(Positive) Rational Numbers

Definition

Definition 1. Consider all ordered pairs $\left(x_{1}, x_{2}\right)$ with $x_{1}, x_{2} \in \mathbb{N}$. Define the equivalance

$$
\begin{equation*}
\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right) \Longleftrightarrow x_{1} y_{2}=x_{2} y_{1} . \tag{1}
\end{equation*}
$$

Theorem 2. ~is indeed an equivalence relation, that is

1. $\left(x_{1}, x_{2}\right) \sim\left(x_{1}, x_{2}\right)$;
2. $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right) \Longleftrightarrow\left(y_{1}, y_{2}\right) \sim\left(x_{1}, x_{2}\right)$;
3. $\left(x_{1}, x_{2}\right) \sim\left(y_{1}, y_{2}\right)$ and $\left(y_{1}, y_{2}\right) \sim\left(z_{1}, z_{2}\right)$ then $\left(x_{1}, x_{2}\right) \sim\left(z_{1}, z_{2}\right)$.

Proof. Exercise.

Exercise 1. $\left(x_{1}, x_{2}\right) \sim\left(x_{1} x, x_{2} x\right)$ for any $x \in \mathbb{N}$.

Notation. From now on we will denote $\left(x_{1}, x_{2}\right)$ by $\frac{x_{1}}{x_{2}}$, or x_{1} / x_{2}.

Definition 3. $\frac{x_{1}}{x_{2}}>\frac{y_{1}}{y_{2}}$ if and only if $x_{1} y_{2}>y_{1} x_{2} . \frac{x_{1}}{x_{2}}<\frac{y_{1}}{y_{2}}$ if and only if $\frac{y_{1}}{y_{2}}>\frac{x_{1}}{x_{2}}$.

Theorem 4. Exactly one of the following three holds:

$$
\begin{equation*}
\frac{x_{1}}{x_{2}} \sim \frac{y_{1}}{y_{2}}, \quad \frac{x_{1}}{x_{2}}>\frac{y_{1}}{y_{2}}, \quad \frac{x_{1}}{x_{2}}<\frac{y_{1}}{y_{2}} . \tag{2}
\end{equation*}
$$

Exercise 2. If $\frac{x_{1}}{x_{2}}<\frac{y_{1}}{y_{2}}$ and $\frac{y_{1}}{y_{2}}<\frac{z_{1}}{z_{2}}$ then $\frac{x_{1}}{x_{2}}<\frac{z_{1}}{z_{2}}$.

Definition 5. $\frac{x_{1}}{x_{2}} \geqslant \frac{y_{1}}{y_{2}}$ if and only if $\frac{x_{1}}{x_{2}}>\frac{y_{1}}{y_{2}}$ or $\frac{x_{1}}{x_{2}} \sim \frac{y_{1}}{y_{2}} . \frac{x_{1}}{x_{2}} \leqslant \frac{y_{1}}{y_{2}}$ if and only if $\frac{x_{1}}{x_{2}}<\frac{y_{1}}{y_{2}}$ or $\frac{x_{1}}{x_{2}} \sim \frac{y_{1}}{y_{2}}$.

Exercise 3. If $\frac{x_{1}}{x_{2}}<\frac{y_{1}}{y_{2}}$ and $\frac{y_{1}}{y_{2}} \leqslant \frac{z_{1}}{z_{2}}$ then $\frac{x_{1}}{x_{2}}<\frac{z_{1}}{z_{2}}$.
Exercise 4. If $\frac{x_{1}}{x_{2}} \geqslant \frac{y_{1}}{y_{2}}$ and $\frac{y_{1}}{y_{2}} \geqslant \frac{x_{1}}{x_{2}}$, then $\frac{x_{1}}{x_{2}}=\frac{y_{1}}{y_{2}}$.

Theorem 6. If $\frac{x_{1}}{x_{2}}<\frac{y_{1}}{y_{2}}$ then there is $\frac{z_{1}}{z_{2}}$ such that $\frac{x_{1}}{x_{2}}<\frac{z_{1}}{z_{2}}<\frac{y_{1}}{y_{2}}$.

Proof. Set

$$
\begin{equation*}
z_{1}=x_{1}+y_{1}, \quad z_{2}=x_{2}+y_{2} . \tag{3}
\end{equation*}
$$

Then it satisfies the requirement.

Problem 1. Define addition, subtraction, multiplication, division, and justify their properties, in particular those related to order.

