MATH 217 FALL 2013 HOMEWORK 1 SOLUTIONS

e This homework consists of 10 problems of 3 points each. The total is 30.

e You need to fully justify your answer — prove that your function indeed has the specified
property — for each problem.

Question 1. Find a bounded sequence of real numbers that is divergent.

Discussion. The understanding is that a sequence is convergent if
1. it is bounded, and

2. it is not oscillating.

Therefore we try an oscillating sequence. For example z, = (—1)™

Solution. We prove it is not Cauchy: g9 >0, VN € N, Im,n > N, |z, — 2| = 0. Clearly taking
any €o < 2 does the job.

Question 2. Find a divergent sequence {x,} such that for every m € N,

Im (zp4m —xn)=0. (1)

n—:o0

Discussion. The m is in fact a decoy: If we can find a divergent {z,} such that
lim,, o0 (41— xpn) =0, then for any fixed m,

im (zppm—2p) = m [(ZTntm—Totm—1)+ -+ (Tnt1—2n)]| =0+ +0=0. (2)
n—->00 n— 00

Note that there are only a fixed finite number of terms add together.

Solution. Take z,, =n® for any 0 <a <1, or take x,, =In (n). For example, for z, =n? we have
|ZTntm — o] =a€®H(n+m—n)=mag~? (3)

for some & € (n,n+m) by mean value theorem. When n — oo, £ — 0o and since a < 1, £~ 1 — 0.
Consequently

lim (zp4m—xn)=0. (4)

n—:o0

Question 3. Find a function f: R +— R that is nowhere continuous, but its absolute value |f| is
everywhere continuous.

Solution. Define

1 zeq
ra={! Iee 5)

Then | f(z)| =1 for all x € R which is obviously continuous.
On the other hand, we can prove that for any zo€ R, f is not continuous at xy. This splits into
two cases:

e Case 1. 9 € Q. Then there is a sequence of z, ¢ @Q such that z, — z¢. But then
limg, a0 (20) = —1 £ f (o).
e Case 2. g ¢ Q. Then there is a sequence of z, € Q such that that x,, — . But then

limg, 2 f(zn) = 1% f(20).
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Question 4. Find an infinitely differentiable function f such that lim, o f(x) = 0 holds but
lim,; o f'(x) =0 does not hold.

Discussion. The idea is that f oscillates more and more as * — oo so that
although the amplitude of the oscillation —0, the slope does not. So we take sin x,
modulate it through multiplication of f(x) — 0, then change its frequency through
composition: sin (g(z)) so that when taking derivative, the new factor ¢g’(x) would
counter f(z).

Solution. Define
f(x)=e""sin(e”). (6)

T e® sinx are all infinitely differentiable everywhere, so is f.

Then since e~

We have
e flr)<e™ (7)
so by Squeeze Theorem lim,_, f(z)=0.
On the other hand,
f'(x) =—e""sin (e%) + cos (e7). (8)
We prove by contradiction. Assume lim, o f/'(x) = 0. Then since lim,_,oce™? sin (%) = 0, we

must have lim,_, cos (e*) = 0. Now take z, =In (2n 7). Note that x,, — oo and cos (e*”) = 1.
Contradiction.

Question 5. Find a function that is infinitely differentiable (that is £ egists for allne N ) and
satisfy f(0)=1, f(x)=0 for all |x|>1.

exp[—1/z] >0

Solution. Consider the function g(x) = { We prove that it is infintely

0 r<0’
differentiable. Once this is done, we set
l1—2) -glx+1
flay = S0 82D (9

Then f is infinitely differentiable and f(0)=1, f(x)=0 for all |z|>1.
To show that g(x) is infinitely differentiable, we prove by induction. Let Q(n) be the statement:
P,(1/z)exp[—1/z] >0

0 2 <0 where P, is a

g™ () exists for all , and ¢(™(z) = {
polynomial.
e Q(1). It is clear that ¢'(z) =0 for 2 <0 and ¢'(z) = (%) exp [—1/z] =: Pi(1/x) exp [—1/x]

for £ > 0. Thus all we need to prove is ¢g’(0) =0.
We prove through definition: It is easy to see

lim M —0. (10)
z—0—
On the other hand,
lim 9(z) —9(0) _ lim lexp [~1/z]= lim te '=0 (11)
r—0+ X r—0+ T t—s+00

where we have used L’Hospitale: the limit is of the type % o)

t 1
li —= 1 —=0. 12
t—1>1200 et t—lg-loo et (12)



Thus
L g() —9(0)
r—0 X
exists and equals 0.

e Q(n)=Q(n+1). Assume Q(n):

P,(1/x)exp[—1/z] >0

0 =<0 where

g™ (z) exists for all z, and g™ (z) = {

P, is a polynomial.

