Math 217 Fall 2013 Homework 10 Solutions

BY DUE THURSDAY NOV. 28, 2013 5PM

- This homework consists of 6 problems of 5 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with matrix representation $A := \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$ where $c \in \mathbb{R}$.

- a) Find the matrix representation for L^{-1} .
- b) Let $I := [a_1, a_2] \times [b_1, b_2] \subseteq \mathbb{R}^2$. Prove that $L^{-1}(I)$ is Jordan measurable and $\mu(L^{-1}(I)) = \mu(I)$. (Hint: Fubini).
- c) Let $B \subseteq \mathbb{R}^2$ be a simple graph. Prove that $L^{-1}(B)$ is Jordan measurable and $\mu(L^{-1}(B)) = \mu(B)$.
- d) Let $E \subseteq \mathbb{R}^2$ be Jordan measurable. Prove that $L^{-1}(E)$ is Jordan measurable and $\mu(L^{-1}(E)) = \mu(E)$.
- e) Let $E \subseteq \mathbb{R}^2$ be Jordan measurable and let f(x, y) be Riemann integrable on E. Prove that $\tilde{f}(u, v) := f(L(u, v))$ is Riemann integrable on $L^{-1}(E)$ and furthermore

$$\int_{E} f(x,y) \, \mathrm{d}(x,y) = \int_{L^{-1}(E)} \tilde{f}(u,v) \, \mathrm{d}(u,v).$$
(1)

Solution.

- a) The matrix representation is $A^{-1} = \begin{pmatrix} 1 & -c \\ 0 & 1 \end{pmatrix}$.
- b) We have

$$L^{-1}(I) := \{ (x, y) | a_1 \leqslant x + c \, y \leqslant a_2, b_1 \leqslant y \leqslant b_2 \}.$$
⁽²⁾

Clearly $\mu(\partial L^{-1}(I)) = 0$ so $L^{-1}(I)$ is Jordan measurable. Furthermore it is clear that for each fixed y_0 , the slice $L^{-1}(I) \cap \{y = y_0\}$ is also Jordan measurable.

To calculate its measure, we have

$$\mu(L^{-1}(I)) := \int_{L^{-1}(I)} d(x, y)$$

= $\int_{b_1}^{b_2} \left[\int_{a_1 - cy}^{a_2 - cy} dx \right] dy$
= $(a_2 - a_1) (b_2 - b_1) = \mu(I).$ (3)

c) As B is a simple graph, $B = \bigcup_{i=1}^{n} I_i$ where $i \neq j \Longrightarrow I_i^o \cap I_j^o = \emptyset$. Thus we have

$$\mu(L^{-1}(B)) = \mu(\bigcup_{i=1}^{n} L^{-1}(I_i)) \leqslant \sum_{i=1}^{n} \mu(L^{-1}(I_i)) = \sum_{i=1}^{n} \mu(I_i) = \mu(B).$$
(4)

On the other hand, for any $a \in (0, 1)$ we can find compact intervals $J_i \subseteq I_i^o$ such that $i \neq j \Longrightarrow J_i \cap J_j = \emptyset$ and $\mu(\cup_{i=1}^n J_i) > a \mu(B)$. Since L^{-1} is one-to-one, we have

$$\mu(L^{-1}(B)) \ge \mu(L^{-1}(\bigcup_{i=1}^{n} J_i)) = \mu(\bigcup_{i=1}^{n} L^{-1}(J_i)) = \sum_{i=1}^{n} \mu(L^{-1}(J_i)) = \sum_{i=1}^{n} \mu(J_i) > a \, \mu(B).$$
(5)

Since a is arbitrary, we have $\mu(L^{-1}(B)) = \mu(B)$.

d) Now for any $E \subseteq \mathbb{R}^2$ measurable and for any $a \in (0, 1)$, we can find simple graphs $B \subseteq E \subseteq C$ such that $\mu(B) > a \,\mu(E) > a^2 \,\mu(C)$. Now clearly $L^{-1}(B) \subseteq L^{-1}(E) \subseteq L^{-1}(C)$. Consequently

$$\mu(B) = \mu(L^{-1}(B)) \leqslant \mu_{\text{in}}(L^{-1}(E)) \leqslant \mu_{\text{out}}(L^{-1}(E)) \leqslant \mu(L^{-1}(C)) = \mu(C).$$
(6)

By our choices of B, C we have

$$a \mu(E) < \mu_{\rm in}(L^{-1}(E)) \leq \mu_{\rm out}(L^{-1}(E)) < a^{-1} \mu(E).$$
 (7)

The arbitrariness of a now gives $\mu_{in}(L^{-1}(E)) = \mu_{out}(L^{-1}(E)) = \mu(E)$ and the conclusions of d) follow.

e) For any $\varepsilon > 0$, take simple functions $h \leqslant f \leqslant g$ such that $\int_E h(x, y) d(x, y) + \varepsilon > \int_E f(x, y) d(x, y) > \int_E g(x, y) d(x, y) - \varepsilon$.