Definition 7. We define a positive rational number X to be an equivalence class of all pairs $\frac{y_{1}}{y_{2}}$ equivalent to a fixed pair $\frac{x_{1}}{x_{2}}$. We denote the set of positive rational numbers \mathbb{Q}^{+}.
 $\frac{x_{1}}{x_{2}} \sim \frac{y_{1}}{y_{2}}$.

Remark 9. We can easily define $X<Y, X \leqslant Y, X>Y, X \geqslant Y$.

Theorem 10. Let X, Y be rational numbers. Then there is an natural number z such that $z X>Y$.

Proof. Take $\frac{x_{1}}{x_{2}} \in X, \frac{y_{1}}{y_{2}} \in Y$. We need to prove that there is $z \in \mathbb{N}$ such that $z x_{1} y_{2}>x_{2} y_{1}$. More generally, we prove that for any $x, y \in \mathbb{N}$, there is z such that $z x>y$.

Fix x, Let $\mathfrak{M}:=\{y \in \mathbb{N} \mid \exists z \in \mathbb{N}, z x>y\}$.

- $\quad 1 \in \mathfrak{M}$. Two cases.
- $\quad x=1$. Then we have $1^{\prime} \cdot x=x+x>x=1$.
- $\quad x \neq 1$. Then there is $u \in \mathbb{N}$ such that $x=u^{\prime}=1+u>1$.

Therefore $1 \in \mathfrak{M}$.

- $y \in \mathfrak{M}$ then $y^{\prime} \in \mathfrak{M}$.

Since $y \in \mathfrak{M}$ there is $z \in \mathbb{N}$ such that $z x>y$. Thus there is $u \in \mathbb{N}$ such that $z x=y+u$. Now consider $z^{\prime} x=z x+x=y+u+x$. It is easy to see that $u+x \neq 1$ thus there is $v \in \mathbb{N}$ such that $u+x=v^{\prime}$. This gives

$$
\begin{equation*}
z^{\prime} x=y+u+x=y+v^{\prime}=y^{\prime}+v>y^{\prime} . \tag{4}
\end{equation*}
$$

Thus ends the proof.
Theorem 11. Define $S:=\left\{X \in \mathbb{Q}^{+} \left\lvert\, X \sim \frac{x}{1}\right.\right.$ for some $\left.x \in \mathbb{N}\right\}$. Denote $\frac{1}{1}$ by 1. For any $X \in S$, define $X^{\prime}:=X+\frac{1}{1}$. Then S satisfies Axioms $1-5$ of \mathbb{N} and is therefore \mathbb{N}.

Notation. In the following we will stop using capital letters to denote rational numbers.

Dedekind cuts

Definition 12. A subset $\xi \subseteq \mathbb{Q}^{+}$is called a "cut" if and only if
i. it contains a rational number, but does not contain all rational numbers;
ii. every rational number in the set is smaller than every rational number not in the set;
iii. it does not contain a greatest rational number.

Exercise 5. Let $\xi \subseteq \mathbb{Q}$ be a cut. Prove that

$$
\begin{equation*}
[x \in \xi] \Longrightarrow[\forall y<x, y \in \xi] ; \quad[x \notin \xi] \Longrightarrow[\forall y>x, y \notin \xi] . \tag{5}
\end{equation*}
$$

Exercise 6. Let $x \in \mathbb{Q}$. Then $\xi:=\{y \in \mathbb{Q} \mid y<x\}$ is a cut.

Definition 13. Two cuts ξ, η are said to be equal, denoted $\xi=\eta$, if they are equal as sets.

Theorem 14. "=" is an equivalence relation, that is

$$
\begin{equation*}
\xi=\xi ; \quad \xi=\eta \Longrightarrow \eta=\xi ; \quad \xi=\eta, \eta=\zeta \Longrightarrow \xi=\zeta . \tag{6}
\end{equation*}
$$

Definition 15. Let ξ, η be two cuts. Say $\xi<\eta$ if and only if $\xi \subsetneq \eta$. Say $\xi>\eta$ if and only if $\eta<\xi$. Say $\xi \leqslant \eta$ if $\xi \subseteq \eta$ and $\xi \geqslant \eta$ if $\eta \leqslant \xi$.

Exercise 7. For any ξ, η exactly one of the following is true: $\xi=\eta ; \xi>\eta ; \xi<\eta$.
Exercise 8. If $\xi \leqslant \eta$ and $\eta \leqslant \xi$, then $\xi=\eta$.