Then we clearly have g(") is differentiable at x # 0 and takes the values

_ p! 1 1 1)? —1/x __. 1 —1/x

0 <0

Thus all we need to show is g("+1)(0) exists and equals to 0. We have

o)~ g"(0) _,

lim
r—0— x
and
M) () — 4(M)
lim @) =970 _ mﬂ_13<1>64m: 10}
r— 0+ T r—0+ T xT t— 400 e

Since t P, (t) is still a polynomial, application of L’Hospitale finitely many times yields

Thus Q(n) = Q(n+1) holds.

Question 6. Find a differentiable function f: R+ IR such that f' is not continuous.

Discussion. It should be understood that the following cannot hold: f is
differentiable on (a, b) 3 zo, both lim,_,,,+ f'(z) and lim,_ ,,— f'(z) exist but do
not equal. Therefore, for f’ to be not continuous, the left /right limits must not exist,
that is f/ must “oscillate”. For oscillating functions, we have the Dirichlet function
and sin (1/x). The former is clearly hard to handle so we try the latter.

Solution. Define
o 1
Fz) = || sm(;) x#0
0 =0

for some a € (1,2]. Clearly f is differentiable for x #0. At 0, we have
lim f@) = 1(0) = lim |z|* !sin <l> =0
x z—0 x

r—0

thanks to Squeeze Theorem.

Now when z > 0,
1 1
/ a—1g; a—2
fl(x)=ax sm(—x> T cos(—x)

(13)

(14)
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That lim,_of’(z) does not exist can be shown similarly as in the Solution to Question 4.

Question 7. Find a differentiable function f:R— R such that f'(0) >0 but f is not increasing on
any (a,b) containing 0.

Discussion. Recall that, if f’ exists and is >0 on an interval (a, b), then f is
increasing. Thus this example shows that >0 on the whole interval is really necessary.

Solution. We consider
f(x):k‘x—l—xzsin<%>. (21)

That this function is differentiable at all « can be proved as in the last problem. We have

Fa) k—cos<é>+2xsm< >x7é0 )
k 5=0

Thus f/(0) >0 as long as k > 0.

To show that f is not increasing on any interval containing 0, we explore the values of f(z) at
1

Tn-Dr¥2
f(xn) = f(y

n) =
Thus when k <2/7 we have f(xzy,) > f(yn). As xy, y, — 0, we see that f is not increasing on any
(a,b) containing 0.

Ty = and y, = We have z, < yn, and

2nw+7/2

E(2n—yn) F 22+ 92> 220y — kT T yn (23)

Remark. A sharper method is the following. We can actually conclude that

If k<1 then f is not increasing on any (a,b) containing 0; On the other hand, if
k > 1 then there is a small interval containing 0 such that f is increasing.

e k< 1. All we need to do is to show that there are a,, < by, ay, b, — 0 such that f'(z) <0
for x € (an, by).
We have

f’(m):k—\/1+4x2cos<%+9(x)> (24)

for O(x) satisfying tan () = 2 x. Thus 6(z) is differentiable and 6(z) — 0 as x — 0. As
——00 when x — oo, there are x,, — 0 such that

1

—+0(xzn)=2nm; (25)
Now as "
—V1+422<0 (26)
there is J,, > 0 such that
f'(x)<0 V€ (xn — Opn, T+ 0n) (27)

thanks to the continuity of f/(z) for = > 0.

e k>1. In this case set §:=- k2_ L Then we have, for all z € (—0,9),

Fla)2k—ViFds? >k—(1+2x2)>k—(1+252):%>0. (28)



Therefore f is increasing in (=6, ).
Question 8. Find a function f:[0,1]— R that is bounded on [0,1] but not Riemann integrable.

Solution. Consider the Dirichlet function

f(fv)z{(l) i;g (29)

It is clearly bounded. To see that it is not Riemann integrable, we check that for any partition
O=z9g<z1<--<xn=1, we have

max f=1, min f=0. (30)

TE[Ti—1,7i] rE€[Ti—1,24)
Consequently the upper and lower sums:
Uu(f,Py=1,  L(f,P)=0 (31)
for all partitions P. This gives U(f)=1+# 0= L(f) and the function is not Riemann integrable.

Question 9. Find a function f:[0,1]— R such that there is F:[0,1]+— R such that F'= f, but f
is not Riemann integrable on [0, 1].

Note. My intention was to require F'= f on the closed interval [0, 1]. During grading I realized
that I didn’t make this point clearly enough and many of you find examples with F’/ = f. As this
is my fault I decided not to deduct any point in the case. Please contact me if I forgot to do that
with your solution.

Discussion. We know that a function is not integrable if at least one of the
following happens:

1. f is not bounded;

2. The set D: ={z € [0, 1]| f is not continuous at z} does not have Lebesgue
measure zero — necessarily D has to contain more points than the set of
rationals.

We would like our f’ to satisfy one of the above. It is clear that 2. is hard to achieve
(not possible though — see remark after solution) so we focus on 1. Furthermore it is
clearly easier to start from the construction of the anti-derivative F'(x).

