Math 217 Fall 2013 Homework 1 Solutions

- This homework consists of 10 problems of 3 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.

Question 1. Find a bounded sequence of real numbers that is divergent.
Discussion. The understanding is that a sequence is convergent if

1. it is bounded, and
2. it is not oscillating.

Therefore we try an oscillating sequence. For example $x_{n}=(-1)^{n}$.
Solution. We prove it is not Cauchy: $\exists \varepsilon_{0}>0, \forall N \in \mathbb{N}, \exists m, n>N,\left|x_{m}-x_{n}\right| \geqslant \varepsilon_{0}$. Clearly taking any $\varepsilon_{0} \leqslant 2$ does the job.

Question 2. Find a divergent sequence $\left\{x_{n}\right\}$ such that for every $m \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(x_{n+m}-x_{n}\right)=0 . \tag{1}
\end{equation*}
$$

Discussion. The m is in fact a decoy: If we can find a divergent $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty}\left(x_{n+1}-x_{n}\right)=0$, then for any fixed m,

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(x_{n+m}-x_{n}\right)=\lim _{n \rightarrow \infty}\left[\left(x_{n+m}-x_{n+m-1}\right)+\cdots+\left(x_{n+1}-x_{n}\right)\right]=0+\cdots+0=0 . \tag{2}
\end{equation*}
$$

Note that there are only a fixed finite number of terms add together.
Solution. Take $x_{n}=n^{a}$ for any $0<a<1$, or take $x_{n}=\ln (n)$. For example, for $x_{n}=n^{a}$, we have

$$
\begin{equation*}
\left|x_{n+m}-x_{n}\right|=a \xi^{a-1}(n+m-n)=m a \xi^{a-1} \tag{3}
\end{equation*}
$$

for some $\xi \in(n, n+m)$ by mean value theorem. When $n \longrightarrow \infty, \xi \longrightarrow \infty$ and since $a<1, \xi^{a-1} \longrightarrow 0$. Consequently

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(x_{n+m}-x_{n}\right)=0 . \tag{4}
\end{equation*}
$$

Question 3. Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ that is nowhere continuous, but its absolute value $|f|$ is everywhere continuous.

Solution. Define

$$
f(x)=\left\{\begin{array}{ll}
1 & x \in \mathbb{Q} \tag{5}\\
-1 & x \notin \mathbb{Q}
\end{array} .\right.
$$

Then $|f(x)|=1$ for all $x \in \mathbb{R}$ which is obviously continuous.
On the other hand, we can prove that for any $x_{0} \in \mathbb{R}, f$ is not continuous at x_{0}. This splits into two cases:

- Case 1. $x_{0} \in \mathbb{Q}$. Then there is a sequence of $x_{n} \notin \mathbb{Q}$ such that $x_{n} \longrightarrow x_{0}$. But then $\lim _{x_{n} \longrightarrow x_{0}} f\left(x_{n}\right)=-1 \neq f\left(x_{0}\right)$.
- Case 2. $x_{0} \notin \mathbb{Q}$. Then there is a sequence of $x_{n} \in \mathbb{Q}$ such that that $x_{n} \longrightarrow x_{0}$. But then $\lim _{x_{n} \longrightarrow x_{0}} f\left(x_{n}\right)=1 \neq f\left(x_{0}\right)$.

Question 4. Find an infinitely differentiable function f such that $\lim _{x \rightarrow \infty} f(x)=0$ holds but $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$ does not hold.

Discussion. The idea is that f oscillates more and more as $x \longrightarrow \infty$ so that although the amplitude of the oscillation $\longrightarrow 0$, the slope does not. So we take $\sin x$, modulate it through multiplication of $f(x) \longrightarrow 0$, then change its frequency through composition: $\sin (g(x))$ so that when taking derivative, the new factor $g^{\prime}(x)$ would counter $f(x)$.
Solution. Define

$$
\begin{equation*}
f(x)=e^{-x} \sin \left(e^{x}\right) \tag{6}
\end{equation*}
$$

Then since $e^{-x}, e^{x}, \sin x$ are all infinitely differentiable everywhere, so is f.
We have

$$
\begin{equation*}
e^{-x} \leqslant f(x) \leqslant e^{-x} \tag{7}
\end{equation*}
$$

so by Squeeze Theorem $\lim _{x \rightarrow \infty} f(x)=0$.
On the other hand,

$$
\begin{equation*}
f^{\prime}(x)=-e^{-x} \sin \left(e^{x}\right)+\cos \left(e^{x}\right) . \tag{8}
\end{equation*}
$$

