
Math 217 Fall 2013 Homework 10 Solutions

by Due Thursday Nov. 28, 2013 5pm

• This homework consists of 6 problems of 5 points each. The total is 30.

• You need to fully justify your answer – prove that your function indeed has the specified
property – for each problem.

• Please read this week’s lecture notes before working on the problems.

Question 1. Let L: R2 � R
2 be a linear transformation with matrix representation A8 (

1 c

0 1

)

where c∈R.

a) Find the matrix representation for L−1.

b) Let I8 [a1, a2]× [b1, b2]⊆R
2. Prove that L−1(I) is Jordan measurable and µ(L−1(I))= µ(I).

(Hint: Fubini).

c) Let B ⊆ R2 be a simple graph. Prove that L−1(B) is Jordan measurable and µ(L−1(B)) =
µ(B).

d) Let E⊆R
2 be Jordan measurable. Prove that L−1(E) is Jordan measurable and µ(L−1(E))=

µ(E).

e) Let E ⊆ R
2 be Jordan measurable and let f(x, y) be Riemann integrable on E. Prove that

f̃ (u, v)8 f(L(u, v)) is Riemann integrable on L−1(E) and furthermore

∫

E

f(x, y) d(x, y) =

∫

L−1(E)
f̃ (u, v) d(u, v). (1)

Solution.

a) The matrix representation is A−1 =
(

1 −c
0 1

)

.

b) We have

L−1(I)8 {(x, y)P a1 6x+ c y6 a2, b1 6 y6 b2}. (2)

Clearly µ(∂L−1(I))=0 so L−1(I) is Jordan measurable. Furthermore it is clear that for each

fixed y0, the slice L−1(I)∩{y= y0} is also Jordan measurable.

To calculate its measure, we have

µ(L−1(I)) 8 ∫

L−1(I)
d(x, y)

=

∫

b1

b2
[

∫

a1−cy

a2−cy

dx

]

dy

= (a2− a1) (b2− b1) = µ(I). (3)
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c) As B is a simple graph, B=∪i=1
n Ii where i� j� Ii

o∩ Ijo= ∅. Thus we have

µ(L−1(B)) = µ(∪i=1
n L−1(Ii)) 6

∑

i=1

n

µ(L−1(Ii)) =
∑

i=1

n

µ(Ii) = µ(B). (4)

On the other hand, for any a ∈ (0, 1) we can find compact intervals Ji ⊆ Ii
o such that

i� j� Ji∩Jj = ∅ and µ(∪i=1
n Ji)>aµ(B). Since L−1 is one-to-one, we have

µ(L−1(B))> µ(L−1(∪i=1
n Ji))= µ(∪i=1

n L−1(Ji))=
∑

i=1

n

µ(L−1(Ji))=
∑

i=1

n

µ(Ji)>aµ(B). (5)

Since a is arbitrary, we have µ(L−1(B)) = µ(B).

d) Now for any E ⊆R
2 measurable and for any a∈ (0,1), we can find simple graphs B ⊆E ⊆C

such that µ(B)>aµ(E)>a2 µ(C). Now clearly L−1(B)⊆L−1(E)⊆L−1(C). Consequently

µ(B) = µ(L−1(B))6 µin(L
−1(E)) 6 µout(L

−1(E))6 µ(L−1(C)) = µ(C). (6)

By our choices of B,C we have

a µ(E)< µin(L
−1(E)) 6 µout(L

−1(E))<a−1 µ(E). (7)

The arbitrariness of a now gives µin(L
−1(E))= µout(L

−1(E))= µ(E) and the conclusions of
d) follow.

e) For any ε > 0, take simple functions h6 f 6 g such that
∫

E
h(x, y) d(x, y) + ε >

∫

E
f(x,

y) d(x, y)>
∫

E
g(x, y) d(x, y)− ε.

Now assume h(x, y) =
∑

i=1
n

ci 1Ai
(x, y). Then

∫

E

h(x, y) d(x, y) =
∑

i=1

n

ci

∫

E

1Ai
(x, y) d(x, y)

=
∑

i=1

n

ciµ(Ai∩E)

=
∑

i=1

n

ciµ(L−1(Ai∩E))

=
∑

i=1

n

ciµ(L−1(Ai)∩L−1(E))

=
∑

i=1

n

ci

∫

L−1(E)
1L−1(Ai)(u, v) d(u, v)

=
∑

i=1

n

ci

∫

L−1(E)
1Ai

(L(u, v)) d(u, v)

=

∫

L−1(E)
h̃(u, v) d(u, v) (8)
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where

h̃(u, v): =h(L(u, v)) (9)

is still a simple function. Similarly we have

∫

E

g(x, y) d(x, y)=

∫

L−1(E)
g̃(u, v) d(u, v) (10)

with g̃(u, v) = g(L(u, v)) a simple function.

Now observe that h̃(u, v) 6 f̃ (u, v) 6 g̃(u, v). The conclusion follows from

∫

L−1(E)

[

g̃(u, v)− h̃(u, v)
]

d(u, v) =

∫

E

[g(x, y)− h(x, y)] d(x, y)< 2 ε (11)

and the arbitrariness of ε.

