Properties of real numbers

${\mathbbm R}$ is an ordered field

Definition 1. (Field) A set F is called a field if there are two functions defined: $\oplus, \odot: F \times F \mapsto F$, satisfying the following:

- Axioms for addition:
 - *i.* $x \in F, y \in F \Longrightarrow x \oplus y \in F;$
 - *ii.* $x \oplus y = y \oplus x$;
 - *iii.* $(x \oplus y) \oplus z = x \oplus (y \oplus z);$
 - iv. There is an element 0 satisfying $0 \oplus x = x$ for any $a \in F$;
 - v. For each $x \in F$, there is an element $y \in F$ such that $y \oplus x = 0$. Denote it by -x.
- Axioms for multiplication:
 - a) $x \in F, y \in F \Longrightarrow x \odot y \in F;$
 - b) $x \odot y = y \odot x;$
 - c) $x \odot (y \odot z) = (x \odot y) \odot z;$
 - d) There is an element $i \in F$ such that $i \odot x = x$ for every $x \in F$. Denote it by 1;
 - e) For every $x \in F$, there is a $y \in F$ such that $x \odot y = 1$. Denote y by x^{-1} .
- The distributive law:
 - A) For every $x, y, z \in F$, $x \odot (y \oplus z) = (x \odot y) \oplus (x \odot z)$.

Exercise 1. Prove the uniqueness of the special elements 0, 1. Also prove that for each $x \in F$ and each $y \in F$, $y \neq 0$, -x and y^{-1} are unique.

Exercise 2. Give a reasonable definition to the new function $F \times F \times F \mapsto F$ which we hope to denote by $x \oplus y \oplus z$ and justify your definition.

Exercise 3. Let A be a set. Let $W := \{ \text{subsets of } A \}$. Define addition and multiplication on W as

$$x \oplus y := x \cup y; \qquad x \odot y := x \cap y. \tag{1}$$

Does this make W a field? Justify your answer.

Remark 2. Clearly we can further define "subtration" and "division" through

$$x - y := x + (-y);$$
 $x/y := x (y^{-1}).$ (2)

Example 3. Prove that $4 = 2 \oplus 2$.

Proof. By definition,

$$4 = 3 \oplus 1 = (2 \oplus 1) \oplus 1 = 2 \oplus (1 \oplus 1) = 2 \oplus 2.$$
(3)

Thus ends the proof.

Exercise 4. Let $x \in F$. Prove that $x \oplus x \oplus x = 3 \odot x$.

Exercise 5. Prove

- a) $x \oplus y = x \oplus z \Longrightarrow y = z;$
- b) $x \odot y = x \odot z \Longrightarrow y = z$ unless x = 0.

Exercise 6. Denote $x \odot x$ by x^2 . Prove that $(x \oplus y)^2 = x^2 \oplus (2 \odot x \odot y) \oplus y^2$.

Exercise 7. Prove the following

- a) $x \odot 0 = 0;$
- b) $x \odot (-y) = -(x \odot y);$
- c) $(-x) \odot (-y) = x \odot y;$
- d) If $x \neq 0$, $(-x)^{-1} = -(x^{-1})$;

Notation. From now on we will discard \odot and \oplus , and simply use the usual notations $x \cdot y$ (xy), x/y, $x \pm y$.

Definition 4. (Order) Let S be a set. An "order" on S is a relation, denoted by <, with the following two properties:

i. If $x \in S$, $y \in S$ then exactly one of the following is true.

$$x < y, x = y, x > y; \tag{4}$$

ii. If $x, y, z \in S$, if x < y and y < z, then x < z.

Remark 5. $\geq \leq$ can be defined in the natural way.

Definition 6. (Ordered field) F is an ordered field if

- i. It is a field;
- ii. It has an order;
- *iii.* The field operations are consistent with the order structure:
 - $x, y, z \in F, y < z \Longrightarrow x + y < x + z;$
 - $x, y \in F, x > 0, y > 0 \Longrightarrow x y > 0.$

Exercise 8. Let F be an ordered field. Let $x, y \in F$. Prove that if x y < 0, then one is positive and the other negative.