Solution. Take F(z):= g SinZz # 0 . Then as in several previous problems we can show that
xr=
F is differentiable at all x € R and
12 1
0 x=0

Taking x,:= we see that f(z) is not bounded on [0, 1] and therefore is not Riemann integrable.

1
V2nm
Remark. David managed to find the following paper:

MR0425042 (54 #13000) Goffman, Casper A bounded derivative which is not
Riemann integrable. Amer. Math. Monthly 84 (1977), no. 3, 205-206.
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where a bounded function f(z) is constructed that is not Riemann integrable and satisfies

F@) =S F () (3)

for some F'(z). Note that this example answers both Questions 8 and 9.
The basic idea is as follows. Let 7, € QN[0,1] be all the rational numbers, listed as a countable
sequence. Let d € (0,1/3). Consider

O:=UpZq(rp— 0", rp+d"). (34)
O is a dense open set. One can prove that any open set in R can be represented as the union
O =UpL I (35)
where each Ij:= (ag, bg) is an open interval and I N I; = & whenever k# [. Now let

z+1 -1<x<0

glz):=¢ 1—2 0<x<1 . (36)
0 x ¢ [—1,1]
Define
e (37)
ag — ak
and then

f@):=)" g(w)= { gk(x) iz(gk’ o) (38)
k=1

is clearly bounded and satisfies L(f) < U(f) so is not Riemann integrable. It should emphasized
here that (ag,bx) “jumps around” in [0, 1] and does not follow the usual “left-to-right” order.
To make f(x) a derivative, we need to slightly modify the construction. Let Jy:= (¢, dx) C (ak,

bx) such that L S | lex — di.| < |ag — b |>. Now re-define

2 2
x—(cp+di)/2
() = 9<%> (39)
kE—Ck
and still let f(x):= Y77, gr(x). Define F(x):= 377, Gi(x) where Gy(x) := [ gx(t) dt. Let
x0 € [0,1]. We have the following cases.
1. g€ O. Then xg € Ij for some k. For any x € I, we have

T

F(x) = F(zo) = Gi(x) — Gi(xo) = / g(t) dt = F'(x) = gi(z) = f(x) (40)

Zo
thanks to FTC version 2.
2. 2o ¢ O. Take any x # xg. Wlog assume = > z9. We try to get an upper bound of the size of
the set [xo, 2] N (UJy) =U([xo, 2] N J,) which would be an upper bound of F'(z). We only need

to consider those J,, such that [z, z] N J, # @. Fix one such n. We have [z, z] N Jp, C Jp.
This gives (we use || to denote the size of a set — length in the case of intervals)

[0, ] N T | < || <[ L] (41)
On the other hand, we have

1 1
[0 2] 0 | 2 5 (nl = [Jnl) > 5 Hal (1 = | In]) 2 5 [In] (1 = |O]) = 6 | 1] (42)

1
2



for some § > 0. Therefore

Gn(z) — Gp(xo) := / gn(t) dt < |[zo, 2] N Ju| < C |[wo, 2] N I, |2 (43)
o
This gives
00 0 2
|F(z) = F(x0)| <C Y |[zo, 2] NI < c(Z [0, 2] mn|> <C (z—x0)% (44)
n=1 n=1

which gives F'(z0) =0.

Question 10. Find a function f: R+ R that is unbounded on every interval (a,b). Recall that a
function is bounded on an interval (a,b) if there is M >0 such that Vx € (a,b), |f(x)| < M.

Solution. We modify the Dirichlet function:

p_. .
q x€Q,x== with ¢ >0, (p, q) co-prime
flz):= q : (45)
0 z¢Q

Then for any interval (a,b), we claim there are r, € Q satisfying r,, € (a,b), r, =22 with p,, ¢, co-
prime, and ¢, — oo. "

Since @ is dense in R, there are infinitely many rational numbers in (a,b). The difficulty here
is to make sure pn, ¢, co-prime and ¢, — co. There are several ways.

e Forany n> —logs (b—a)+ 1, we consider the rational numbers Q,,:= {2];—:1| ke Z}. Clearly
2k+1 and 2" are co-prime. On the other hand as

2k+1 2k—1
o on

there is r, € @, N (a,b). We have f(r,)=2" and the proof ends.

=27 Dcp_q (46)

e Several of you have come up with the following beautiful argument: Assume the contrary,
that is f is bounded on (a,b) with upper bound M. But there are only finitely many rational
numbers of the form p/q with (p, ¢) co-prime and ¢ < M. Contradiction.

Remark. David (again!) managed to find the following “Conway’s Base 13 Function” whose primary
purpose is to serve as a function satisfying the intermediately value property but is not continuous
on any interval (a, b).L Note that this function more than settles Question 10: its image on any
interval is R, that is, V(a,b) CR, f((a,b)) =IR. Details of the construction can be found on wiki.

1. Note that sin% is an example of discontinuous function satisfying IVP. But it is only discontinuous at one single point.