We prove by contradiction. Assume $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$. Then since $\lim _{x \rightarrow \infty} e^{-x} \sin \left(e^{x}\right)=0$, we must have $\lim _{x \longrightarrow \infty} \cos \left(e^{x}\right)=0$. Now take $x_{n}=\ln (2 n \pi)$. Note that $x_{n} \longrightarrow \infty$ and $\cos \left(e^{x_{n}}\right)=1$. Contradiction.

Question 5. Find a function that is infinitely differentiable (that is $f^{(n)}$ exists for all $n \in \mathbb{N}$) and satisfy $f(0)=1, f(x)=0$ for all $|x| \geqslant 1$.
Solution. Consider the function $g(x)=\left\{\begin{array}{ll}\exp [-1 / x] & x>0 \\ 0 & x \leqslant 0\end{array}\right.$. We prove that it is infintely differentiable. Once this is done, we set

$$
\begin{equation*}
f(x)=\frac{g(1-x) \cdot g(x+1)}{g(1)^{2}} . \tag{9}
\end{equation*}
$$

Then f is infinitely differentiable and $f(0)=1, f(x)=0$ for all $|x| \geqslant 1$.
To show that $g(x)$ is infinitely differentiable, we prove by induction. Let $Q(n)$ be the statement: $g^{(n)}(x)$ exists for all x, and $g^{(n)}(x)=\left\{\begin{array}{ll}P_{n}(1 / x) \exp [-1 / x] & x>0 \\ 0 & x \leqslant 0\end{array}\right.$ where P_{n} is a polynomial.

- $\quad Q(1)$. It is clear that $g^{\prime}(x)=0$ for $x<0$ and $g^{\prime}(x)=\left(\frac{1}{x^{2}}\right) \exp [-1 / x]=: P_{1}(1 / x) \exp [-1 / x]$ for $x>0$. Thus all we need to prove is $g^{\prime}(0)=0$.

We prove through definition: It is easy to see

On the other hand,

$$
\begin{equation*}
\lim _{x \longrightarrow 0-} \frac{g(x)-g(0)}{x}=0 . \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{x \longrightarrow 0+} \frac{g(x)-g(0)}{x}=\lim _{x \longrightarrow 0+} \frac{1}{x} \exp [-1 / x]=\lim _{t \longrightarrow+\infty} t e^{-t}=0 \tag{11}
\end{equation*}
$$

where we have used L'Hospitale: the limit is of the type $\frac{\infty}{\infty}$ so

$$
\begin{equation*}
\lim _{t \longrightarrow+\infty} \frac{t}{e^{t}}=\lim _{t \longrightarrow+\infty} \frac{1}{e^{t}}=0 \tag{12}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{g(x)-g(0)}{x} \tag{13}
\end{equation*}
$$

exists and equals 0 .

- $\quad Q(n) \Longrightarrow Q(n+1)$. Assume $Q(n)$:
$g^{(n)}(x)$ exists for all x, and $g^{(n)}(x)=\left\{\begin{array}{ll}P_{n}(1 / x) \exp [-1 / x] & x>0 \\ 0 & x \leqslant 0\end{array}\right.$ where P_{n} is a polynomial.
Then we clearly have $g^{(n)}$ is differentiable at $x \neq 0$ and takes the values

$$
g^{(n+1)}(x)=\left\{\begin{array}{ll}
{\left[-P_{n}^{\prime}\left(\frac{1}{x}\right)+P_{n}\left(\frac{1}{x}\right)\right]\left(\frac{1}{x}\right)^{2} e^{-1 / x}=: P_{n+1}\left(\frac{1}{x}\right) e^{-1 / x}} & x>0 \tag{14}\\
0 & x<0
\end{array} .\right.
$$

Thus all we need to show is $g^{(n+1)}(0)$ exists and equals to 0 . We have

$$
\begin{equation*}
\lim _{x \longrightarrow 0-} \frac{g^{(n)}(x)-g^{(n)}(0)}{x}=0 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow 0+} \frac{g^{(n)}(x)-g^{(n)}(0)}{x}=\lim _{x \longrightarrow 0+} \frac{1}{x} P_{n}\left(\frac{1}{x}\right) e^{-1 / x}=\lim _{t \longrightarrow+\infty} \frac{t P_{n}(t)}{e^{t}} . \tag{16}
\end{equation*}
$$