Exercise 9. Let F be an ordered field. Let $x, y, z \in F$. Then

a) If x > 0 then -x < 0 and vice verse;

- b) If $x \neq 0$, then $x^2 > 0$; In particular 1 > 0;
- c) If x > 0, y < z, then x y < x z;
- d) If 0 > x > y, then $0 > \frac{1}{y} > \frac{1}{x}$.

Theorem 7. \mathbb{R} as constructed in the previous sections is an ordered field.

\mathbb{R} has least upper bound property

Definition 8. (Upper bound) Suppose S is an ordered set, and $E \subseteq S$. If there is a $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say E is bounded above, and called β an upper bound of E.

Remark 9. Lower bound can be defined similarly.

Definition 10. (Least upper bound) Suppose S is an ordered set, $E \subseteq S$, and E is bounded above. Suppose that there exists an $\alpha \in S$ such that

- i. α is an upper bound of E;
- ii. If $\gamma < \alpha$ then γ is not an upper bound of E.

Then α is called the least upper bound (also called "supreme") of E. Denoted as

$$\alpha = \sup E. \tag{5}$$

Remark 11. Greatest lower bound (or infimum) $\alpha = \inf E$ can be defined similarly.

Definition 12. (LUB property) An ordered set S is said to have the least-upper-bound (LUB) property if:

$$E \subseteq S, E \neq \emptyset, E \text{ is bounded above}, \Longrightarrow \sup E \text{ exists in } S.$$
 (6)

Exercise 10. Prove that Q does not have LUB property.

Exercise 11. S has least-upper-bound property \iff S has greatest lower bound property.

Theorem 13. Let F be an ordered field with LUB property. Then for every x > 0, there is a unique y > 0 such that $y^3 = x$.

Proof. That y is unique is trivial since $y_1 < y_2 \Longrightarrow y_1^3 < y_2^3$.

To show existence, consider $A := \{t \in F | t \ge 0, t^3 < x\}$ and set $y := \sup A$. Note that since $0^3 = 0 < x$, we have $0 \in A$ and therefore y exists. Furthermore taking $z = \min\{1, \frac{x}{2}\}$ we have

$$z^{3} \leqslant z \leqslant \frac{x}{2} < x \Longrightarrow z \in A \Longrightarrow y > 0.$$
⁽⁷⁾

Now we show that it cannot hold that $y^3 < x$ or $y^3 > x$. Assume the contrary. Two cases.

• $y^3 < x$. Then $1 < y^{-3}x$. If we can find $\varepsilon > 0$ such that $(1 + \varepsilon)^3 < y^{-3}x$ then $[(1 + \varepsilon)y]^3 < x$ and we have a contradiction.

Thus it suffices to show that $1 < x \Longrightarrow \exists \varepsilon > 0, (1 + \varepsilon)^3 < x$. We have

$$(1+\varepsilon)^3 = 1 + 3\varepsilon + 3\varepsilon^2 + \varepsilon^3 = 1 + (3+3\varepsilon+\varepsilon^2)\varepsilon.$$
(8)

Now take $\varepsilon = \min\left\{1, \frac{x-1}{8}\right\}$. We have

$$(1+\varepsilon)^3 = 1 + (3+3\varepsilon+\varepsilon^2)\varepsilon \leq 1+7\varepsilon \leq 1+\frac{7}{8}(x-1) < x.$$
(9)

Thus we are done.

• $y^3 > x$. In this case all we need is $(1 - \varepsilon)^3 > y^{-3}x$. In light of

$$(1-\varepsilon)^3 = 1 - 3\varepsilon + 3\varepsilon^2 - \varepsilon^3 > 1 - (3+\varepsilon^2)\varepsilon$$
⁽¹⁰⁾

the proof is similar to that for the previous case.

Thus $y^3 = x$ and the proof ends.

Exercise 12. Prove that $y_1 < y_2 \Longrightarrow y_1^3 < y_2^3$ with no assumption on the signs of y_1, y_2 .

Exercise 13. Fill in the details for the $y^3 > x$ case.

