
Properties of real numbers

R is an ordered field

Definition 1. (Field) A set F is called a field if there are two functions defined: ⊕,⊙:F ×F � F, satisfying
the following:

• Axioms for addition:

i. x∈F , y ∈F� x⊕ y ∈F;

ii. x⊕ y = y ⊕ x;

iii. (x⊕ y)⊕ z = x⊕ (y ⊕ z);

iv. There is an element 0 satisfying 0⊕ x= x for any a∈F;

v. For each x∈F, there is an element y ∈F such that y ⊕x =0. Denote it by −x.

• Axioms for multiplication:

a) x∈F , y ∈F� x⊙ y ∈F;

b) x⊙ y = y ⊙ x;

c) x⊙ (y ⊙ z) = (x⊙ y)⊙ z;

d) There is an element i∈F such that i⊙x = x for every x∈F. Denote it by 1;

e) For every x∈F, there is a y ∈F such that x⊙ y = 1. Denote y by x−1.

• The distributive law:

A) For every x, y, z ∈F, x⊙ (y ⊕ z) = (x⊙ y)⊕ (x⊙ z).

Exercise 1. Prove the uniqueness of the special elements 0, 1. Also prove that for each x ∈ F and each y ∈ F , y � 0, −x

and y−1 are unique.

Exercise 2. Give a reasonable definition to the new function F ×F × F � F which we hope to denote by x ⊕ y ⊕ z and

justify your definition.

Exercise 3. Let A be a set. Let W 8 {subsets of A}. Define addition and multiplication on W as

x⊕ y8 x∪ y; x ⊙ y8 x∩ y. (1)

Does this make W a field? Justify your answer.

Remark 2. Clearly we can further define “subtration” and “division” through

x− y8 x+ (−y); x/y8 x (y−1). (2)

Example 3. Prove that 4= 2⊕ 2.
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Proof. By definition,

4= 3⊕ 1 = (2⊕ 1)⊕ 1= 2⊕ (1⊕ 1)= 2⊕ 2. (3)

Thus ends the proof. �

Exercise 4. Let x∈F . Prove that x ⊕ x⊕ x= 3⊙x.

Exercise 5. Prove

a) x⊕ y = x ⊕ z� y = z;

b) x⊙ y = x ⊙ z� y = z unless x = 0.

Exercise 6. Denote x⊙ x by x2. Prove that (x⊕ y)2 = x2⊕ (2⊙x ⊙ y)⊕ y2.

Exercise 7. Prove the following

a) x ⊙ 0= 0;

b) x⊙ (−y) =−(x ⊙ y);

c) (−x)⊙ (−y)= x⊙ y;

d) If x� 0, (−x)−1 =−(x−1);

Notation. From now on we will discard ⊙ and ⊕, and simply use the usual notations x · y (x y), x/y, x± y.

Definition 4. (Order) Let S be a set. An “order” on S is a relation, denoted by <, with the following two
properties:

i. If x∈S, y ∈S then exactly one of the following is true.

x < y, x= y, x > y; (4)

ii. If x, y, z ∈S, if x < y and y <z, then x < z.

Remark 5. >, 6 can be defined in the natural way.

Definition 6. (Ordered field) F is an ordered field if

i. It is a field;

ii. It has an order;

iii. The field operations are consistent with the order structure:

• x, y, z ∈F , y <z� x+ y <x + z;

• x, y ∈F , x > 0, y > 0� x y > 0.

Exercise 8. Let F be an ordered field. Let x, y ∈F . Prove that if x y < 0, then one is positive and the other negative.

Exercise 9. Let F be an ordered field. Let x, y, z ∈F . Then

a) If x > 0 then −x < 0 and vice verse;
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b) If x� 0, then x2 > 0; In particular 1 > 0;

c) If x > 0, y < z, then x y < x z;

d) If 0 > x > y, then 0 >
1

y
>

1

x
.

Theorem 7. R as constructed in the previous sections is an ordered field.

R has least upper bound property

Definition 8. (Upper bound) Suppose S is an ordered set, and E ⊆S. If there is a β ∈S such that x6 β

for every x∈E, we say E is bounded above, and called β an upper bound of E.

Remark 9. Lower bound can be defined similarly.

Definition 10. (Least upper bound) Suppose S is an ordered set, E ⊆S, and E is bounded above. Suppose
that there exists an α∈S such that

i. α is an upper bound of E;

ii. If γ < α then γ is not an upper bound of E.

Then α is called the least upper bound (also called “supreme”) of E. Denoted as

α = supE. (5)

Remark 11. Greatest lower bound (or infimum) α = inf E can be defined similarly.

Definition 12. (LUB property) An ordered set S is said to have the least-upper-bound (LUB) property if:

E ⊆S, E � ∅, E is bounded above ,�supE exists in S. (6)

Exercise 10. Prove that Q does not have LUB property.

