz:

$$
\begin{equation*}
|\boldsymbol{x} \cdot \boldsymbol{y}|=\left|x_{1} y_{1}+\cdots+x_{N} y_{N}\right| \leqslant\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)^{1 / 2}\left(y_{1}^{2}+\cdots+y_{N}^{2}\right)^{1 / 2}=\|\boldsymbol{x}\|\|\boldsymbol{y}\| . \tag{1}
\end{equation*}
$$

Pick any one (or come up with your own) idea and write down a detailed proof.

- Approach 1.

Mathematical induction.

- Approach 2.

Let $t \in \mathbb{R}$. Then $(\boldsymbol{x}-t \boldsymbol{y}) \cdot(\boldsymbol{x}-t \boldsymbol{y}) \geqslant 0$ for all t. Write the left hand side as a quadratic polynomial of t.

- Approach 3.

Use $x_{i} y_{i}=\left(\frac{x_{i}}{k}\right)\left(y_{i} k\right) \leqslant \frac{1}{2}\left(x_{i}^{2} k^{-2}+y_{i}^{2} k^{2}\right)$. Choose appropriate k.

Solution.

- Approach 1.

Though the case $N=1$ is trivial. For reasons that will be clear in a few lines, we have to prove $N=2$. This is done in Sept. 16's lecture and is omitted here.

Now we try to prove the case $N=k+1$ assuming

$$
\begin{equation*}
\left|x_{1} y_{1}+\cdots+x_{k} y_{k}\right| \leqslant\left(x_{1}^{2}+\cdots+x_{k}^{2}\right)^{1 / 2}\left(y_{1}^{2}+\cdots+y_{k}^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

We have

$$
\begin{align*}
\left|x_{1} y_{1}+\cdots+x_{k} y_{k}+x_{k+1} y_{k+1}\right| & \leqslant\left|x_{1} y_{1}+\cdots+x_{k} y_{k}\right|+\left|x_{k+1} y_{k+1}\right| \\
& \leqslant\left(x_{1}^{2}+\cdots+x_{k}^{2}\right)^{1 / 2}\left(y_{1}^{2}+\cdots+y_{k}^{2}\right)^{1 / 2}+\left|x_{k+1}\right|\left|y_{k+1}\right| \\
& \leqslant\left(\left(x_{1}^{2}+\cdots+x_{k}^{2}\right)+\left|x_{k+1}\right|^{2}\right)^{1 / 2}\left(\left(y_{1}^{2}+\cdots+y_{k}^{2}\right)+\left|y_{k+1}\right|^{2}\right)^{1 / 2} \\
& =\left(x_{1}^{2}+\cdots+x_{k+1}^{2}\right)^{1 / 2}\left(y_{1}^{2}+\cdots+y_{k+1}^{2}\right)^{1 / 2} . \tag{3}
\end{align*}
$$

Note that in the last inequality we have used the $N=2$ case.

- Approach 2.

Since $(\boldsymbol{x}-t \boldsymbol{y}) \cdot(\boldsymbol{x}-t \boldsymbol{y})=(\boldsymbol{y} \cdot \boldsymbol{y}) t^{2}-2(\boldsymbol{x} \cdot \boldsymbol{y}) t+(\boldsymbol{x} \cdot \boldsymbol{x})$, the fact that it is non-negative implies

$$
\begin{equation*}
[2(\boldsymbol{x} \cdot \boldsymbol{y})]^{2}-4(\boldsymbol{y} \cdot \boldsymbol{y})(\boldsymbol{x} \cdot \boldsymbol{x}) \leqslant 0 \tag{4}
\end{equation*}
$$

which gives Cauchy-Schwarz.

- Approach 3.

