
(Positive) Rational Numbers

Definition

Definition 1. Consider all ordered pairs (x1, x2) with x1, x2∈N. Define the equivalance

(x1, x2)∼ (y1, y2)� x1 y2 = x2 y1. (1)

Theorem 2. ∼ is indeed an equivalence relation, that is

1. (x1, x2)∼ (x1, x2);

2. (x1, x2)∼ (y1, y2)� (y1, y2)∼ (x1, x2);

3. (x1, x2)∼ (y1, y2) and (y1, y2)∼ (z1, z2) then (x1, x2)∼ (z1, z2).

Proof. Exercise. �

Exercise 1. (x1, x2)∼ (x1 x, x2 x) for any x∈N.

Notation. From now on we will denote (x1, x2) by
x1

x2

, or x1/x2.

Definition 3.
x1

x2

>
y1

y2

if and only if x1 y2 > y1 x2.
x1

x2

<
y1

y2

if and only if
y1

y2

>
x1

x2

.

Theorem 4. Exactly one of the following three holds:

x1

x2

∼
y1

y2

,
x1

x2

>
y1

y2

,
x1

x2

<
y1

y2

. (2)

Exercise 2. If
x1

x2

<
y1

y2

and
y1

y2

<
z1

z2

then
x1

x2

<
z1

z2

.

Definition 5.
x1

x2

>
y1

y2

if and only if
x1

x2

>
y1

y2

or
x1

x2

∼
y1

y2

.
x1

x2

6
y1

y2

if and only if
x1

x2

<
y1

y2

or
x1

x2

∼
y1

y2

.

Exercise 3. If
x1

x2

<
y1

y2

and
y1

y2

6
z1

z2

then
x1

x2

<
z1

z2

.

Exercise 4. If
x1

x2

>
y1

y2

and
y1

y2

>
x1

x2

, then
x1

x2

=
y1

y2

.

Theorem 6. If
x1

x2

<
y1

y2

then there is
z1

z2

such that
x1

x2

<
z1

z2

<
y1

y2

.

Proof. Set

z1 =x1 + y1, z2 = x2 + y2. (3)

Then it satisfies the requirement. �

Problem 1. Define addition, subtraction, multiplication, division, and justify their properties, in particular those related

to order.
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Definition 7. We define a positive rational number X to be an equivalence class of all pairs
y1

y2

equivalent
to a fixed pair

x1

x2

. We denote the set of positive rational numbers Q+.

Definition 8. Two rational numbers X,Y are equal, denoted X =Y, if there are
x1

x2

∈X and
y1

y2

∈Y such that
x1

x2

∼
y1

y2

.

Remark 9. We can easily define X < Y , X 6Y , X > Y , X >Y .

Theorem 10. Let X, Y be rational numbers. Then there is an natural number z such that z X > Y.

Proof. Take
x1

x2

∈X,
y1

y2

∈Y . We need to prove that there is z ∈N such that z x1 y2 >x2 y1. More generally,

we prove that for any x, y ∈N, there is z such that z x > y.

Fix x, Let M8 {y ∈NP ∃z ∈N, z x > y}.

• 1∈M. Two cases.

◦ x= 1. Then we have 1′ ·x= x+ x > x =1.

◦ x� 1. Then there is u∈N such that x =u′= 1+ u > 1.

Therefore 1∈M.

• y ∈M then y ′∈M.

Since y ∈M there is z ∈N such that z x > y. Thus there is u∈N such that z x= y +u. Now consider
z ′ x= z x+x= y +u+x. It is easy to see that u+x� 1 thus there is v ∈N such that u+x= v ′. This
gives

z ′x = y + u+ x = y + v ′= y ′+ v > y ′. (4)

Thus ends the proof. �

Theorem 11. Define S 8 {

X ∈ Q+P X ∼
x

1
for some x ∈ N

}

. Denote
1

1
by 1. For any X ∈ S, define

X ′8 X +
1

1
. Then S satisfies Axioms 1 – 5 of N and is therefore N.