Now assume $h(x, y) = \sum_{i=1}^{n} c_i \mathbf{1}_{A_i}(x, y)$. Then

$$\int_{E} h(x, y) d(x, y) = \sum_{i=1}^{n} c_{i} \int_{E} 1_{A_{i}}(x, y) d(x, y)
= \sum_{i=1}^{n} c_{i} \mu(A_{i} \cap E)
= \sum_{i=1}^{n} c_{i} \mu(L^{-1}(A_{i} \cap E))
= \sum_{i=1}^{n} c_{i} \mu(L^{-1}(A_{i}) \cap L^{-1}(E))
= \sum_{i=1}^{n} c_{i} \int_{L^{-1}(E)} 1_{L^{-1}(A_{i})}(u, v) d(u, v)
= \sum_{i=1}^{n} c_{i} \int_{L^{-1}(E)} 1_{A_{i}}(L(u, v)) d(u, v)
= \int_{L^{-1}(E)} \tilde{h}(u, v) d(u, v)$$
(8)

where

$$\tilde{h}(u,v) := h(L(u,v)) \tag{9}$$

is still a simple function. Similarly we have

$$\int_{E} g(x, y) \,\mathrm{d}(x, y) = \int_{L^{-1}(E)} \tilde{g}(u, v) \,\mathrm{d}(u, v) \tag{10}$$

with $\tilde{g}(u, v) = g(L(u, v))$ a simple function.

Now observe that $\tilde{h}(u,v)\leqslant\tilde{f}(u,v)\leqslant\tilde{g}(u,v).$ The conclusion follows from

$$\int_{L^{-1}(E)} \left[\tilde{g}(u,v) - \tilde{h}(u,v) \right] \mathrm{d}(u,v) = \int_{E} \left[g(x,y) - h(x,y) \right] \mathrm{d}(x,y) < 2\varepsilon$$
(11)

and the arbitrariness of ε .

Question 2. Let A be enclosed by $x + y = \pm 1$ and $x - y = \pm 1$. Calculate

$$\int_{A} \sin\left(x+y\right) \mathrm{d}(x,y) \tag{12}$$

- a) using Fubini directly;
- b) using change of variables and then Fubini.

Solution.

a) We have

$$A = \{(x, y) | -1 \leqslant x + y \leqslant 1, -1 \leqslant x - y \leqslant 1\}.$$
(13)

Therefore

$$\begin{split} \int_{A} \sin(x+y) \, \mathrm{d}(x,y) &= \int_{-1}^{1} \left[\int_{|x|-1}^{1-|x|} \sin(x+y) \, \mathrm{d}y \right] \mathrm{d}x \\ &= \int_{-1}^{1} \left[-\cos(x+y) \right]_{y=|x|-1}^{y=1-|x|} \mathrm{d}x \\ &= \int_{-1}^{1} \left[\cos(x+|x|-1) - \cos(x+1-|x|) \right] \mathrm{d}x \\ &= \int_{0}^{1} \left[\cos(2x-1) - \cos 1 \right] \mathrm{d}x \\ &= \int_{0}^{1} \left[\cos(2x-1) - \cos 1 \right] \mathrm{d}x \\ &= \frac{\sin(2x-1)}{2} \Big|_{x=0}^{x=1} - \frac{\sin(2x+1)}{2} \Big|_{x=-1}^{x=0} \\ &= \sin 1 - \sin 1 = 0. \end{split}$$
(14)

b) We apply the change of variables:

$$u = x + y, v = x - y.$$
 (15)

Then

$$x = \frac{u+v}{2}, y = \frac{u-v}{2} \Longrightarrow T(x,y) = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}.$$
(16)

Therefore

$$\left|\det DT\right| = \frac{1}{2}.\tag{17}$$

Furthermore

$$T^{-1}(A) = [-1, 1]^2.$$
(18)

So we have

$$\int_{A} \sin(x+y) d(x,y) = \int_{T^{-1}(A)} \sin(u) \frac{1}{2} d(u,v)$$
$$= \frac{1}{2} \int_{-1}^{1} \left[\int_{-1}^{1} \sin u \, du \right] dv$$
$$= \frac{1}{2} \int_{-1}^{1} 0 \, dv = 0.$$
(19)

Question 3. Let $A \subseteq \mathbb{R}^3$ be the intersection of the ball $x^2 + y^2 + z^2 \leqslant a^2$ and $x^2 + y^2 \leqslant a x$. Calculate its volume.