Since $t P_{n}(t)$ is still a polynomial, application of L'Hospitale finitely many times yields

$$
\begin{equation*}
\lim _{t \longrightarrow+\infty} \frac{t P_{n}(t)}{e^{t}}=\cdots=\lim _{t \longrightarrow+\infty} \frac{1}{e^{t}}=0 \tag{17}
\end{equation*}
$$

Thus $Q(n) \Longrightarrow Q(n+1)$ holds.
Question 6. Find a differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$ such that f^{\prime} is not continuous.
Discussion. It should be understood that the following cannot hold: f is differentiable on $(a, b) \ni x_{0}$, both $\lim _{x \longrightarrow x_{0}+} f^{\prime}(x)$ and $\lim _{x \longrightarrow x_{0}-} f^{\prime}(x)$ exist but do not equal. Therefore, for f^{\prime} to be not continuous, the left/right limits must not exist, that is f^{\prime} must "oscillate". For oscillating functions, we have the Dirichlet function and $\sin (1 / x)$. The former is clearly hard to handle so we try the latter.
Solution. Define

$$
f(x):= \begin{cases}|x|^{a} \sin \left(\frac{1}{x}\right) & x \neq 0 \tag{18}\\ 0 & x=0\end{cases}
$$

for some $a \in(1,2]$. Clearly f is differentiable for $x \neq 0$. At 0 , we have

$$
\begin{equation*}
\lim _{x \longrightarrow 0} \frac{f(x)-f(0)}{x}=\lim _{x \longrightarrow 0}|x|^{a-1} \sin \left(\frac{1}{x}\right)=0 \tag{19}
\end{equation*}
$$

thanks to Squeeze Theorem.
Now when $x>0$,

$$
\begin{equation*}
f^{\prime}(x)=a x^{a-1} \sin \left(\frac{1}{x}\right)-x^{a-2} \cos \left(\frac{1}{x}\right) . \tag{20}
\end{equation*}
$$

That $\lim _{x \rightarrow 0} f^{\prime}(x)$ does not exist can be shown similarly as in the Solution to Question 4.
Question 7. Find a differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$ such that $f^{\prime}(0)>0$ but f is not increasing on any (a, b) containing 0.

Discussion. Recall that, if f^{\prime} exists and is $\geqslant 0$ on an interval (a, b), then f is increasing. Thus this example shows that $\geqslant 0$ on the whole interval is really necessary.

Solution. We consider

$$
\begin{equation*}
f(x)=k x+x^{2} \sin \left(\frac{1}{x}\right) . \tag{21}
\end{equation*}
$$

That this function is differentiable at all x can be proved as in the last problem. We have

$$
f^{\prime}(x)= \begin{cases}k-\cos \left(\frac{1}{x}\right)+2 x \sin \left(\frac{1}{x}\right) & x \neq 0 \tag{22}\\ k & x=0\end{cases}
$$

Thus $f^{\prime}(0)>0$ as long as $k>0$.
To show that f is not increasing on any interval containing 0 , we explore the values of $f(x)$ at $x_{n}=\frac{1}{2 n \pi+\pi / 2}$ and $y_{n}=\frac{1}{(2 n-1) \pi+\pi / 2}$. We have $x_{n}<y_{n}$, and

$$
\begin{equation*}
f\left(x_{n}\right)-f\left(y_{n}\right)=k\left(x_{n}-y_{n}\right)+x_{n}^{2}+y_{n}^{2} \geqslant 2 x_{n} y_{n}-k \pi x_{n} y_{n} \tag{23}
\end{equation*}
$$

Thus when $k<2 / \pi$ we have $f\left(x_{n}\right)>f\left(y_{n}\right)$. As $x_{n}, y_{n} \longrightarrow 0$, we see that f is not increasing on any (a, b) containing 0 .

Remark. A sharper method is the following. We can actually conclude that
If $k \leqslant 1$ then f is not increasing on any (a, b) containing 0 ; On the other hand, if $k>1$ then there is a small interval containing 0 such that f is increasing.

