Properties of real numbers

R is an ordered field

Definition 1. (Field) A set F is called a field if there are two functions defined: ®,®: F x F— F, satisfying
the following:

e Azxioms for addition:
. xeFyeF—xz@yekrF;

. xBY=yPx;

. (t®y)Dz=2®(yd2);

iv. There is an element 0 satisfying 0@ x =2z for any a € F;

v. For each x € F, there is an element y € F such that y ®x=0. Denote it by —x.
e Azxioms for multiplication:

a) xeF,ye F=—=xOy€EF;

b) xQy=youx;

) 1O (yo02)=(z0Y) Oz

d) There is an element i € F such that i ® x =z for every x € F. Denote it by 1;

e) For every x € F, there is a y € F such that x ® y=1. Denote y by x~ .

o The distributive law:

A) For everyx,y,2€F, z0(y@z)=(x0y)®(x02).

Exercise 1. Prove the uniqueness of the special elements 0, 1. Also prove that for each z € F and each y € F, y#0, —x
and y~! are unique.

Exercise 2. Give a reasonable definition to the new function F' X F' X F'+— F which we hope to denote by = & y & z and
justify your definition.

Exercise 3. Let A be a set. Let W := {subsets of A}. Define addition and multiplication on W as

rdy:=axUy; zQy:=zNy. (1)

Does this make W a field? Justify your answer.
Remark 2. Clearly we can further define “subtration” and “division” through
v—y:=r+(-y);  afy=z(y). (2)

Example 3. Prove that 4=2@ 2.



Proof. By definition,
4=3®1=020)el=2¢(101)=232. (3)

Thus ends the proof. O

Exercise 4. Let z € F. Prove that t @z @z =30x.
Exercise 5. Prove
a) 2QY=rOzr=y=2;
b) O y=2zOz= y==z unless z=0.
Exercise 6. Denote x ®x by 2. Prove that (2@ y)2 =220 (20x 0 y) ® v
Exercise 7. Prove the following
a) zO0=0;
b) 2O (-y)=—(zOy);
c) (x)O(-y)=z0y;

d) If 40, (—2)"t=—(z2~Y);
Notation. From now on we will discard ® and @, and simply use the usual notations x-y (v y), /y, x +y.

Definition 4. (Order) Let S be a set. An “order” on S is a relation, denoted by <, with the following two
properties:

i. IfxeS,ye S then exactly one of the following is true.
T<y,T=Y,T>Y; (4)

. Ifx,y,z€ 8, if e <y and y < z, then x < z.
Remark 5. >, < can be defined in the natural way.

Definition 6. (Ordered field) F is an ordered field if
i. It is a field;
7. It has an order;
1i. The field operations are consistent with the order structure:
o xyzeF y<z=zx+y<zx+z
o z,ycF x2>0,y>0=zy>0.
Exercise 8. Let F' be an ordered field. Let x,y € F'. Prove that if x y <0, then one is positive and the other negative.

Exercise 9. Let F' be an ordered field. Let x,y,z € F. Then

a) If £ >0 then —z <0 and vice verse;



b) If £+ 0, then x2 > 0; In particular 1 > 0;
c) f >0, y<z, thenzy<zz;

d) fo>z>y, then0>§>%.
Theorem 7. R as constructed in the previous sections is an ordered field.
R has least upper bound property

Definition 8. (Upper bound) Suppose S is an ordered set, and E CS. If there is a S €S such that x < 3
for every x € E, we say E is bounded above, and called B an upper bound of F.

Remark 9. Lower bound can be defined similarly.

Definition 10. (Least upper bound) Suppose S is an ordered set, E C S, and E is bounded above. Suppose
that there exists an o € S such that

1. « is an upper bound of E;
1. If v <a then 7y is not an upper bound of E.

Then « is called the least upper bound (also called “supreme”) of E. Denoted as

a=supF. (5)

Remark 11. Greatest lower bound (or infimum) a=inf E can be defined similarly.
Definition 12. (LUB property) An ordered set S is said to have the least-upper-bound (LUB) property if:
ECS,E+9,E is bounded above,=>sup E exists in S. (6)

Exercise 10. Prove that @Q does not have LUB property.

Exercise 11. S has least-upper-bound property <= S has greatest lower bound property.

Theorem 13. Let F be an ordered field with LUB property. Then for every x >0, there is a unique y >0
such that y3 =1x.

