Properties of real numbers

\mathbb{R} is an ordered field

Definition 1. (Field) A set F is called a field if there are two functions defined: $\oplus, \odot: F \times F \mapsto F$, satisfying the following:

- Axioms for addition:
i. $x \in F, y \in F \Longrightarrow x \oplus y \in F$;
ii. $x \oplus y=y \oplus x$;
iii. $(x \oplus y) \oplus z=x \oplus(y \oplus z)$;
iv. There is an element 0 satisfying $0 \oplus x=x$ for any $a \in F$;
v. For each $x \in F$, there is an element $y \in F$ such that $y \oplus x=0$. Denote it by $-x$.
- Axioms for multiplication:
a) $x \in F, y \in F \Longrightarrow x \odot y \in F$;
b) $x \odot y=y \odot x$;
c) $x \odot(y \odot z)=(x \odot y) \odot z ;$
d) There is an element $i \in F$ such that $i \odot x=x$ for every $x \in F$. Denote it by 1;
e) For every $x \in F$, there is a $y \in F$ such that $x \odot y=1$. Denote y by x^{-1}.
- The distributive law:
A) For every $x, y, z \in F, x \odot(y \oplus z)=(x \odot y) \oplus(x \odot z)$.

Exercise 1. Prove the uniqueness of the special elements 0,1 . Also prove that for each $x \in F$ and each $y \in F, y \neq 0,-x$ and y^{-1} are unique.

Exercise 2. Give a reasonable definition to the new function $F \times F \times F \mapsto F$ which we hope to denote by $x \oplus y \oplus z$ and justify your definition.

Exercise 3. Let A be a set. Let $W:=\{$ subsets of $A\}$. Define addition and multiplication on W as

$$
\begin{equation*}
x \oplus y:=x \cup y ; \quad x \odot y:=x \cap y . \tag{1}
\end{equation*}
$$

Does this make W a field? Justify your answer.

Remark 2. Clearly we can further define "subtration" and "division" through

$$
\begin{equation*}
x-y:=x+(-y) ; \quad x / y:=x\left(y^{-1}\right) \tag{2}
\end{equation*}
$$

Example 3. Prove that $4=2 \oplus 2$.

Proof. By definition,

$$
\begin{equation*}
4=3 \oplus 1=(2 \oplus 1) \oplus 1=2 \oplus(1 \oplus 1)=2 \oplus 2 \tag{3}
\end{equation*}
$$

Thus ends the proof.

Exercise 4. Let $x \in F$. Prove that $x \oplus x \oplus x=3 \odot x$.
Exercise 5. Prove
a) $x \oplus y=x \oplus z \Longrightarrow y=z$;
b) $x \odot y=x \odot z \Longrightarrow y=z$ unless $x=0$.

Exercise 6. Denote $x \odot x$ by x^{2}. Prove that $(x \oplus y)^{2}=x^{2} \oplus(2 \odot x \odot y) \oplus y^{2}$.
Exercise 7. Prove the following
a) $x \odot 0=0$;
b) $x \odot(-y)=-(x \odot y)$;
c) $(-x) \odot(-y)=x \odot y$;
d) If $x \neq 0,(-x)^{-1}=-\left(x^{-1}\right)$;

Notation. From now on we will discard \odot and \oplus, and simply use the usual notations $x \cdot y(x y), x / y, x \pm y$.

Definition 4. (Order) Let S be a set. An "order" on S is a relation, denoted by $<$, with the following two properties:
i. If $x \in S, y \in S$ then exactly one of the following is true.

$$
\begin{equation*}
x<y, x=y, x>y \tag{4}
\end{equation*}
$$

ii. If $x, y, z \in S$, if $x<y$ and $y<z$, then $x<z$.

Remark 5. \geqslant, \leqslant can be defined in the natural way.

Definition 6. (Ordered field) F is an ordered field if
i. It is a field;
ii. It has an order;
iii. The field operations are consistent with the order structure:

- $\quad x, y, z \in F, y<z \Longrightarrow x+y<x+z$;
- $\quad x, y \in F, x>0, y>0 \Longrightarrow x y>0$.

Exercise 8. Let F be an ordered field. Let $x, y \in F$. Prove that if $x y<0$, then one is positive and the other negative.
Exercise 9. Let F be an ordered field. Let $x, y, z \in F$. Then
a) If $x>0$ then $-x<0$ and vice verse;
b) If $x \neq 0$, then $x^{2}>0$; In particular $1>0$;
c) If $x>0, y<z$, then $x y<x z$;
d) If $0>x>y$, then $0>\frac{1}{y}>\frac{1}{x}$.