- $k \leqslant 1$. All we need to do is to show that there are $a_{n}<b_{n}, a_{n}, b_{n} \longrightarrow 0$ such that $f^{\prime}(x)<0$ for $x \in\left(a_{n}, b_{n}\right)$.

We have

$$
\begin{equation*}
f^{\prime}(x)=k-\sqrt{1+4 x^{2}} \cos \left(\frac{1}{x}+\theta(x)\right) \tag{24}
\end{equation*}
$$

for $\theta(x)$ satisfying $\tan (\theta)=2 x$. Thus $\theta(x)$ is differentiable and $\theta(x) \longrightarrow 0$ as $x \longrightarrow 0$. As $\frac{1}{x} \longrightarrow \infty$ when $x \longrightarrow \infty$, there are $x_{n} \longrightarrow 0$ such that

$$
\begin{equation*}
\frac{1}{x_{n}}+\theta\left(x_{n}\right)=2 n \pi ; \tag{25}
\end{equation*}
$$

Now as

$$
\begin{equation*}
f^{\prime}\left(x_{n}\right)=k-\sqrt{1+4 x_{n}^{2}}<0 \tag{26}
\end{equation*}
$$

there is $\delta_{n}>0$ such that

$$
\begin{equation*}
f^{\prime}(x)<0 \quad \forall x \in\left(x_{n}-\delta_{n}, x_{n}+\delta_{n}\right) \tag{27}
\end{equation*}
$$

thanks to the continuity of $f^{\prime}(x)$ for $x>0$.

- $k>1$. In this case set $\delta:=\frac{\sqrt{k-1}}{2}$. Then we have, for all $x \in(-\delta, \delta)$,

$$
\begin{equation*}
f^{\prime}(x) \geqslant k-\sqrt{1+4 x^{2}} \geqslant k-\left(1+2 x^{2}\right) \geqslant k-\left(1+2 \delta^{2}\right)=\frac{k-1}{2}>0 . \tag{28}
\end{equation*}
$$

Therefore f is increasing in $(-\delta, \delta)$.
Question 8. Find a function $f:[0,1] \mapsto \mathbb{R}$ that is bounded on $[0,1]$ but not Riemann integrable.
Solution. Consider the Dirichlet function

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \tag{29}\\ 0 & x \notin \mathbb{Q} .\end{cases}
$$

It is clearly bounded. To see that it is not Riemann integrable, we check that for any partition $0=x_{0}<x_{1}<\cdots<x_{n}=1$, we have

$$
\begin{equation*}
\max _{x \in\left[x_{i-1}, x_{i}\right]} f=1, \quad \min _{x \in\left[x_{i-1}, x_{i}\right]} f=0 . \tag{30}
\end{equation*}
$$

Consequently the upper and lower sums:

$$
\begin{equation*}
U(f, P)=1, \quad L(f, P)=0 \tag{31}
\end{equation*}
$$

for all partitions P. This gives $U(f)=1 \neq 0=L(f)$ and the function is not Riemann integrable.
Question 9. Find a function $f:[0,1] \mapsto \mathbb{R}$ such that there is $F:[0,1] \mapsto \mathbb{R}$ such that $F^{\prime}=f$, but f is not Riemann integrable on $[0,1]$.

Note. My intention was to require $F^{\prime}=f$ on the closed interval $[0,1]$. During grading I realized that I didn't make this point clearly enough and many of you find examples with $F^{\prime}=f$. As this is my fault I decided not to deduct any point in the case. Please contact me if I forgot to do that with your solution.

Discussion. We know that a function is not integrable if at least one of the following happens:

1. f is not bounded;
2. The set $D:=\{x \in[0,1] \mid f$ is not continuous at $x\}$ does not have Lebesgue measure zero - necessarily D has to contain more points than the set of rationals.