Addition of cuts

Theorem 16. Let ξ, η be cuts. Then

$$
\begin{equation*}
\zeta:=\{x+y \mid x \in \xi, y \in \eta\} \tag{7}
\end{equation*}
$$

is also a cut.

Proof. Since ξ, η are cuts they are not empty. Thus ζ is not empty. On the other hand, ξ, η are not \mathbb{Q}, therefore there is $a, b \in \mathbb{Q}$ such that $a \notin \xi, b \notin \eta$. By definition of cuts we have

$$
\begin{equation*}
\forall x \in \xi, x<a ; \quad \forall y \in \eta, y<b \tag{8}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\forall z \in \zeta, z<a+b \tag{9}
\end{equation*}
$$

Therefore ζ is not \mathbb{Q}.
Next we prove that if $z \in \zeta$ then all $z^{\prime}<z$ also belongs to ζ. Let $z \in \zeta$. Then there are $x \in \xi, y \in \eta$ such that $z=x+y$. Now for any $z^{\prime}<z$, we have $\frac{z^{\prime}}{z} x<x \Longrightarrow \frac{z^{\prime}}{z} x \in \xi$ and similarly $\frac{z^{\prime}}{z} y \in \eta$. Now we have

$$
\begin{equation*}
\frac{z^{\prime}}{z} x+\frac{z^{\prime}}{z} y=z^{\prime} \tag{10}
\end{equation*}
$$

Now we prove that if $z \notin \zeta$ and $z^{\prime}>z$, then $z^{\prime} \notin \zeta$. This is obvious through proof by contradiction and what we have just proved.

Finally since neither ξ nor η has a greatest number, for any $z \in \zeta$ there is always $z^{\prime} \in \zeta$ satisfying $z^{\prime}>z$.

Definition 17. Let ξ, η be cuts. Then define their sum to be

$$
\begin{equation*}
\xi+\eta:=\{x+y \mid x \in \xi, y \in \eta\} \tag{11}
\end{equation*}
$$

Exercise 9. Prove $\xi+\eta>\xi$.
Exercise 10. Prove $\xi+\eta=\eta+\xi$.
Exercise 11. Prove $(\xi+\eta)+\zeta=\xi+(\eta+\zeta)$.
Exercise 12. Let ξ be a cut. Let $a \in \mathbb{Q}^{+}$. Then there are $x \in \xi, y \notin \xi$ such that $y-x=a$. (Hint: Consider $x+n a$ for $n \in \mathbb{N}$)

Theorem 18. If $\xi>\eta$, then there is a unique ζ such that $\eta+\zeta=\xi$.

Proof. Uniqueness is trivial. We prove existence. Since $\xi>\eta$, the set

$$
\begin{equation*}
A:=\left\{x \in \mathbb{Q}^{+} \mid x \in \xi, x \notin \eta\right\} \tag{12}
\end{equation*}
$$

is not empty. Define

$$
\begin{equation*}
\zeta:=\{x-y \mid x, y \in A, x>y\} \tag{13}
\end{equation*}
$$

We first prove that it is a cut.
i. First we prove ζ is not empty.

Sincer $\xi>\eta$, we have $\eta \subsetneq \xi$ and thus there is $y \in \xi, y \notin \eta$. Now as ξ is a cut, there is $x \in \xi$ such that $x>y$. Since y is a cut, $x>y \notin \eta \Longrightarrow x \notin \eta$. Thus we have two numbers $x, y \in A$ with $x>y$. By definition $x-y \in \zeta$.
ii. Next we prove $\zeta \neq \mathbb{Q}^{+}$.

Since ξ is a cut, there is $z \in \mathbb{Q}^{+}$such that $z \notin \xi$. Now for any $w \in \zeta$, there are $x, y \in \xi$ such that $w=x-y<x<z$. Thus $z \notin \zeta$.
iii. Then we prove $\forall x \in \zeta, y \notin \zeta, x<y$.

Assume the contrary, that is $x \in \zeta, y \notin \zeta$ but $x>y(x=y$ is ruled out by $y \notin \zeta)$. Since $x \in \zeta$, there are $u, v \in A$ such that $x=u-v$. Thus we have

$$
\begin{equation*}
u=x+v>y+v \tag{14}
\end{equation*}
$$

As $u \in \xi$ is a cut, $y+v \in \xi$. One the other hand, $v \notin \eta$ which is a cut implies $y+v \notin \eta$ since $y+v>v$. Thus we have $y+v \in A$. But now

$$
\begin{equation*}
y=(y+v)-v \in \zeta \tag{15}
\end{equation*}
$$

Contradiction.
iv. Finally we prove that ζ does not have a greatest element.