Question 2. Let A be enclosed by x+ y=±1 and x− y=±1. Calculate

∫

A

sin (x+ y) d(x, y) (12)

a) using Fubini directly;

b) using change of variables and then Fubini.

Solution.

a) We have

A= {(x, y)P −1 6x+ y6 1,−1 6 x− y6 1}. (13)

Therefore

∫

A

sin (x+ y) d(x, y) =

∫

−1

1
[

∫

|x|−1

1−|x|

sin (x+ y) dy

]

dx

=

∫

−1

1

[−cos (x+ y)]y=|x|−1
y=1−|x|

dx

=

∫

−1

1

[cos (x+ |x| − 1)− cos (x+ 1− |x|)] dx

=

∫

0

1

[cos (2x− 1)− cos 1] dx

+

∫

−1

0

[cos (−1)− cos (2x+ 1)] dx

=
sin (2x− 1)

2
P x=0
x=1−sin (2x+ 1)

2
P x=−1
x=0

= sin 1− sin 1 = 0. (14)
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b) We apply the change of variables:

u= x+ y, v= x− y. (15)

Then

x=
u+ v

2
, y=

u− v

2
� T (x, y) =

1
2

(

1 1
1 −1

)(

u

v

)

. (16)

Therefore

|detDT |= 1
2
. (17)

Furthermore

T−1(A) = [−1, 1]2. (18)

So we have

∫

A

sin (x+ y) d(x, y) =

∫

T−1(A)
sin (u)

1
2

d(u, v)

=
1
2

∫

−1

1
[
∫

−1

1

sinu du

]

dv

=
1
2

∫

−1

1

0 dv=0. (19)

Question 3. Let A⊆R
3 be the intersection of the ball x2+ y2+z26a2 and x2+ y26a x. Calculate

its volume.

Solution. We have

A8 {

(x, y, z)P x2 + y2 + z2 6 a2,
(

x− a

2

)

2
+ y2 6

(

a

2

)

2
}

. (20)

Notice that

{

(x, y)P (x− a

2

)

2
+ y2 6

(

a

2

)

2
}

⊆{(x, y)P x2 + y2 6 a2}. (21)

Therefore the volume is

V =

∫

(

x−
a

2

)

2+y26
( a

2

)

2

2 a2− x2− y2
√

d(x, y). (22)

Changing polar coordinates, we have

V =4

∫

0

π/2
[

∫

0

acos θ

a2− r2
√

r dr

]

dθ=
4 a3

3

∫

0

π/2

(1− sin3θ) dθ=
4
3

(

π

2
− 2

3

)

a3. (23)
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Question 4. Calculate

I =

∫

{

(x,y)P x2

a2
+

y2

b2
61

}

x2

a2
+
y2

b2

√

d(x, y). (24)

Solution. Make change of variables:

u=
x

a
, v=

y

b
� x= a u, y= b v� |det (DT )|= a b. (25)

Then we have

I = a b

∫

{(u,v)P u2+v261}
u2 + v2

√
d(u, v). (26)

Now apply polar coordinates:

I = a b

∫

0

2π
[
∫

0

1

r2 dr

]

dθ

=
2 a b π

3
. (27)

Question 5. Calculate

I =

∫

A

(x2 + y2 + z2) d(x, y, z) (28)

where

A8 {

(x, y, z)P x2 + y2 + z2 6 1, x2 + y2
√

6 z
}

. (29)

Solution. Using spherical coordinates, we have

T−1(A) =
{

(r, ϕ, ψ)P 06 r6 1, 0 6 ϕ6 2π, 0 6 ψ6
π

4

}

. (30)

Thus

I =

∫

T−1(A)
r4 sinψ d(r, ϕ, ψ)

=

∫

0

1

r4

[

∫

0

2π
[

∫

0

π/4

sinψ dψ

]

dϕ

]

dr

=
π

5

(

2− 2
√ )

. (31)

Question 6. Let Ω be a ball with radius 1 and center (0, 0, 1). Assume its density function is

ρ(x, y, z) =
1

x2 + y2 + z2 . (32)
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Find its center of mass.

Solution. By symmetry it is clear that the center of mass is on the z axis. Denote it by (0, 0, z0).
Thus we only need to calculate through spherical coordinates:

z0 =
1
M

∫

Ω

z

x2 + y2 + z2
d(x, y, z)

=
1
M

∫

0

2π
[

∫

0

π/2

sinψ cosψ

[

∫

0

2sinψ

r dr

]

dψ

]

dϕ

=
1
M

∫

0

2π
[

∫

0

π/2

2 (sinψ)3 (cosψ) dψ

]

dϕ

=
4π
M

∫

0

1

u3 du

=
π

M
. (33)

On the other hand through similar (but simpler) calculation we have

M =

∫

Ω

1
x2 + y2 + z2 d(x, y, z)

=

∫

0

2π
[

∫

0

π/2

cosψ

[

∫

0

2sinψ

dr

]

dψ

]

dϕ

= 2π. (34)

Therefore z0 = 1/2 and the center of mass for Ω is (0, 0, 1/2).
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