Math 217 Fall 2013 Homework 10 Solutions

by Due Thursday Nov. 28, 2013 5pm

- This homework consists of 6 problems of 5 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.
- Please read this week's lecture notes before working on the problems.

Question 1. Let $L: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ be a linear transformation with matrix representation $A:=\left(\begin{array}{ll}1 & c \\ 0 & 1\end{array}\right)$ where $c \in \mathbb{R}$.
a) Find the matrix representation for L^{-1}.
b) Let $I:=\left[a_{1}, a_{2}\right] \times\left[b_{1}, b_{2}\right] \subseteq \mathbb{R}^{2}$. Prove that $L^{-1}(I)$ is Jordan measurable and $\mu\left(L^{-1}(I)\right)=\mu(I)$. (Hint: Fubini).
c) Let $B \subseteq \mathbb{R}^{2}$ be a simple graph. Prove that $L^{-1}(B)$ is Jordan measurable and $\mu\left(L^{-1}(B)\right)=$ $\mu(B)$.
d) Let $E \subseteq \mathbb{R}^{2}$ be Jordan measurable. Prove that $L^{-1}(E)$ is Jordan measurable and $\mu\left(L^{-1}(E)\right)=$ $\mu(E)$.
e) Let $E \subseteq \mathbb{R}^{2}$ be Jordan measurable and let $f(x, y)$ be Riemann integrable on E. Prove that $\tilde{f}(u, v):=f(L(u, v))$ is Riemann integrable on $L^{-1}(E)$ and furthermore

$$
\begin{equation*}
\int_{E} f(x, y) \mathrm{d}(x, y)=\int_{L^{-1}(E)} \tilde{f}(u, v) \mathrm{d}(u, v) . \tag{1}
\end{equation*}
$$

Solution.

a) The matrix representation is $A^{-1}=\left(\begin{array}{cc}1 & -c \\ 0 & 1\end{array}\right)$.
b) We have

$$
\begin{equation*}
L^{-1}(I):=\left\{(x, y) \mid a_{1} \leqslant x+c y \leqslant a_{2}, b_{1} \leqslant y \leqslant b_{2}\right\} . \tag{2}
\end{equation*}
$$

Clearly $\mu\left(\partial L^{-1}(I)\right)=0$ so $L^{-1}(I)$ is Jordan measurable. Furthermore it is clear that for each fixed y_{0}, the slice $L^{-1}(I) \cap\left\{y=y_{0}\right\}$ is also Jordan measurable.
To calculate its measure, we have

$$
\begin{align*}
\mu\left(L^{-1}(I)\right) & :=\int_{L^{-1}(I)} \mathrm{d}(x, y) \\
& =\int_{b_{1}}^{b_{2}}\left[\int_{a_{1}-c y}^{a_{2}-c y} \mathrm{~d} x\right] \mathrm{d} y \\
& =\left(a_{2}-a_{1}\right)\left(b_{2}-b_{1}\right)=\mu(I) \tag{3}
\end{align*}
$$

c) As B is a simple graph, $B=\cup_{i=1}^{n} I_{i}$ where $i \neq j \Longrightarrow I_{i}^{o} \cap I_{j}^{o}=\varnothing$. Thus we have

$$
\begin{equation*}
\mu\left(L^{-1}(B)\right)=\mu\left(\cup_{i=1}^{n} L^{-1}\left(I_{i}\right)\right) \leqslant \sum_{i=1}^{n} \mu\left(L^{-1}\left(I_{i}\right)\right)=\sum_{i=1}^{n} \mu\left(I_{i}\right)=\mu(B) . \tag{4}
\end{equation*}
$$