We would like our f^{\prime} to satisfy one of the above. It is clear that 2 . is hard to achieve (not possible though - see remark after solution) so we focus on 1. Furthermore it is clearly easier to start from the construction of the anti-derivative $F(x)$.
Solution. Take $F(x):=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$. Then as in several previous problems we can show that F is differentiable at all $x \in \mathbb{R}$ and

$$
f(x):=F^{\prime}(x)=\left\{\begin{array}{ll}
2 x \sin \frac{1}{x^{2}}-\frac{2}{x} \cos \frac{1}{x^{2}} & x \neq 0 \tag{32}\\
0 & x=0
\end{array} .\right.
$$

Taking $x_{n}:=\frac{1}{\sqrt{2 n \pi}}$ we see that $f(x)$ is not bounded on $[0,1]$ and therefore is not Riemann integrable.
Remark. David managed to find the following paper:
MR0425042 (54 \#13000) Goffman, Casper A bounded derivative which is not Riemann integrable. Amer. Math. Monthly 84 (1977), no. 3, 205-206.
where a bounded function $f(x)$ is constructed that is not Riemann integrable and satisfies

$$
\begin{equation*}
f(x)=\frac{\mathrm{d}}{\mathrm{~d} x} F(x) \tag{33}
\end{equation*}
$$

for some $F(x)$. Note that this example answers both Questions 8 and 9 .
The basic idea is as follows. Let $r_{n} \in \mathbb{Q} \cap[0,1]$ be all the rational numbers, listed as a countable sequence. Let $\delta \in(0,1 / 3)$. Consider

$$
\begin{equation*}
O:=\cup_{n=1}^{\infty}\left(r_{n}-\delta^{n}, r_{n}+\delta^{n}\right) . \tag{34}
\end{equation*}
$$

O is a dense open set. One can prove that any open set in \mathbb{R} can be represented as the union

$$
\begin{equation*}
O=\cup_{k=1}^{\infty} I_{k} \tag{35}
\end{equation*}
$$

where each $I_{k}:=\left(a_{k}, b_{k}\right)$ is an open interval and $I_{k} \cap I_{l}=\varnothing$ whenever $k \neq l$. Now let

$$
g(x):=\left\{\begin{array}{ll}
x+1 & -1 \leqslant x \leqslant 0 \tag{36}\\
1-x & 0 \leqslant x \leqslant 1 \\
0 & x \notin[-1,1]
\end{array} .\right.
$$

Define

$$
\begin{equation*}
g_{k}(x):=g\left(\frac{x-\left(a_{k}+b_{k}\right) / 2}{a_{k}-a_{k}}\right) \tag{37}
\end{equation*}
$$

and then

$$
f(x):=\sum_{k=1}^{\infty} g_{k}(x)= \begin{cases}g_{k}(x) & x \in\left(a_{k}, b_{k}\right) \tag{38}\\ 0 & x \notin O\end{cases}
$$

is clearly bounded and satisfies $L(f)<U(f)$ so is not Riemann integrable. It should emphasized here that $\left(a_{k}, b_{k}\right)$ "jumps around" in $[0,1]$ and does not follow the usual "left-to-right" order.

To make $f(x)$ a derivative, we need to slightly modify the construction. Let $J_{k}:=\left(c_{k}, d_{k}\right) \subset\left(a_{k}\right.$, b_{k}) such that $\frac{c_{k}+d_{k}}{2}=\frac{a_{k}+b_{k}}{2}$ and $\left|c_{k}-d_{k}\right|<\left|a_{k}-b_{k}\right|^{2}$. Now re-define

$$
\begin{equation*}
g_{k}(x):=g\left(\frac{x-\left(c_{k}+d_{k}\right) / 2}{d_{k}-c_{k}}\right) \tag{39}
\end{equation*}
$$

and still let $f(x):=\sum_{k=1}^{\infty} g_{k}(x)$. Define $F(x):=\sum_{k=1}^{\infty} G_{k}(x)$ where $G_{k}(x):=\int_{0}^{x} g_{k}(t) \mathrm{d} t$. Let $x_{0} \in[0,1]$. We have the following cases.

1. $x_{0} \in O$. Then $x_{0} \in I_{k}$ for some k. For any $x \in I_{k}$, we have

$$
\begin{equation*}
F(x)-F\left(x_{0}\right)=G_{k}(x)-G_{k}\left(x_{0}\right)=\int_{x_{0}}^{x} g_{k}(t) \mathrm{d} t \Longrightarrow F^{\prime}(x)=g_{k}(x)=f(x) \tag{40}
\end{equation*}
$$

thanks to FTC version 2.
2. $x_{0} \notin O$. Take any $x \neq x_{0}$. Wlog assume $x>x_{0}$. We try to get an upper bound of the size of the set $\left[x_{0}, x\right] \cap\left(\cup J_{n}\right)=\cup\left(\left[x_{0}, x\right] \cap J_{n}\right)$ which would be an upper bound of $F(x)$. We only need to consider those J_{n} such that $\left[x_{0}, x\right] \cap J_{n} \neq \varnothing$. Fix one such n. We have $\left[x_{0}, x\right] \cap J_{n} \subseteq J_{n}$. This gives (we use $|\cdot|$ to denote the size of a set - length in the case of intervals)