Proof. That y is unique is trivial since y; < yo = 45 < 3.

To show existence, consider A:={t€ F|t>0,t3<z} and set y:=sup A. Note that since 0>=0< z, we have
0 € A and therefore y exists. Furthermore taking z =min {1, %} we have

z3§z§%<x:>z€A:>y>O. (7)

Now we show that it cannot hold that 3? < x or y3>z. Assume the contrary. Two cases.

e y3<ux. Then 1<y 3z If we can find € > 0 such that (1 +¢)®> <y 3z then [(1 +¢) y]®> <z and we
have a contradiction.



Thus it suffices to show that 1 <z =3¢ >0, (1+¢)® <z. We have
(1+¢e)3=1+3e+3e2+e3=1+(3+3e+e?)e. (8)
Now take € =min {1, wTZl} We have
(1+e)P=1+@3+3c+e)e<l4Te<l+L(@—1)<z. (9)
Thus we are done.
e 3> 2. In this case all we need is (1 —¢)3>y 2. In light of
(1-e))=1-3e+3e?2—3>1-(3+&?)e (10)
the proof is similar to that for the previous case.
Thus 4> =2 and the proof ends. O
Exercise 12. Prove that y; < y2 = 9} < y3 with no assumption on the signs of y1, ya.

Exercise 13. Fill in the details for the y® > z case.

Exercise 14. Let F' be an ordered field with LUB property. Let o € Q. Define a-th power in the natural way. Then for
every x > 0, there is a unique y > 0 such that y® ==.

Problem 1. Let F be an ordered field with LUB property. Let a € R. Define z¢ for all z € F',x > 0. (Hint: See Problem
6 of Chapter 1 in (Baby Rudin) )

Problem 2. Let F' be an ordered field with LUB property. Fix b > 1,y > 0. Prove that there is a unique z € R such that
b¥ =y. (Hint: See Problem 7 of Chapter 1 in (Baby Rudin) )

Theorem 14. R as constructed in the previous sections has the LUB property.

Proof. We consider the following cases:

e All the upper bounds are positive. Then E U R™ is not empty. We identify real numbers with cuts
and define

a::U§EEUR+§' (11)
e 0 is an upper bound but there is no negative upper bounds. In this case by definition sup £ =0 € R.

e There is at least one negative upper bound. Define

F:={-a|« is an upper bound for £, a <0}. (12)

Now treat member of F' as cuts and define 77:= —& where
& :=Uqepa. (13)
Clearly n=sup F. O

Problem 3. Let F be an ordered field satisfying LUB. Prove that there is « € F' such that z2=2.



Exercise 15. Let F be an ordered field satisfying LUB. Let a € F be a > 0. Prove that there is = € F such that 22 =a.

Archimedean

Definition 15. A ordered field F is said to be Archimedean if and only if N does not have an upper bound
in F. Here N is defined as {1,1+1,14+1+1,...}.

Remark 16. It is obvious that R is Archimedean.
Theorem 17. A ordered field F satisfying LUB then Archimedian.

Proof. Assume N is bounded from above. Then there is least upper bound a = sup N. By definition of
sup, a — 1 is not a upper bound for N. Thus there is n € N such that n >a — 1. But then a <n+ 1€ N.
Contradiction. O

Exercise 16. Find an ordered field that is Archimedean but does not satisfy LUB.
Theorem 18. An ordered field F is Archimedean <= Q is dense in F.

Proof.

e —. Take any x,y € F,x <y. We prove that there is z € Q such that x < z < y. It is clear that it
suffices to discuss the situation 0 <z < y. In this case we need to find m,n € N such that

x<%<y<:>nx<m<ny. (14)

Since F' is Archimedean, there is n € N such that n (y — x) > 1. Fix this n. Consider the set A:
={keN|k<ny}. Again since F is Archimedean, this set is finite and we take m =max A. We claim
that m >n . Assume otherwise, thenm<nzx=m+1<nz+n (y—x)=ny. Wesee that m+1€ A.
Contradiction.
e <. Take any positive y € F'. We show that it cannot be an upper bound for IN.
Since @ is dense in F', there is % such that
m 1

O<E<§:>my<n:>y<n. (15)

Thus F' is Archimedean. O

R is unique

Theorem 19. R is the unique ordered Archimedean field. Or equivalently R is the unique ordered field
where Q is dense.