On the other hand, for any $a \in(0,1)$ we can find compact intervals $J_{i} \subseteq I_{i}^{o}$ such that $i \neq j \Longrightarrow J_{i} \cap J_{j}=\varnothing$ and $\mu\left(\cup_{i=1}^{n} J_{i}\right)>a \mu(B)$. Since L^{-1} is one-to-one, we have
$\mu\left(L^{-1}(B)\right) \geqslant \mu\left(L^{-1}\left(\cup_{i=1}^{n} J_{i}\right)\right)=\mu\left(\cup_{i=1}^{n} L^{-1}\left(J_{i}\right)\right)=\sum_{i=1}^{n} \mu\left(L^{-1}\left(J_{i}\right)\right)=\sum_{i=1}^{n} \mu\left(J_{i}\right)>a \mu(B)$.
Since a is arbitrary, we have $\mu\left(L^{-1}(B)\right)=\mu(B)$.
d) Now for any $E \subseteq \mathbb{R}^{2}$ measurable and for any $a \in(0,1)$, we can find simple graphs $B \subseteq E \subseteq C$ such that $\mu(B)>a \mu(E)>a^{2} \mu(C)$. Now clearly $L^{-1}(B) \subseteq L^{-1}(E) \subseteq L^{-1}(C)$. Consequently

$$
\begin{equation*}
\mu(B)=\mu\left(L^{-1}(B)\right) \leqslant \mu_{\mathrm{in}}\left(L^{-1}(E)\right) \leqslant \mu_{\text {out }}\left(L^{-1}(E)\right) \leqslant \mu\left(L^{-1}(C)\right)=\mu(C) \tag{6}
\end{equation*}
$$

By our choices of B, C we have

$$
\begin{equation*}
a \mu(E)<\mu_{\text {in }}\left(L^{-1}(E)\right) \leqslant \mu_{\text {out }}\left(L^{-1}(E)\right)<a^{-1} \mu(E) . \tag{7}
\end{equation*}
$$

The arbitrariness of a now gives $\mu_{\mathrm{in}}\left(L^{-1}(E)\right)=\mu_{\text {out }}\left(L^{-1}(E)\right)=\mu(E)$ and the conclusions of d) follow.
e) For any $\varepsilon>0$, take simple functions $h \leqslant f \leqslant g$ such that $\int_{E} h(x, y) \mathrm{d}(x, y)+\varepsilon>\int_{E} f(x$, y) $\mathrm{d}(x, y)>\int_{E} g(x, y) \mathrm{d}(x, y)-\varepsilon$.

Now assume $h(x, y)=\sum_{i=1}^{n} c_{i} 1_{A_{i}}(x, y)$. Then

$$
\begin{align*}
\int_{E} h(x, y) \mathrm{d}(x, y) & =\sum_{i=1}^{n} c_{i} \int_{E} 1_{A_{i}}(x, y) \mathrm{d}(x, y) \\
& =\sum_{i=1}^{n} c_{i} \mu\left(A_{i} \cap E\right) \\
& =\sum_{i=1}^{n} c_{i} \mu\left(L^{-1}\left(A_{i} \cap E\right)\right) \\
& =\sum_{i=1}^{n} c_{i} \mu\left(L^{-1}\left(A_{i}\right) \cap L^{-1}(E)\right) \\
& =\sum_{i=1}^{n} c_{i} \int_{L^{-1}(E)} 1_{L^{-1}\left(A_{i}\right)}(u, v) \mathrm{d}(u, v) \\
& =\sum_{i=1}^{n} c_{i} \int_{L^{-1}(E)} 1_{A_{i}}(L(u, v)) \mathrm{d}(u, v) \\
& =\int_{L^{-1}(E)} \tilde{h}(u, v) \mathrm{d}(u, v) \tag{8}
\end{align*}
$$

where

$$
\begin{equation*}
\tilde{h}(u, v):=h(L(u, v)) \tag{9}
\end{equation*}
$$

is still a simple function. Similarly we have

$$
\begin{equation*}
\int_{E} g(x, y) \mathrm{d}(x, y)=\int_{L^{-1}(E)} \tilde{g}(u, v) \mathrm{d}(u, v) \tag{10}
\end{equation*}
$$

with $\tilde{g}(u, v)=g(L(u, v))$ a simple function.
Now observe that $\tilde{h}(u, v) \leqslant \tilde{f}(u, v) \leqslant \tilde{g}(u, v)$. The conclusion follows from

$$
\begin{equation*}
\int_{L^{-1}(E)}[\tilde{g}(u, v)-\tilde{h}(u, v)] \mathrm{d}(u, v)=\int_{E}[g(x, y)-h(x, y)] \mathrm{d}(x, y)<2 \varepsilon \tag{11}
\end{equation*}
$$

and the arbitrariness of ε.