Let $k \in \mathbb{R}$ to be determined later. We have

$$
\begin{equation*}
x_{1} y_{1}+\cdots+x_{N} y_{N} \leqslant \frac{1}{2}\left[\frac{x_{1}^{2}+\cdots+x_{N}^{2}}{k^{2}}+k^{2}\left(y_{1}^{2}+\cdots+y_{N}^{2}\right)\right] . \tag{5}
\end{equation*}
$$

Now take

The proof ends.

$$
\begin{equation*}
k^{2}=\frac{\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)^{1 / 2}}{\left(y_{1}^{2}+\cdots+y_{N}^{2}\right)^{1 / 2}} . \tag{6}
\end{equation*}
$$

Question 2. Let $E \subseteq \mathbb{R}^{N}$. Define its distance function $d: \mathbb{R}^{N} \mapsto \mathbb{R}$ as

$$
\begin{equation*}
d(\boldsymbol{x}):=\inf _{\boldsymbol{y} \in E} \operatorname{dist}(\boldsymbol{x}, \boldsymbol{y})=\inf _{\boldsymbol{y} \in E}\|\boldsymbol{x}-\boldsymbol{y}\| . \tag{7}
\end{equation*}
$$

Prove that $\forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N},|d(\boldsymbol{x})-d(\boldsymbol{y})| \leqslant\|\boldsymbol{x}-\boldsymbol{y}\|$.
Proof. First we prove $d(\boldsymbol{x})-d(\boldsymbol{y}) \leqslant\|\boldsymbol{x}-\boldsymbol{y}\|$. We have, for any $\boldsymbol{z} \in E$,

$$
\begin{align*}
d(\boldsymbol{x})-\operatorname{dist}(\boldsymbol{y}, \boldsymbol{z}) & =\inf _{\boldsymbol{w} \in E} \operatorname{dist}(\boldsymbol{x}, \boldsymbol{w})-\operatorname{dist}(\boldsymbol{y}, \boldsymbol{z}) \\
& \leqslant \operatorname{dist}(\boldsymbol{x}, \boldsymbol{z})-\operatorname{dist}(\boldsymbol{y}, \boldsymbol{z}) \\
& =\|\boldsymbol{x}-\boldsymbol{z}\|-\|\boldsymbol{y}-\boldsymbol{z}\| \\
& \leqslant\|\boldsymbol{x}-\boldsymbol{y}\| . \tag{8}
\end{align*}
$$

Here we applied triangle's inequality in the last inequality. Note that $\|\boldsymbol{x}-\boldsymbol{y}\|$ is independent of \boldsymbol{z}. Therefore we can take infimum and obtain

$$
\begin{equation*}
d(\boldsymbol{x})-d(\boldsymbol{y})=d(\boldsymbol{x})-\inf _{\boldsymbol{z} \in E} \operatorname{dist}(\boldsymbol{y}, \boldsymbol{z}) \leqslant\|\boldsymbol{x}-\boldsymbol{y}\| . \tag{9}
\end{equation*}
$$

Finally noticing the symmetry between \boldsymbol{x} and \boldsymbol{y}, we have

$$
\begin{equation*}
d(\boldsymbol{y})-d(\boldsymbol{x}) \leqslant\|\boldsymbol{y}-\boldsymbol{x}\|=\|\boldsymbol{x}-\boldsymbol{y}\| . \tag{10}
\end{equation*}
$$

Summarizaing the above, we have $|d(\boldsymbol{x})-d(\boldsymbol{y})| \leqslant\|\boldsymbol{x}-\boldsymbol{y}\|$.

Question 3.

a) Prove that the following are both norms on \mathbb{R}^{N} :

$$
\begin{equation*}
\|\boldsymbol{x}\|_{\infty}:=\max _{i=1, \ldots, N}\left\{\left|x_{i}\right|\right\} ; \quad\|\boldsymbol{x}\|_{1}:=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N}\right| ; \tag{11}
\end{equation*}
$$

b) Let X be a linear vector space with norm $\|\cdot\|$. Prove the following: If one can define an inner product (\cdot, \cdot) such that $\|x\|=(x, x)^{1 / 2}$, then for any $x, y \in X$,

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) . \tag{12}
\end{equation*}
$$

c) Find a norm on \mathbb{R}^{N} that cannot be defined through an inner product. Justify your answer.