Notation. In the following we will stop using capital letters to denote rational numbers.

Dedekind cuts

Definition 12. A subset ξ ⊆Q+ is called a “cut” if and only if

i. it contains a rational number, but does not contain all rational numbers;

ii. every rational number in the set is smaller than every rational number not in the set;

iii. it does not contain a greatest rational number.

Exercise 5. Let ξ ⊆Q be a cut. Prove that

[x∈ ξ]� [∀y < x, y ∈ ξ]; [x � ξ]� [∀y > x, y � ξ]. (5)

Exercise 6. Let x∈Q. Then ξ 8 {y ∈QP y < x} is a cut.
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Definition 13. Two cuts ξ, η are said to be equal, denoted ξ = η, if they are equal as sets.

Theorem 14. “=” is an equivalence relation, that is

ξ = ξ; ξ = η� η = ξ; ξ = η, η = ζ� ξ = ζ. (6)

Definition 15. Let ξ, η be two cuts. Say ξ < η if and only if ξ ( η. Say ξ > η if and only if η < ξ. Say ξ 6 η

if ξ ⊆ η and ξ > η if η 6 ξ.

Exercise 7. For any ξ, η exactly one of the following is true: ξ = η; ξ > η; ξ < η.

Exercise 8. If ξ 6 η and η 6 ξ, then ξ = η.

Addition of cuts

Theorem 16. Let ξ, η be cuts. Then

ζ 8 {x + y P x∈ ξ, y ∈ η} (7)

is also a cut.

Proof. Since ξ, η are cuts they are not empty. Thus ζ is not empty. On the other hand, ξ, η are not Q,
therefore there is a, b∈Q such that a � ξ, b � η. By definition of cuts we have

∀x∈ ξ, x < a; ∀y ∈ η, y < b. (8)

This gives

∀z ∈ ζ , z < a + b. (9)

Therefore ζ is not Q.

Next we prove that if z ∈ ζ then all z ′<z also belongs to ζ. Let z ∈ ζ. Then there are x∈ ξ, y∈ η such that

z =x + y. Now for any z ′< z, we have
z
′

z
x <x� z

′

z
x∈ ξ and similarly

z
′

z
y ∈ η. Now we have

z ′

z
x+

z ′

z
y = z ′. (10)

Now we prove that if z � ζ and z ′>z, then z ′ � ζ. This is obvious through proof by contradiction and what
we have just proved.

Finally since neither ξ nor η has a greatest number, for any z ∈ ζ there is always z ′∈ ζ satisfying z ′>z. �

Definition 17. Let ξ, η be cuts. Then define their sum to be

ξ + η8 {x + y P x∈ ξ, y ∈ η}. (11)

Exercise 9. Prove ξ + η > ξ.

Exercise 10. Prove ξ + η = η + ξ.

Exercise 11. Prove (ξ + η)+ ζ = ξ + (η + ζ).

Exercise 12. Let ξ be a cut. Let a∈Q+. Then there are x∈ ξ, y � ξ such that y −x=a. (Hint: Consider x+n a for n∈N)
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Theorem 18. If ξ > η, then there is a unique ζ such that η + ζ = ξ.

Proof. Uniqueness is trivial. We prove existence. Since ξ > η, the set

A8 {x∈Q+P x∈ ξ, x � η} (12)

is not empty. Define

ζ 8 {x− y P x, y ∈A, x > y}. (13)

We first prove that it is a cut.

i. First we prove ζ is not empty.

Sincer ξ > η, we have η ( ξ and thus there is y ∈ ξ, y � η. Now as ξ is a cut, there is x∈ ξ such that
x> y. Since y is a cut, x> y � η� x� η. Thus we have two numbers x, y∈A with x> y. By definition
x− y ∈ ζ.

ii. Next we prove ζ � Q+.