Question 2. Let A be enclosed by $x+y= \pm 1$ and $x-y= \pm 1$. Calculate

$$
\begin{equation*}
\int_{A} \sin (x+y) \mathrm{d}(x, y) \tag{12}
\end{equation*}
$$

a) using Fubini directly;
b) using change of variables and then Fubini.

Solution.

a) We have

$$
\begin{equation*}
A=\{(x, y) \mid-1 \leqslant x+y \leqslant 1,-1 \leqslant x-y \leqslant 1\} . \tag{13}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\int_{A} \sin (x+y) \mathrm{d}(x, y)= & \int_{-1}^{1}\left[\int_{|x|-1}^{1-|x|} \sin (x+y) \mathrm{d} y\right] \mathrm{d} x \\
= & \int_{-1}^{1}[-\cos (x+y)]_{y=|x|-1}^{y=1-|x|} \mathrm{d} x \\
= & \int_{-1}^{1}[\cos (x+|x|-1)-\cos (x+1-|x|)] \mathrm{d} x \\
= & \int_{0}^{1}[\cos (2 x-1)-\cos 1] \mathrm{d} x \\
& +\int_{-1}^{0}[\cos (-1)-\cos (2 x+1)] \mathrm{d} x \\
= & \left.\frac{\sin (2 x-1)}{2}\right|_{x=0} ^{x=1}-\left.\frac{\sin (2 x+1)}{2}\right|_{x=0} ^{x=0} \\
= & \sin 1-\sin 1=0 . \tag{14}
\end{align*}
$$

b) We apply the change of variables:

$$
\begin{equation*}
u=x+y, v=x-y . \tag{15}
\end{equation*}
$$

Then

$$
x=\frac{u+v}{2}, y=\frac{u-v}{2} \Longrightarrow T(x, y)=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \tag{16}\\
1 & -1
\end{array}\right)\binom{u}{v} .
$$

Therefore

$$
\begin{equation*}
|\operatorname{det} D T|=\frac{1}{2} \tag{17}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
T^{-1}(A)=[-1,1]^{2} . \tag{18}
\end{equation*}
$$

So we have

$$
\begin{align*}
\int_{A} \sin (x+y) \mathrm{d}(x, y) & =\int_{T^{-1}(A)} \sin (u) \frac{1}{2} \mathrm{~d}(u, v) \\
& =\frac{1}{2} \int_{-1}^{1}\left[\int_{-1}^{1} \sin u \mathrm{~d} u\right] \mathrm{d} v \\
& =\frac{1}{2} \int_{-1}^{1} 0 \mathrm{~d} v=0 \tag{19}
\end{align*}
$$

Question 3. Let $A \subseteq \mathbb{R}^{3}$ be the intersection of the ball $x^{2}+y^{2}+z^{2} \leqslant a^{2}$ and $x^{2}+y^{2} \leqslant a x$. Calculate its volume.

Solution. We have

$$
\begin{equation*}
A:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leqslant a^{2},\left(x-\frac{a}{2}\right)^{2}+y^{2} \leqslant\left(\frac{a}{2}\right)^{2}\right\} . \tag{20}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\left\{(x, y) \left\lvert\,\left(x-\frac{a}{2}\right)^{2}+y^{2} \leqslant\left(\frac{a}{2}\right)^{2}\right.\right\} \subseteq\left\{(x, y) \mid x^{2}+y^{2} \leqslant a^{2}\right\} \tag{21}
\end{equation*}
$$

Therefore the volume is

$$
\begin{equation*}
V=\int_{\left(x-\frac{a}{2}\right)^{2}+y^{2} \leqslant\left(\frac{a}{2}\right)^{2}} 2 \sqrt{a^{2}-x^{2}-y^{2}} \mathrm{~d}(x, y) . \tag{22}
\end{equation*}
$$

Changing polar coordinates, we have

$$
\begin{equation*}
V=4 \int_{0}^{\pi / 2}\left[\int_{0}^{a \cos \theta} \sqrt{a^{2}-r^{2}} r \mathrm{~d} r\right] \mathrm{d} \theta=\frac{4 a^{3}}{3} \int_{0}^{\pi / 2}\left(1-\sin ^{3} \theta\right) \mathrm{d} \theta=\frac{4}{3}\left(\frac{\pi}{2}-\frac{2}{3}\right) a^{3} \tag{23}
\end{equation*}
$$