Solution.

a) We check
i. $\|\boldsymbol{x}\|_{\infty}:=\max _{i=1, \ldots, N}\left\{\left|x_{i}\right|\right\} \geqslant 0 ;\|\boldsymbol{x}\|_{\infty}=0 \Longrightarrow \max _{i}\left|x_{i}\right|=0 \Longrightarrow x_{i}=0$ for all $i=1,2, \ldots$, $N \Longrightarrow \boldsymbol{x}=\mathbf{0}$; $\|\boldsymbol{x}\|_{1}:=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N}\right| \geqslant 0 ;\|\boldsymbol{x}\|_{1}=0 \Longrightarrow\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N}\right|=0 \Longrightarrow$ $\|\boldsymbol{x}\|_{\infty}=0 \Longrightarrow \max _{i}\left|x_{i}\right|=0 \Longrightarrow x_{i}=0$ for all $i=1,2, \ldots, N \Longrightarrow \boldsymbol{x}=\mathbf{0}$.
ii. $\|a \boldsymbol{x}\|_{\infty}=\max _{i}\left\{\left|a x_{i}\right|\right\}=\max _{i}\left\{|a|\left|x_{i}\right|\right\}=|a| \max _{i}\left\{\left|x_{i}\right|\right\}=|a|\|\boldsymbol{x}\|_{\infty}$; $\|a \boldsymbol{x}\|_{1}=\left|a x_{1}\right|+\left|a x_{2}\right|+\cdots+\left|a x_{N}\right|=|a|\left(\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N}\right|\right)=|a|\|\boldsymbol{x}\|_{1}$.
iii. (Triangle inequality).

$$
\begin{align*}
\|\boldsymbol{x}+\boldsymbol{y}\|_{\infty} & =\max _{i}\left|x_{i}+y_{i}\right| \\
& \leqslant \max _{i}\left(\left|x_{i}\right|+\left|y_{i}\right|\right) \\
& \leqslant \max _{i}\left|x_{i}\right|+\max _{i}\left|y_{i}\right| \\
& =\|\boldsymbol{x}\|_{\infty}+\|\boldsymbol{y}\|_{\infty} . \tag{13}\\
\|\boldsymbol{x}+\boldsymbol{y}\|_{1}= & \left|x_{1}+y_{1}\right|+\left|x_{2}+y_{2}\right|+\cdots+\left|x_{N}+y_{N}\right| \\
\leqslant & \left|x_{1}\right|+\left|y_{1}\right|+\cdots+\left|x_{N}\right|+\left|y_{N}\right| \\
= & \left(\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{N}\right|\right)+\left(\left|y_{1}\right|+\left|y_{2}\right|+\cdots+\left|y_{N}\right|\right) \\
= & \|\boldsymbol{x}\|_{1}+\|\boldsymbol{y}\|_{1} . \tag{14}
\end{align*}
$$

b) We have

$$
\begin{align*}
\|x+y\|^{2}+\|x-y\|^{2}= & (x+y, x+y)+(x-y, x-y) \\
= & (x, x)+(x, y)+(y, x)+(y, y) \\
& +(x, x)+(x,-y)+(-y, x)+(-y,-y) \\
= & (x, x)+2(x, y)+(y, y) \\
& +(x, x)-2(x, y)+(y, y) \\
= & 2[(x, x)+(y, y)] \\
= & 2\left(\|x\|^{2}+\|y\|^{2}\right) . \tag{15}
\end{align*}
$$

c) Take $\|\cdot\|_{\infty}$. All we need to show is that it does not satisfy the equality proved in b). Take $\boldsymbol{x}=\boldsymbol{e}_{1}, \boldsymbol{y}=\boldsymbol{e}_{2}$. Then we have $\|\boldsymbol{x}+\boldsymbol{y}\|_{\infty}=\|\boldsymbol{x}-\boldsymbol{y}\|_{\infty}=\|\boldsymbol{x}\|_{\infty}=\|\boldsymbol{y}\|_{\infty}=1$. The equality is not satisfied.

Question 4. Let $O \in \mathbb{R}^{N \times N}$ be such that $\|O \boldsymbol{x}\|=\|\boldsymbol{x}\|$ for any $\boldsymbol{x} \in \mathbb{R}^{N}$. Prove that O is orthogonal. Please prove it directly and do not use any theorem from linear algebra.