Since ξ is a cut, there is z ∈ Q+ such that z � ξ. Now for any w ∈ ζ, there are x, y ∈ ξ such that
w = x− y <x <z. Thus z � ζ.

iii. Then we prove ∀x∈ ζ , y � ζ , x < y.

Assume the contrary, that is x ∈ ζ , y � ζ but x > y (x = y is ruled out by y � ζ). Since x ∈ ζ, there
are u, v ∈A such that x= u− v. Thus we have

u = x+ v > y + v. (14)

As u∈ ξ is a cut, y + v ∈ ξ. One the other hand, v � η which is a cut implies y + v � η since y + v >v.
Thus we have y + v ∈A. But now

y = (y + v)− v ∈ ζ (15)

Contradiction.

iv. Finally we prove that ζ does not have a greatest element.

Take any y ∈ ζ. By definition there are u, v ∈A such that y = u− v. Now since ξ is a cut and u∈ ξ,
there is w ∈ ξ such that w >u. Since η is a cut and u � η, w � η. Thus w∈A and we have

ζ ∋x8 w − v >u− v = y. (16)

Therefore y is not a greatest element of ζ. �

Definition 19. Denote that ζ in the above theorem as ξ − η.

Multiplication of cuts

Theorem 20. Let ξ, η be cuts. Then

ζ 8 {x y P x∈ ξ, y ∈ η} (17)

is also a cut.
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Proof. Left as exercise. �

Definition 21. The ζ above is called the product of ξ, η, denoted ξ · η (or ξ η if no confusion arises)

Exercise 13. ξ η = η ξ;

Exercise 14. (ξ η) ζ = ξ (η ζ);

Exercise 15. ξ (η + ζ) = ξ η + ξ ζ.

Exercise 16. If ξ > η, then ξ ζ > η ζ.

Theorem 22. Let 1 be the cut {x∈Q+P x < 1}. Then for any cut ξ, we have 1 · ξ = ξ ·1= ξ.

Proof. Exercise. �

Theorem 23. For any ξ, there is a unique η such that ξ η = 1.

Proof. Take

η 8 {

y

z
P y ∈ 1, z � ξ

}

. (18)

Then η is the cut we need. �

Exercise 17. Finish the above proof.

Exercise 18. ξ, η are cuts. Then there is a unique v such that ξ v = η.

Exercise 19. Define division.

Problem 2. Let x ∈ Q. Define ξx 8 {y ∈ QP y < x}. Then it is a cut. Prove that such “rational cuts” satisfy the same

arithmetic rules as rational numbers.

Problem 3. Let n ∈N. Defind ξn 8 {y ∈QP y < n}. Then it is a cut. Prove that such “integral cuts” satisfy the axioms

for natural numbers.

Problem 4. If ξ < η, then there is a rational number Z such that ξ < Z < η.

Exercise 20. For each ζ, the equation ξ28 ξ · ξ = ζ has exactly one solution.

Definition 24. Any cut which is not a rational number is called an irrational number.

Theorem 25. There exists an irrational number.

Proof. It suffices to show that the solution to ξ2 =1′ (recall that this is the successor of 1) is irrational.

Otherwise we would have ξ =
x

y
where x, y ∈ N. Take x, y such that y is smallest. We easily see that

y < x < 1′ y. Set x− y = u, then u < y. Next set y − u = t. Then

xx + t t = (y +u) (y +u)+ t t

= (y y + 1′ y u)+ (u u+ t t)

= (y y + 1′u (u + t))+ (u u+ t t)

= (y y + 1′ (uu))+ (uu +1′u t + t t)

= y y + 1′uu + y y

= 1′ y y + 1′uu

= xx +1′u u. (19)

Thus
t

u
·
t

u
=1′. (20)

But u < y. Contradiction. �

Exercise 21. Re-write the above proof using human (mathematical) language.
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