Theorem $7 . \mathbb{R}$ as constructed in the previous sections is an ordered field.

\mathbb{R} has least upper bound property

Definition 8. (Upper bound) Suppose S is an ordered set, and $E \subseteq S$. If there is a $\beta \in S$ such that $x \leqslant \beta$ for every $x \in E$, we say E is bounded above, and called β an upper bound of E.

Remark 9. Lower bound can be defined similarly.

Definition 10. (Least upper bound) Suppose S is an ordered set, $E \subseteq S$, and E is bounded above. Suppose that there exists an $\alpha \in S$ such that
i. α is an upper bound of E;
ii. If $\gamma<\alpha$ then γ is not an upper bound of E.

Then α is called the least upper bound (also called "supreme") of E. Denoted as

$$
\begin{equation*}
\alpha=\sup E \tag{5}
\end{equation*}
$$

Remark 11. Greatest lower bound (or infimum) $\alpha=\inf E$ can be defined similarly.

Definition 12. (LUB property) An ordered set S is said to have the least-upper-bound (LUB) property if:

$$
\begin{equation*}
E \subseteq S, E \neq \varnothing, E \text { is bounded above }, \Longrightarrow \sup E \text { exists in } S \tag{6}
\end{equation*}
$$

Exercise 10. Prove that \mathbb{Q} does not have LUB property.
Exercise 11. S has least-upper-bound property $\Longleftrightarrow S$ has greatest lower bound property.

Theorem 13. Let F be an ordered field with $L U B$ property. Then for every $x>0$, there is a unique $y>0$ such that $y^{3}=x$.

Proof. That y is unique is trivial since $y_{1}<y_{2} \Longrightarrow y_{1}^{3}<y_{2}^{3}$.
To show existence, consider $A:=\left\{t \in F \mid t \geqslant 0, t^{3}<x\right\}$ and set $y:=\sup A$. Note that since $0^{3}=0<x$, we have $0 \in A$ and therefore y exists. Furthermore taking $z=\min \left\{1, \frac{x}{2}\right\}$ we have

$$
\begin{equation*}
z^{3} \leqslant z \leqslant \frac{x}{2}<x \Longrightarrow z \in A \Longrightarrow y>0 \tag{7}
\end{equation*}
$$

Now we show that it cannot hold that $y^{3}<x$ or $y^{3}>x$. Assume the contrary. Two cases.

- $y^{3}<x$. Then $1<y^{-3} x$. If we can find $\varepsilon>0$ such that $(1+\varepsilon)^{3}<y^{-3} x$ then $[(1+\varepsilon) y]^{3}<x$ and we have a contradiction.

Thus it suffices to show that $1<x \Longrightarrow \exists \varepsilon>0,(1+\varepsilon)^{3}<x$. We have

$$
\begin{equation*}
(1+\varepsilon)^{3}=1+3 \varepsilon+3 \varepsilon^{2}+\varepsilon^{3}=1+\left(3+3 \varepsilon+\varepsilon^{2}\right) \varepsilon \tag{8}
\end{equation*}
$$

Now take $\varepsilon=\min \left\{1, \frac{x-1}{8}\right\}$. We have

$$
\begin{equation*}
(1+\varepsilon)^{3}=1+\left(3+3 \varepsilon+\varepsilon^{2}\right) \varepsilon \leqslant 1+7 \varepsilon \leqslant 1+\frac{7}{8}(x-1)<x \tag{9}
\end{equation*}
$$

Thus we are done.

- $y^{3}>x$. In this case all we need is $(1-\varepsilon)^{3}>y^{-3} x$. In light of

$$
\begin{equation*}
(1-\varepsilon)^{3}=1-3 \varepsilon+3 \varepsilon^{2}-\varepsilon^{3}>1-\left(3+\varepsilon^{2}\right) \varepsilon \tag{10}
\end{equation*}
$$

the proof is similar to that for the previous case.
Thus $y^{3}=x$ and the proof ends.

Exercise 12. Prove that $y_{1}<y_{2} \Longrightarrow y_{1}^{3}<y_{2}^{3}$ with no assumption on the signs of y_{1}, y_{2}.
Exercise 13. Fill in the details for the $y^{3}>x$ case.
Exercise 14. Let F be an ordered field with LUB property. Let $\alpha \in \mathbb{Q}$. Define α-th power in the natural way. Then for every $x>0$, there is a unique $y>0$ such that $y^{\alpha}=x$.