Question 4. Calculate

$$
\begin{equation*}
I=\int_{\left\{(x, y) \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leqslant 1\right\}} \sqrt{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}} \mathrm{~d}(x, y) . \tag{24}
\end{equation*}
$$

Solution. Make change of variables:

$$
\begin{equation*}
u=\frac{x}{a}, v=\frac{y}{b} \Longrightarrow x=a u, y=b v \Longrightarrow|\operatorname{det}(D T)|=a b \tag{25}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
I=a b \int_{\left\{(u, v) \mid u^{2}+v^{2} \leqslant 1\right\}} \sqrt{u^{2}+v^{2}} \mathrm{~d}(u, v) . \tag{26}
\end{equation*}
$$

Now apply polar coordinates:

$$
\begin{align*}
I & =a b \int_{0}^{2 \pi}\left[\int_{0}^{1} r^{2} \mathrm{~d} r\right] \mathrm{d} \theta \\
& =\frac{2 a b \pi}{3} \tag{27}
\end{align*}
$$

Question 5. Calculate

$$
\begin{equation*}
I=\int_{A}\left(x^{2}+y^{2}+z^{2}\right) \mathrm{d}(x, y, z) \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
A:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leqslant 1, \sqrt{x^{2}+y^{2}} \leqslant z\right\} . \tag{29}
\end{equation*}
$$

Solution. Using spherical coordinates, we have

$$
\begin{equation*}
T^{-1}(A)=\left\{(r, \varphi, \psi) \mid 0 \leqslant r \leqslant 1,0 \leqslant \varphi \leqslant 2 \pi, 0 \leqslant \psi \leqslant \frac{\pi}{4}\right\} . \tag{30}
\end{equation*}
$$

Thus

$$
\begin{align*}
I & =\int_{T^{-1}(A)} r^{4} \sin \psi \mathrm{~d}(r, \varphi, \psi) \\
& =\int_{0}^{1} r^{4}\left[\int_{0}^{2 \pi}\left[\int_{0}^{\pi / 4} \sin \psi \mathrm{~d} \psi\right] \mathrm{d} \varphi\right] \mathrm{d} r \\
& =\frac{\pi}{5}(2-\sqrt{2}) . \tag{31}
\end{align*}
$$

Question 6. Let Ω be a ball with radius 1 and center ($0,0,1$). Assume its density function is

$$
\begin{equation*}
\rho(x, y, z)=\frac{1}{x^{2}+y^{2}+z^{2}} . \tag{32}
\end{equation*}
$$

Find its center of mass.

Solution. By symmetry it is clear that the center of mass is on the z axis. Denote it by $\left(0,0, z_{0}\right)$. Thus we only need to calculate through spherical coordinates:

$$
\begin{align*}
z_{0} & =\frac{1}{M} \int_{\Omega} \frac{z}{x^{2}+y^{2}+z^{2}} \mathrm{~d}(x, y, z) \\
& =\frac{1}{M} \int_{0}^{2 \pi}\left[\int_{0}^{\pi / 2} \sin \psi \cos \psi\left[\int_{0}^{2 \sin \psi} r \mathrm{~d} r\right] \mathrm{d} \psi\right] \mathrm{d} \varphi \\
& =\frac{1}{M} \int_{0}^{2 \pi}\left[\int_{0}^{\pi / 2} 2(\sin \psi)^{3}(\cos \psi) \mathrm{d} \psi\right] \mathrm{d} \varphi \\
& =\frac{4 \pi}{M} \int_{0}^{1} u^{3} \mathrm{~d} u \\
& =\frac{\pi}{M} \tag{33}
\end{align*}
$$

On the other hand through similar (but simpler) calculation we have

$$
\begin{align*}
M & =\int_{\Omega} \frac{1}{x^{2}+y^{2}+z^{2}} \mathrm{~d}(x, y, z) \\
& =\int_{0}^{2 \pi}\left[\int_{0}^{\pi / 2} \cos \psi\left[\int_{0}^{2 \sin \psi} \mathrm{~d} r\right] \mathrm{d} \psi\right] \mathrm{d} \varphi \\
& =2 \pi \tag{34}
\end{align*}
$$

Therefore $z_{0}=1 / 2$ and the center of mass for Ω is $(0,0,1 / 2)$.

