Real numbers

Definition of real numbers

Definition 1. We call any cut ξ a "positive real number".

Remark 2. If we assume the existence of \mathbb{R} , then a "cut" is simply a set of the form $\{x \in \mathbb{Q}^+ | x < r\}$ where $r \in \mathbb{R}^+$. Such "cheating"-type understanding is often useful in designing proofs.

Notation. As in the following we will not use the idea of "cut" anymore, from now on we will simply denote real numbers by any convenient letters (English or Greek).

Definition 3. Let the symbol 0 be defined through the property: For any positive real number x, 0 + x = x + 0 = x.

Exercise 1. Prove that 0 is different from any positive real number defined in the previous section.

Definition 4. For any positive real number x, let the symbol -x be defined through the property

$$(-x) + x = x + (-x) = 0.$$
(1)

These numbers are called "negative numbers".

Exercise 2. Prove that -(x+y) = (-x) + (-y).

Definition 5. Positive real numbers, negative real numbers, and 0 together are called "real numbers".

Definition 6. We extend the operation "-" as follows.

- If x > 0, -x is already defined;
- If x = 0, -x := 0;
- If x < 0, then there is ξ such that $x = -\xi$, define $-x := \xi$.

Order

Definition 7. Let x, y be real numbers. Then we say x > y if and only if

- x, y positive x > y, or
- x, y negative, -x < -y, or
- x=0, y negative, or
- y=0, x positive, or
- x positive, y negative.

We say x < y if and only if y > x.

Exercise 3. For any $x, y \in \mathbb{R}$, exactly one of the following holds:

$$x = y, \quad x > y, \quad x < y. \tag{2}$$

Exercise 4. x > 0 if and only if it is a positive real number.

Definition 8. Let x, y be real numbers. Then we say x = y if and only if

- x, y positive, x = y, or
- x = y = 0, or
- x, y negative, -x = -y.

Exercise 5. Prove that = is an equivalence relation.

Definition 9. Let x, y be real numbers. We say $x \ge y$ if and only if x > y or x = y. We say $x \le y$ if and only if $y \ge x$.

Addition and subtraction

Definition 10. Let x, y be real numbers. We define their sum x + y as follows.

- If x, y > 0, already defined;
- If x = 0, x + y = y; If y = 0, x + y = x.
- If x > 0, y < 0, consider three sub-cases:
 - If x > (-y), then define x y := u where u is the unique solution to (-y) + u = x.
 - If $x = \eta$, then by definition of negative numbers x y := 0.
 - If x < (-y), then define x y := -u where u is the unique solution to x + u = (-y).
- If x < 0, y > 0 the definition is similar.

Exercise 6. Prove that x + y = y + x.

Exercise 7. Define the absolute value function as

$$|x| := \begin{cases} x & x > 0 \\ 0 & x = 0 \\ -x & x < 0 \end{cases}$$
(3)

Prove that |-x| = |x|.

Exercise 8. Prove $|x+y| \leq |x|+|y|$.

Definition 11. Let x, y be real numbers. We define their difference x - y := x + (-y).

Exercise 9. Prove that x - y = -(y - x).

Exercise 10. Prove that $x - y > 0 \iff x > y$.

Exercise 11. Prove that for every $x \in \mathbb{R}$, there are $y, z \in \mathbb{R}^+$ such that x = y - z.

Exercise 12. Prove that (x + y) + z = x + (y + z).

Multiplication and division

Definition 12. Let $x, y \in \mathbb{R}$. We define their product $x \cdot y$ (or xy when no confusion arises) through

- If x, y > 0, already defined;
- If x = 0 or y = 0, $x \cdot y := 0$;
- If $x, y < 0, x \cdot y := (-x) \cdot (-y);$
- If $x > 0, y < 0, x \cdot y := -(x \cdot (-y));$
- If $x < 0, y > 0, x \cdot y := -((-x) \cdot y)$.

Exercise 13. If x y = 0, then at least one of x, y is 0.

Exercise 14. $|x y| = |x| \cdot |y|$.

- **Exercise 15.** x y = y x.
- **Exercise 16.** $x \cdot 1 = x$.
- **Exercise 17.** (-x)(-y) = x y.
- **Exercise 18.** (x y) z = x (y z).
- **Exercise 19.** x(y+z) = xy + xz.

Exercise 20. There is a unique u solving x u = y if $x \neq 0$.

Theorem 13. $x, y \in \mathbb{R}$. Then x y = (-x)(-y).

Proof. We have

$$(x + (-x)) y = 0 \Longrightarrow x y + (-x) y = 0.$$

$$\tag{4}$$

On the other hand

$$(-x)(y + (-y)) = 0 \Longrightarrow (-x)y + (-x)(-y) = 0.$$
(5)

Therefore x y = (-x) (-y).

Recall that for any $x \in \mathbb{R}^+$, there is a unique y such that x y = 1. From the above theorem we see that (-y) is the unique solution to (-x)(-y) = 1. Thus division can be easily defined for all real numbers (denominator $\neq 0$).

Dedekind's fundamental theorem

Theorem 14. Let $A \cup B = \mathbb{R}$ with

i. A, B not empty;

- *ii.* $A \cap B = \emptyset$;
- *iii.* $\forall x \in A, y \in B, x < y$.

Then there is exactly one real number z such that $\{x | x < z\} \subseteq A, \{x | x > z\} \subseteq B$.

Proof.

• Uniqueness.

If there are $z_1 \neq z_2$, then wlog $z_1 < z_2$. Then $\frac{z_1 + z_2}{2} \in A \cap B$. Contradiction.

- Existence.
 - 1. $A \cap \mathbb{R}^+ \neq \emptyset$. Consider $A \cap \mathbb{Q}$. If there is $x = \max(A \cap \mathbb{Q})$, set $\xi = A \cap \mathbb{Q}^+ \{x\}$. Otherwise set $\xi = A \cap \mathbb{Q}^+$.

Now it can be check that ξ is a cut and therefore determine a real number z.

For any x < z, if x < 0, since 0 < z we have $x \in A$; If x > 0 we have $x < \frac{x+z}{2} < z$ and is therefore in A.

Similarly we can show $\{x | x > z\} \subseteq B$.

- 2. $A \cap \mathbb{R}^+ = \emptyset$, $0 \in A$. Then we prove that z = 0.
- 3. Other cases are similarly discussed.