MATH 217 FALL 2013 HOMEWORK 1

Due Thursday Sept. 19, 2013 5pm

- This homework consists of 10 problems of 3 points each. The total is 30.
- You need to fully justify your answer prove that your function indeed has the specified property for each problem.

Question 1. Find a bounded sequence $\{x_n\}$ that is divergent.

Question 2. Find a divergent sequence $\{x_n\}$ such that for every $m \in \mathbb{N}$,

$$\lim_{n \to \infty} \left(x_{n+m} - x_n \right) = 0. \tag{1}$$

Question 3. Find a function $f: \mathbb{R} \to \mathbb{R}$ that is nowhere continuous, but its absolute value |f| is everywhere continuous.

Question 4. Find an infinitely differentiable function f such that $\lim_{x\to\infty} f(x) = 0$ holds but $\lim_{x\to\infty} f'(x) = 0$ does not hold.

Question 5. Find a function that is infinitely differentiable (that is $f^{(n)}$ exists for all $n \in \mathbb{N}$) at every $x \in \mathbb{R}$ and satisfy f(0) = 1, f(x) = 0 for all $|x| \ge 1$.

Question 6. Find a differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$ such that f' is not continuous.

Question 7. Find a differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$ such that f'(0) > 0 but f is not increasing on any (a, b) containing 0.

Question 8. Find a function $f: [0,1] \mapsto \mathbb{R}$ that is bounded on [0,1] but not Riemann integrable.

Question 9. Find a function $f: [0,1] \mapsto \mathbb{R}$ such that there is $F: [0,1] \mapsto \mathbb{R}$ such that F' = f, but f is not Riemann integrable on [0,1].

Question 10. Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ that is unbounded on every interval $(a, b) \subseteq \mathbb{R}$. Recall that a function is bounded on an interval (a, b) if there is M > 0 such that $\forall x \in (a, b), |f(x)| < M$.