Proof. First we show that $(O \boldsymbol{x}) \cdot(O \boldsymbol{y})=\boldsymbol{x} \cdot \boldsymbol{y}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}$. To see this we calculate

$$
\begin{align*}
\boldsymbol{x} \cdot \boldsymbol{x}+2 \boldsymbol{x} \cdot \boldsymbol{y}+\boldsymbol{y} \cdot \boldsymbol{y} & =(\boldsymbol{x}+\boldsymbol{y}) \cdot(\boldsymbol{x}+\boldsymbol{y}) \\
& =[O(\boldsymbol{x}+\boldsymbol{y})] \cdot[O(\boldsymbol{x}+\boldsymbol{y})] \\
& =(O \boldsymbol{x}) \cdot(O \boldsymbol{x})+2(O \boldsymbol{x}) \cdot(O \boldsymbol{y})+(O \boldsymbol{y}) \cdot(O \boldsymbol{y}) \\
& =\|O \boldsymbol{x}\|^{2}+2(O \boldsymbol{x}) \cdot(O \boldsymbol{y})+\|O \boldsymbol{y}\|^{2} \\
& =\|\boldsymbol{x}\|^{2}+2(O \boldsymbol{x}) \cdot(O \boldsymbol{y})+\|\boldsymbol{y}\|^{2} \\
& =\boldsymbol{x} \cdot \boldsymbol{x}+2(O \boldsymbol{x}) \cdot(O \boldsymbol{y})+\boldsymbol{y} \cdot \boldsymbol{y} . \tag{16}
\end{align*}
$$

The claim follows.
Recalling $\boldsymbol{x} \cdot \boldsymbol{y}=\boldsymbol{x}^{T} \boldsymbol{y}$, we have

$$
\begin{equation*}
(O \boldsymbol{x}) \cdot(O \boldsymbol{y})=(O \boldsymbol{x})^{T}(O \boldsymbol{y})=\boldsymbol{x}^{T} O^{T} O \boldsymbol{y}=\left[O^{T} O \boldsymbol{x}\right]^{T} \boldsymbol{y}=\left(O^{T} O \boldsymbol{x}\right) \cdot \boldsymbol{y} \tag{17}
\end{equation*}
$$

Thus we have shown

$$
\begin{equation*}
\left[\left(O^{T} O \boldsymbol{x}\right)-\boldsymbol{x}\right] \cdot \boldsymbol{y}=0 \tag{18}
\end{equation*}
$$

for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{N}$.
Taking $\boldsymbol{y}=\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{N}$, we see that

$$
\begin{equation*}
O^{T} O \boldsymbol{x}=\boldsymbol{x} \tag{19}
\end{equation*}
$$

for all $\boldsymbol{x} \in \mathbb{R}^{N}$.
Finally taking $\boldsymbol{x}=\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{N}$ we see that $O^{T} O=I$, that is the matrix O is orthogonal.
Question 5. Let $D=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$ be a diagonal matrix with all the d_{i} 's distinct. Let $A \in \mathbb{R}^{N \times N}$ be such that $A D=D A$. What can we conclude about A? Justify your answer.

Proof. The (i, j) entry for $A D$ is $d_{j} a_{i j}$ while the (i, j) entry for $D A$ is $d_{i} a_{i j}$. Thus we have

$$
\begin{equation*}
\left(d_{i}-d_{j}\right) a_{i j}=0 \tag{20}
\end{equation*}
$$

for all $i, j=1, \ldots, N$. As d_{i} 's are distinct, this means $a_{i j}=0$ when $i \neq j$, that is A is diagonal.
It is clear that if A is diagonal, then $A D=D A$. Thus we have fully characterized the matrices that commute with a diagonal matrix with distinct main diagonal entries.

Question 6. (Twin Prime Conjecture) Earlier this year, Prof. Yitang Zhang of University of New Hampshire made history through proving the following result:

$$
\begin{equation*}
\liminf _{n \longrightarrow \infty}\left(p_{n+1}-p_{n}\right)<7 \times 10^{7} \tag{21}
\end{equation*}
$$

where p_{n} is the n-th prime number.
a) Prove that the Twin Prime Conjecture "There are infinitely many pairs of prime numbers with difference 2 " is equivalent to

$$
\begin{equation*}
\liminf _{n \longrightarrow \infty}\left(p_{n+1}-p_{n}\right)=2 . \tag{22}
\end{equation*}
$$