Exercise 11. S has least-upper-bound property� S has greatest lower bound property.

Theorem 13. Let F be an ordered field with LUB property. Then for every x > 0, there is a unique y > 0
such that y3 = x.

Proof. That y is unique is trivial since y1 < y2� y1
3 < y2

3.

To show existence, consider A8 {t∈F P t>0, t3 <x} and set y8 supA. Note that since 03 =0<x, we have

0∈A and therefore y exists. Furthermore taking z =min
{

1,
x

2

}

we have

z3 6 z 6
x

2
< x� z ∈A� y > 0. (7)

Now we show that it cannot hold that y3 < x or y3 > x. Assume the contrary. Two cases.

• y3 < x. Then 1 < y−3 x. If we can find ε > 0 such that (1 + ε)3 < y−3 x then [(1 + ε) y]3 < x and we
have a contradiction.
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Thus it suffices to show that 1< x� ∃ε > 0, (1+ ε)3 < x. We have

(1+ ε)3 = 1+ 3 ε+ 3 ε2 + ε3 = 1 +(3+ 3 ε + ε2) ε. (8)

Now take ε=min
{

1,
x − 1

8

}

. We have

(1 + ε)3 = 1+ (3 +3 ε + ε2) ε6 1 +7 ε 6 1 +
7

8
(x− 1)< x. (9)

Thus we are done.

• y3 > x. In this case all we need is (1− ε)3 > y−3 x. In light of

(1− ε)3 = 1− 3 ε +3 ε2− ε3 > 1− (3+ ε2) ε (10)

the proof is similar to that for the previous case.

Thus y3 =x and the proof ends. �

Exercise 12. Prove that y1 < y2� y1
3 < y2

3 with no assumption on the signs of y1, y2.

Exercise 13. Fill in the details for the y3 > x case.

Exercise 14. Let F be an ordered field with LUB property. Let α ∈Q. Define α-th power in the natural way. Then for

every x > 0, there is a unique y > 0 such that yα = x.

Problem 1. Let F be an ordered field with LUB property. Let α∈R. Define xα for all x∈F , x > 0. (Hint: See Problem

6 of Chapter 1 in (Baby Rudin) )

Problem 2. Let F be an ordered field with LUB property. Fix b > 1, y > 0. Prove that there is a unique x∈R such that

bx = y. (Hint: See Problem 7 of Chapter 1 in (Baby Rudin) )

Theorem 14. R as constructed in the previous sections has the LUB property.

Proof. We consider the following cases:

• All the upper bounds are positive. Then E ∪R+ is not empty. We identify real numbers with cuts
and define

α8 ∪ξ∈E∪R+ξ. (11)

• 0 is an upper bound but there is no negative upper bounds. In this case by definition supE =0∈R.

• There is at least one negative upper bound. Define

F 8 {−αP α is an upper bound for E, α < 0}. (12)

Now treat member of F as cuts and define η8 −ξ where

ξ8 ∪α∈Fα. (13)

Clearly η = supE. �

Problem 3. Let F be an ordered field satisfying LUB. Prove that there is x∈F such that x2 = 2.
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Exercise 15. Let F be an ordered field satisfying LUB. Let a∈F be a > 0. Prove that there is x∈F such that x2 = a.

Archimedean

Definition 15. A ordered field F is said to be Archimedean if and only if N does not have an upper bound
in F. Here N is defined as {1, 1+ 1, 1+ 1 +1,
 }.

Remark 16. It is obvious that R is Archimedean.

Theorem 17. A ordered field F satisfying LUB then Archimedian.

Proof. Assume N is bounded from above. Then there is least upper bound a = sup N. By definition of
sup , a − 1 is not a upper bound for N. Thus there is n ∈N such that n > a − 1. But then a < n + 1 ∈N.
Contradiction. �

Exercise 16. Find an ordered field that is Archimedean but does not satisfy LUB.

Theorem 18. An ordered field F is Archimedean� Q is dense in F.

Proof.

• � . Take any x, y ∈ F , x < y. We prove that there is z ∈Q such that x < z < y. It is clear that it
suffices to discuss the situation 0< x < y. In this case we need to find m, n∈N such that

x <
m

n
< y� n x < m <n y. (14)

Since F is Archimedean, there is n ∈ N such that n (y − x) > 1. Fix this n. Consider the set A:
={k∈NP k <n y}. Again since F is Archimedean, this set is finite and we take m=maxA. We claim
that m>n x. Assume otherwise, then m<n x�m+1<n x+n (y−x)=n y. We see that m+1∈A.
Contradiction.

• � . Take any positive y ∈F . We show that it cannot be an upper bound for N.

Since Q is dense in F , there is
m

n
such that

0 <
m

n
<

1

y
� m y < n� y <n. (15)

Thus F is Archimedean. �

R is unique

Theorem 19. R is the unique ordered Archimedean field. Or equivalently R is the unique ordered field
where Q is dense.
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