Take any $y \in \zeta$. By definition there are $u, v \in A$ such that $y=u-v$. Now since ξ is a cut and $u \in \xi$, there is $w \in \xi$ such that $w>u$. Since η is a cut and $u \notin \eta, w \notin \eta$. Thus $w \in A$ and we have

$$
\begin{equation*}
\zeta \ni x:=w-v>u-v=y . \tag{16}
\end{equation*}
$$

Therefore y is not a greatest element of ζ.

Definition 19. Denote that ζ in the above theorem as $\xi-\eta$.

Multiplication of cuts

Theorem 20. Let ξ, η be cuts. Then

$$
\begin{equation*}
\zeta:=\{x y \mid x \in \xi, y \in \eta\} \tag{17}
\end{equation*}
$$

is also a cut.

Proof. Left as exercise.
Definition 21. The ζ above is called the product of ξ, η, denoted $\xi \cdot \eta$ (or $\xi \eta$ if no confusion arises)
Exercise 13. $\xi \eta=\eta \xi$;
Exercise 14. $(\xi \eta) \zeta=\xi(\eta \zeta)$;
Exercise 15. $\xi(\eta+\zeta)=\xi \eta+\xi \zeta$.
Exercise 16. If $\xi>\eta$, then $\xi \zeta>\eta \zeta$.
Theorem 22. Let $\mathbf{1}$ be the cut $\left\{x \in \mathbb{Q}^{+} \mid x<1\right\}$. Then for any cut ξ, we have $\mathbf{1} \cdot \xi=\xi \cdot \mathbf{1}=\xi$.
Proof. Exercise.
Theorem 23. For any ξ, there is a unique η such that $\xi \eta=\mathbf{1}$.
Proof. Take

$$
\begin{equation*}
\eta:=\left\{\left.\frac{y}{z} \right\rvert\, y \in \mathbf{1}, z \notin \xi\right\} . \tag{18}
\end{equation*}
$$

Then η is the cut we need.
Exercise 17. Finish the above proof.
Exercise 18. ξ, η are cuts. Then there is a unique v such that $\xi v=\eta$.
Exercise 19. Define division.
Problem 2. Let $x \in \mathbb{Q}$. Define $\xi_{x}:=\{y \in \mathbb{Q} \mid y<x\}$. Then it is a cut. Prove that such "rational cuts" satisfy the same arithmetic rules as rational numbers.

Problem 3. Let $n \in \mathbb{N}$. Defind $\xi_{n}:=\{y \in \mathbb{Q} \mid y<n\}$. Then it is a cut. Prove that such "integral cuts" satisfy the axioms for natural numbers.

Problem 4. If $\xi<\eta$, then there is a rational number Z such that $\xi<Z<\eta$.
Exercise 20. For each ζ, the equation $\xi^{2}:=\xi \cdot \xi=\zeta$ has exactly one solution.
Definition 24. Any cut which is not a rational number is called an irrational number.
Theorem 25. There exists an irrational number.
Proof. It suffices to show that the solution to $\xi^{2}=1^{\prime}$ (recall that this is the successor of 1) is irrational.
Otherwise we would have $\xi=\frac{x}{y}$ where $x, y \in \mathbb{N}$. Take x, y such that y is smallest. We easily see that $y<x<1^{\prime} y$. Set $x-y=u$, then $u<y$. Next set $y-u=t$. Then

$$
\begin{align*}
x x+t t & =(y+u)(y+u)+t t \\
& =\left(y y+1^{\prime} y u\right)+(u u+t t) \\
& =\left(y y+1^{\prime} u(u+t)\right)+(u u+t t) \\
& =\left(y y+1^{\prime}(u u)\right)+\left(u u+1^{\prime} u t+t t\right) \\
& =y y+1^{\prime} u u+y y \\
& =1^{\prime} y y+1^{\prime} u u \\
& =x x+1^{\prime} u u . \tag{19}
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{t}{u} \cdot \frac{t}{u}=1^{\prime} \tag{20}
\end{equation*}
$$

But $u<y$. Contradiction.

Exercise 21. Re-write the above proof using human (mathematical) language.