b) One step of his proof is basically the following. Assume

$$
\begin{equation*}
\sum_{d<D^{2}, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_{i}(d)}|\Delta(\theta, d, c)| \leqslant x(\log x)^{-A}, \tag{23}
\end{equation*}
$$

for some $A>0$ and

$$
\begin{equation*}
\sum_{c \in \mathcal{C}_{i}(d)}|\Delta(\theta, d, c)| \leqslant x(\log x) / d ; \quad \sum_{d<D^{2}, d \mid \mathcal{P}} \tau_{3}(d)^{2} \rho_{2}(d)^{2} d^{-1} \leqslant(\log x)^{B} \tag{24}
\end{equation*}
$$

for some $B>0$. Then we have

$$
\begin{equation*}
\mathcal{E}:=\left|\sum_{d<D^{2}, d \mid \mathcal{P}} \tau_{3}(d) \rho_{2}(d) \sum_{c \in \mathcal{C}_{i}(d)}\right| \Delta(\theta, d, c)| | \ll x(\log x)^{\frac{B+1-A}{2}} . \tag{25}
\end{equation*}
$$

for any $A>0$. Prove the above claim using Cauchy-Schwarz.

Proof.

a) If $\liminf _{n} \rightarrow \infty\left(p_{n+1}-p_{n}\right)=2$, then there is a subsequence satisfying

$$
\begin{equation*}
\liminf _{k \longrightarrow \infty}\left(p_{n_{k}+1}-p_{n_{k}}\right)=2 \tag{26}
\end{equation*}
$$

Consequently, there is $K \in \mathbb{N}$ such that for all $k>K$,

$$
\begin{equation*}
\left|p_{n_{k}+1}-p_{n_{k}}-2\right|<1 / 2 \tag{27}
\end{equation*}
$$

But the left hand side is an integer, so it must be 0 . That is there are infinitely many pairs of prime numbers with difference 2 .
b) We have

$$
\begin{align*}
\mathcal{E} & =\left|\sum_{d<D^{2}, d \mid \mathcal{P}} \tau_{3}(d) \rho_{2}(d) \sum_{c \in \mathcal{C}_{i}(d)}\right| \Delta(\theta, d, c) \mid\left(\sum_{d<D^{2}, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_{i}(d)}|\Delta(\theta, d, c)|\right)^{1 / 2} \\
& =\left|\sum_{d<D^{2}, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_{i}(d)}\left(\tau_{3}(d) \rho_{2}(d)|\Delta(\theta, d, c)|^{1 / 2}\right)\left(|\Delta(\theta, d, c)|^{1 / 2}\right)\right| \\
& \leqslant\left(\sum_{d<D^{2}, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_{i}(d)}\left(\tau_{3}(d) \rho_{2}(d)|\Delta(\theta, d, c)|^{1 / 2}\right)^{2}\right)^{1 / 2}\left(\sum_{d<D^{2}, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_{i}(d)}|\Delta(\theta, d, c)|\right)^{1 / 2} \\
& =\left(\sum_{d<D^{2}, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_{i}(d)}\left(\tau_{3}(d)^{2} \rho_{2}(d)^{2}|\Delta(\theta, d, c)|\right)^{1 / 2}\left(\sum_{d<D^{2}, d \mid \mathcal{P}} \sum_{c \in \mathcal{C}_{i}(d)}|\Delta(\theta, d, c)|\right)^{1 / 2}\right. \\
& =\left(\sum_{d<D^{2}, d \mid \mathcal{P}} \tau_{3}(d)^{2} \rho_{2}(d)^{2}\left[\sum_{c \in \mathcal{C}_{i}(d)}|\Delta(\theta, d, c)|\right]\right)^{1 / 2}\left(x(\log x)^{-A}\right)^{1 / 2} \\
& \leqslant\left(\sum_{d<D^{2}, d \mid \mathcal{P}} \tau_{3}(d)^{2} \rho_{2}(d)^{2} d^{-1} x(\log x)\right)^{1 / 2}\left(x(\log x)^{-A}\right)^{1 / 2} \\
& \leqslant x^{1 / 2}(\log x)^{\frac{B+1}{2}} x^{1 / 2}(\log x)^{-A / 2} \\
& =x(\log x)^{\frac{B+1-A}{2}} . \tag{28}
\end{align*}
$$