Exercise 14. Let F be an ordered field with LUB property. Let $\alpha \in \mathbb{Q}$. Define α -th power in the natural way. Then for every x > 0, there is a unique y > 0 such that $y^{\alpha} = x$.

Problem 1. Let F be an ordered field with LUB property. Let $\alpha \in \mathbb{R}$. Define x^{α} for all $x \in F, x > 0$. (Hint: See Problem 6 of Chapter 1 in (Baby Rudin))

Problem 2. Let F be an ordered field with LUB property. Fix b > 1, y > 0. Prove that there is a unique $x \in \mathbb{R}$ such that $b^x = y$. (Hint: See Problem 7 of Chapter 1 in (Baby Rudin))

Theorem 14. \mathbb{R} as constructed in the previous sections has the LUB property.

Proof. We consider the following cases:

• All the upper bounds are positive. Then $E \cup \mathbb{R}^+$ is not empty. We identify real numbers with cuts and define

$$\alpha := \bigcup_{\xi \in E \cup \mathbb{R}^+} \xi. \tag{11}$$

- 0 is an upper bound but there is no negative upper bounds. In this case by definition $\sup E = 0 \in \mathbb{R}$.
- There is at least one negative upper bound. Define

$$F := \{-\alpha \mid \alpha \text{ is an upper bound for } E, \ \alpha < 0\}.$$
(12)

Now treat member of F as cuts and define $\eta := -\xi$ where

$$\xi := \bigcup_{\alpha \in F} \alpha. \tag{13}$$

Clearly $\eta = \sup E$.

Problem 3. Let F be an ordered field satisfying LUB. Prove that there is $x \in F$ such that $x^2 = 2$.

Exercise 15. Let F be an ordered field satisfying LUB. Let $a \in F$ be a > 0. Prove that there is $x \in F$ such that $x^2 = a$.

Archimedean

Definition 15. A ordered field F is said to be Archimedean if and only if \mathbb{N} does not have an upper bound in F. Here \mathbb{N} is defined as $\{1, 1+1, 1+1+1, \ldots\}$.

Remark 16. It is obvious that \mathbb{R} is Archimedean.

Theorem 17. A ordered field F satisfying LUB then Archimedian.

Proof. Assume N is bounded from above. Then there is least upper bound $a = \sup \mathbb{N}$. By definition of $\sup a - 1$ is not a upper bound for N. Thus there is $n \in \mathbb{N}$ such that n > a - 1. But then $a < n + 1 \in \mathbb{N}$. Contradiction.

Exercise 16. Find an ordered field that is Archimedean but does not satisfy LUB.

Theorem 18. An ordered field F is Archimedean $\iff \mathbb{Q}$ is dense in F.

Proof.

• \implies . Take any $x, y \in F, x < y$. We prove that there is $z \in \mathbb{Q}$ such that x < z < y. It is clear that it suffices to discuss the situation 0 < x < y. In this case we need to find $m, n \in \mathbb{N}$ such that

$$x < \frac{m}{n} < y \Longleftrightarrow n \, x < m < n \, y. \tag{14}$$

Since F is Archimedean, there is $n \in \mathbb{N}$ such that n (y - x) > 1. Fix this n. Consider the set A: ={ $k \in \mathbb{N} | k < n y$ }. Again since F is Archimedean, this set is finite and we take $m = \max A$. We claim that m > n x. Assume otherwise, then $m < n x \Longrightarrow m + 1 < n x + n (y - x) = n y$. We see that $m + 1 \in A$. Contradiction.

• \Leftarrow . Take any positive $y \in F$. We show that it cannot be an upper bound for \mathbb{N} .

Since \mathbb{Q} is dense in F, there is $\frac{m}{n}$ such that

$$0 < \frac{m}{n} < \frac{1}{y} \Longrightarrow m \, y < n \Longrightarrow y < n.$$
⁽¹⁵⁾

Thus F is Archimedean.

\mathbb{R} is unique

Theorem 19. \mathbb{R} is the unique ordered Archimedean field. Or equivalently \mathbb{R} is the unique ordered field where \mathbb{Q} is dense.