Math 217 Fall 2013 Homework 1

Due Thursday Sept. 19, 2013 5pm

- This homework consists of 10 problems of 3 points each. The total is 30 .
- You need to fully justify your answer - prove that your function indeed has the specified property - for each problem.

Question 1. Find a bounded sequence $\left\{x_{n}\right\}$ that is divergent.
Question 2. Find a divergent sequence $\left\{x_{n}\right\}$ such that for every $m \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{n \longrightarrow \infty}\left(x_{n+m}-x_{n}\right)=0 . \tag{1}
\end{equation*}
$$

Question 3. Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ that is nowhere continuous, but its absolute value $|f|$ is everywhere continuous.

Question 4. Find an infinitely differentiable function f such that $\lim _{x \rightarrow \infty} f(x)=0$ holds but $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$ does not hold.

Question 5. Find a function that is infinitely differentiable (that is $f^{(n)}$ exists for all $n \in \mathbb{N}$) at every $x \in \mathbb{R}$ and satisfy $f(0)=1, f(x)=0$ for all $|x| \geqslant 1$.

Question 6. Find a differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$ such that f^{\prime} is not continuous.
Question 7. Find a differentiable function $f: \mathbb{R} \mapsto \mathbb{R}$ such that $f^{\prime}(0)>0$ but f is not increasing on any (a, b) containing 0.

Question 8. Find a function $f:[0,1] \mapsto \mathbb{R}$ that is bounded on $[0,1]$ but not Riemann integrable.
Question 9. Find a function $f:[0,1] \mapsto \mathbb{R}$ such that there is $F:[0,1] \mapsto \mathbb{R}$ such that $F^{\prime}=f$, but f is not Riemann integrable on $[0,1]$.

Question 10. Find a function $f: \mathbb{R} \mapsto \mathbb{R}$ that is unbounded on every interval $(a, b) \subseteq \mathbb{R}$. Recall that a function is bounded on an interval (a, b) if there is $M>0$ such that $\forall x \in(a, b),|f(x)|<M$.