Problem 1. Let F be an ordered field with LUB property. Let $\alpha \in \mathbb{R}$. Define x^{α} for all $x \in F, x>0$. (Hint: See Problem 6 of Chapter 1 in (Baby Rudin))

Problem 2. Let F be an ordered field with LUB property. Fix $b>1, y>0$. Prove that there is a unique $x \in \mathbb{R}$ such that $b^{x}=y$. (Hint: See Problem 7 of Chapter 1 in (Baby Rudin))

Theorem 14. \mathbb{R} as constructed in the previous sections has the LUB property.

Proof. We consider the following cases:

- All the upper bounds are positive. Then $E \cup \mathbb{R}^{+}$is not empty. We identify real numbers with cuts and define

$$
\begin{equation*}
\alpha:=\cup_{\xi \in E \cup \mathbb{R}^{+}} \xi \tag{11}
\end{equation*}
$$

- 0 is an upper bound but there is no negative upper bounds. In this case by definition $\sup E=0 \in \mathbb{R}$.
- There is at least one negative upper bound. Define

$$
\begin{equation*}
F:=\{-\alpha \mid \alpha \text { is an upper bound for } E, \alpha<0\} . \tag{12}
\end{equation*}
$$

Now treat member of F as cuts and define $\eta:=-\xi$ where

$$
\begin{equation*}
\xi:=\cup_{\alpha \in F} \alpha \tag{13}
\end{equation*}
$$

Clearly $\eta=\sup E$.

Problem 3. Let F be an ordered field satisfying LUB. Prove that there is $x \in F$ such that $x^{2}=2$.

Exercise 15. Let F be an ordered field satisfying LUB. Let $a \in F$ be $a>0$. Prove that there is $x \in F$ such that $x^{2}=a$.

Archimedean

Definition 15. A ordered field F is said to be Archimedean if and only if \mathbb{N} does not have an upper bound in F. Here \mathbb{N} is defined as $\{1,1+1,1+1+1, \ldots\}$.

Remark 16. It is obvious that \mathbb{R} is Archimedean.

Theorem 17. A ordered field F satisfying $L U B$ then Archimedian.

Proof. Assume \mathbb{N} is bounded from above. Then there is least upper bound $a=\sup \mathbb{N}$. By definition of $\sup , a-1$ is not a upper bound for \mathbb{N}. Thus there is $n \in \mathbb{N}$ such that $n>a-1$. But then $a<n+1 \in \mathbb{N}$. Contradiction.

Exercise 16. Find an ordered field that is Archimedean but does not satisfy LUB.

Theorem 18. An ordered field F is Archimedean $\Longleftrightarrow \mathbb{Q}$ is dense in F.

Proof.

- \Longrightarrow. Take any $x, y \in F, x<y$. We prove that there is $z \in \mathbb{Q}$ such that $x<z<y$. It is clear that it suffices to discuss the situation $0<x<y$. In this case we need to find $m, n \in \mathbb{N}$ such that

$$
\begin{equation*}
x<\frac{m}{n}<y \Longleftrightarrow n x<m<n y . \tag{14}
\end{equation*}
$$

Since F is Archimedean, there is $n \in \mathbb{N}$ such that $n(y-x)>1$. Fix this n. Consider the set A : $=\{k \in \mathbb{N} \mid k<n y\}$. Again since F is Archimedean, this set is finite and we take $m=\max A$. We claim that $m>n x$. Assume otherwise, then $m<n x \Longrightarrow m+1<n x+n(y-x)=n y$. We see that $m+1 \in A$. Contradiction.

- \Longleftarrow. Take any positive $y \in F$. We show that it cannot be an upper bound for \mathbb{N}.

Since \mathbb{Q} is dense in F, there is $\frac{m}{n}$ such that

$$
\begin{equation*}
0<\frac{m}{n}<\frac{1}{y} \Longrightarrow m y<n \Longrightarrow y<n \tag{15}
\end{equation*}
$$

Thus F is Archimedean.

\mathbb{R} is unique

Theorem 19. \mathbb{R} is the unique ordered Archimedean field. Or equivalently \mathbb{R} is the unique ordered field where \mathbb{Q} is dense.