$$
\begin{equation*}
\left|\left[x_{0}, x\right] \cap J_{n}\right| \leqslant\left|J_{n}\right|<\left|I_{n}\right|^{2} . \tag{41}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\left|\left[x_{0}, x\right] \cap I_{n}\right| \geqslant \frac{1}{2}\left(\left|I_{n}\right|-\left|J_{n}\right|\right)>\frac{1}{2}\left|I_{n}\right|\left(1-\left|I_{n}\right|\right) \geqslant \frac{1}{2}\left|I_{n}\right|(1-|O|) \geqslant \delta\left|I_{n}\right| \tag{42}
\end{equation*}
$$

for some $\delta>0$. Therefore

$$
\begin{equation*}
G_{n}(x)-G_{n}\left(x_{0}\right):=\int_{x_{0}}^{x} g_{n}(t) \mathrm{d} t \leqslant\left|\left[x_{0}, x\right] \cap J_{n}\right| \leqslant C\left|\left[x_{0}, x\right] \cap I_{n}\right|^{2} \tag{43}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left|F(x)-F\left(x_{0}\right)\right| \leqslant C \sum_{n=1}^{\infty}\left|\left[x_{0}, x\right] \cap I_{n}\right|^{2} \leqslant C\left(\sum_{n=1}^{\infty}\left|\left[x_{0}, x\right] \cap I_{n}\right|\right)^{2} \leqslant C\left(x-x_{0}\right)^{2} \tag{44}
\end{equation*}
$$

which gives $F^{\prime}\left(x_{0}\right)=0$.
Question 10. Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ that is unbounded on every interval (a, b). Recall that a function is bounded on an interval (a, b) if there is $M>0$ such that $\forall x \in(a, b),|f(x)|<M$.

Solution. We modify the Dirichlet function:

$$
f(x):= \begin{cases}q & x \in \mathbb{Q}, x=\frac{p}{q} \text { with } q>0,(p, q) \text { co-prime } \tag{45}\\ 0 & x \notin \mathbb{Q}\end{cases}
$$

Then for any interval (a, b), we claim there are $r_{n} \in \mathbb{Q}$ satisfying $r_{n} \in(a, b), r_{n}=\frac{p_{n}}{q_{n}}$ with p_{n}, q_{n} coprime, and $q_{n} \longrightarrow \infty$.

Since \mathbb{Q} is dense in \mathbb{R}, there are infinitely many rational numbers in (a, b). The difficulty here is to make sure p_{n}, q_{n} co-prime and $q_{n} \longrightarrow \infty$. There are several ways.

- For any $n>-\log _{2}(b-a)+1$, we consider the rational numbers $Q_{n}:=\left\{\left.\frac{2 k+1}{2^{n}} \right\rvert\, k \in \mathbb{Z}\right\}$. Clearly $2 k+1$ and 2^{n} are co-prime. On the other hand as

$$
\begin{equation*}
\frac{2 k+1}{2^{n}}-\frac{2 k-1}{2^{n}}=2^{-(n-1)}<b-a \tag{46}
\end{equation*}
$$

there is $r_{n} \in Q_{n} \cap(a, b)$. We have $f\left(r_{n}\right)=2^{n}$ and the proof ends.

- Several of you have come up with the following beautiful argument: Assume the contrary, that is f is bounded on (a, b) with upper bound M. But there are only finitely many rational numbers of the form p / q with (p, q) co-prime and $q \leqslant M$. Contradiction.

Remark. David (again!) managed to find the following "Conway's Base 13 Function" whose primary purpose is to serve as a function satisfying the intermediately value property but is not continuous on any interval $(a, b) .{ }^{1}$ Note that this function more than settles Question 10: its image on any interval is \mathbb{R}, that is, $\forall(a, b) \subseteq \mathbb{R}, f((a, b))=\mathbb{R}$. Details of the construction can be found on wiki.

[^0]
[^0]: 1. Note that $\sin \frac{1}{x}$ is an example of discontinuous function satisfying IVP. But it is only discontinuous at one single point.