Solution. We have

$$A := \left\{ (x, y, z) | x^2 + y^2 + z^2 \leqslant a^2, \left(x - \frac{a}{2} \right)^2 + y^2 \leqslant \left(\frac{a}{2} \right)^2 \right\}.$$
(20)

Notice that

$$\left\{ (x,y) \left| \left(x - \frac{a}{2} \right)^2 + y^2 \leqslant \left(\frac{a}{2} \right)^2 \right\} \subseteq \{ (x,y) \left| x^2 + y^2 \leqslant a^2 \right\}.$$
(21)

Therefore the volume is

$$V = \int_{\left(x - \frac{a}{2}\right)^2 + y^2 \leqslant \left(\frac{a}{2}\right)^2} 2\sqrt{a^2 - x^2 - y^2} \,\mathrm{d}(x, y).$$
(22)

Changing polar coordinates, we have

$$V = 4 \int_0^{\pi/2} \left[\int_0^{a\cos\theta} \sqrt{a^2 - r^2} \, r \, \mathrm{d}r \right] \mathrm{d}\theta = \frac{4 \, a^3}{3} \int_0^{\pi/2} \, (1 - \sin^3\theta) \, \mathrm{d}\theta = \frac{4}{3} \left(\frac{\pi}{2} - \frac{2}{3} \right) a^3. \tag{23}$$

Question 4. Calculate

$$I = \int_{\left\{ (x,y) | \frac{x^2}{a^2} + \frac{y^2}{b^2} \leqslant 1 \right\}} \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}} \, \mathrm{d}(x,y).$$
(24)

Solution. Make change of variables:

$$u = \frac{x}{a}, \ v = \frac{y}{b} \Longrightarrow x = a \ u, \ y = b \ v \Longrightarrow |\det(DT)| = a \ b.$$
(25)

Then we have

$$I = a b \int_{\{(u,v)|u^2 + v^2 \leqslant 1\}} \sqrt{u^2 + v^2} d(u,v).$$
(26)

Now apply polar coordinates:

$$I = a b \int_{0}^{2\pi} \left[\int_{0}^{1} r^{2} dr \right] d\theta$$

= $\frac{2 a b \pi}{3}$. (27)

Question 5. Calculate

$$I = \int_{A} (x^{2} + y^{2} + z^{2}) d(x, y, z)$$
(28)

where

$$A := \left\{ (x, y, z) | x^2 + y^2 + z^2 \leqslant 1, \sqrt{x^2 + y^2} \leqslant z \right\}.$$
(29)

Solution. Using spherical coordinates, we have

$$T^{-1}(A) = \left\{ (r, \varphi, \psi) | \, 0 \leqslant r \leqslant 1, 0 \leqslant \varphi \leqslant 2\pi, 0 \leqslant \psi \leqslant \frac{\pi}{4} \right\}.$$

$$(30)$$

Thus

$$I = \int_{T^{-1}(A)} r^4 \sin\psi \, \mathrm{d}(r, \varphi, \psi)$$

=
$$\int_0^1 r^4 \left[\int_0^{2\pi} \left[\int_0^{\pi/4} \sin\psi \, \mathrm{d}\psi \right] \mathrm{d}\varphi \right] \mathrm{d}r$$

=
$$\frac{\pi}{5} \left(2 - \sqrt{2} \right).$$
 (31)

Question 6. Let Ω be a ball with radius 1 and center (0,0,1). Assume its density function is

$$\rho(x, y, z) = \frac{1}{x^2 + y^2 + z^2}.$$
(32)

Find its center of mass.

Solution. By symmetry it is clear that the center of mass is on the z axis. Denote it by $(0, 0, z_0)$. Thus we only need to calculate through spherical coordinates:

$$z_{0} = \frac{1}{M} \int_{\Omega} \frac{z}{x^{2} + y^{2} + z^{2}} d(x, y, z)$$

$$= \frac{1}{M} \int_{0}^{2\pi} \left[\int_{0}^{\pi/2} \sin\psi \cos\psi \left[\int_{0}^{2\sin\psi} r \, \mathrm{d}r \right] \mathrm{d}\psi \right] \mathrm{d}\varphi$$

$$= \frac{1}{M} \int_{0}^{2\pi} \left[\int_{0}^{\pi/2} 2 \left(\sin\psi \right)^{3} \left(\cos\psi \right) \mathrm{d}\psi \right] \mathrm{d}\varphi$$

$$= \frac{4\pi}{M} \int_{0}^{1} u^{3} \, \mathrm{d}u$$

$$= \frac{\pi}{M}.$$
(33)

On the other hand through similar (but simpler) calculation we have

$$M = \int_{\Omega} \frac{1}{x^2 + y^2 + z^2} d(x, y, z)$$

=
$$\int_{0}^{2\pi} \left[\int_{0}^{\pi/2} \cos\psi \left[\int_{0}^{2\sin\psi} dr \right] d\psi \right] d\varphi$$

=
$$2\pi.$$
 (34)

Therefore $z_0 = 1/2$ and the center of mass for Ω is (0, 0, 1/2).