(Positive) Rational Numbers

Definition

Definition 1. Consider all ordered pairs (x_1, x_2) with $x_1, x_2 \in \mathbb{N}$. Define the equivalance

$$(x_1, x_2) \sim (y_1, y_2) \Longleftrightarrow x_1 y_2 = x_2 y_1. \tag{1}$$

Theorem 2. \sim is indeed an equivalence relation, that is

1. $(x_1, x_2) \sim (x_1, x_2);$ 2. $(x_1, x_2) \sim (y_1, y_2) \iff (y_1, y_2) \sim (x_1, x_2);$ 3. $(x_1, x_2) \sim (y_1, y_2)$ and $(y_1, y_2) \sim (z_1, z_2)$ then $(x_1, x_2) \sim (z_1, z_2).$

Proof. Exercise.

Exercise 1. $(x_1, x_2) \sim (x_1 x, x_2 x)$ for any $x \in \mathbb{N}$.

Notation. From now on we will denote (x_1, x_2) by $\frac{x_1}{x_2}$, or x_1/x_2 .

Definition 3. $\frac{x_1}{x_2} > \frac{y_1}{y_2}$ if and only if $x_1 y_2 > y_1 x_2$. $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ if and only if $\frac{y_1}{y_2} > \frac{x_1}{x_2}$.

Theorem 4. Exactly one of the following three holds:

$$\frac{x_1}{x_2} \sim \frac{y_1}{y_2}, \qquad \frac{x_1}{x_2} > \frac{y_1}{y_2}, \qquad \frac{x_1}{x_2} < \frac{y_1}{y_2}.$$
(2)

Exercise 2. If $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ and $\frac{y_1}{y_2} < \frac{z_1}{z_2}$ then $\frac{x_1}{x_2} < \frac{z_1}{z_2}$.

Definition 5. $\frac{x_1}{x_2} \ge \frac{y_1}{y_2}$ if and only if $\frac{x_1}{x_2} > \frac{y_1}{y_2}$ or $\frac{x_1}{x_2} \sim \frac{y_1}{y_2}$. $\frac{x_1}{x_2} \le \frac{y_1}{y_2}$ if and only if $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ or $\frac{x_1}{x_2} \sim \frac{y_1}{y_2}$.

Exercise 3. If $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ and $\frac{y_1}{y_2} \leq \frac{z_1}{z_2}$ then $\frac{x_1}{x_2} < \frac{z_1}{z_2}$. **Exercise 4.** If $\frac{x_1}{x_2} \geq \frac{y_1}{y_2}$ and $\frac{y_1}{y_2} \geq \frac{x_1}{x_2}$, then $\frac{x_1}{x_2} = \frac{y_1}{y_2}$.

Theorem 6. If $\frac{x_1}{x_2} < \frac{y_1}{y_2}$ then there is $\frac{z_1}{z_2}$ such that $\frac{x_1}{x_2} < \frac{z_1}{z_2} < \frac{y_1}{y_2}$.

Proof. Set

$$z_1 = x_1 + y_1, \qquad z_2 = x_2 + y_2.$$
 (3)

Then it satisfies the requirement.

Problem 1. Define addition, subtraction, multiplication, division, and justify their properties, in particular those related to order.

Definition 7. We define a positive rational number X to be an equivalence class of all pairs $\frac{y_1}{y_2}$ equivalent to a fixed pair $\frac{x_1}{x_2}$. We denote the set of positive rational numbers \mathbb{Q}^+ .

Definition 8. Two rational numbers X, Y are equal, denoted X = Y, if there are $\frac{x_1}{x_2} \in X$ and $\frac{y_1}{y_2} \in Y$ such that $\frac{x_1}{x_2} \sim \frac{y_1}{y_2}$.

Remark 9. We can easily define $X < Y, X \leq Y, X > Y, X \geq Y$.

Theorem 10. Let X, Y be rational numbers. Then there is an natural number z such that zX > Y.

Proof. Take $\frac{x_1}{x_2} \in X$, $\frac{y_1}{y_2} \in Y$. We need to prove that there is $z \in \mathbb{N}$ such that $z x_1 y_2 > x_2 y_1$. More generally, we prove that for any $x, y \in \mathbb{N}$, there is z such that z x > y.

Fix x, Let $\mathfrak{M} := \{ y \in \mathbb{N} | \exists z \in \mathbb{N}, z x > y \}.$

- $1 \in \mathfrak{M}$. Two cases.
 - \circ x=1. Then we have $1' \cdot x = x + x > x = 1$.
 - $x \neq 1$. Then there is $u \in \mathbb{N}$ such that x = u' = 1 + u > 1.

Therefore $1 \in \mathfrak{M}$.

• $y \in \mathfrak{M}$ then $y' \in \mathfrak{M}$.

Since $y \in \mathfrak{M}$ there is $z \in \mathbb{N}$ such that zx > y. Thus there is $u \in \mathbb{N}$ such that zx = y + u. Now consider z'x = zx + x = y + u + x. It is easy to see that $u + x \neq 1$ thus there is $v \in \mathbb{N}$ such that u + x = v'. This gives

$$z'x = y + u + x = y + v' = y' + v > y'.$$
(4)

Thus ends the proof.

Theorem 11. Define $S := \{X \in \mathbb{Q}^+ | X \sim \frac{x}{1} \text{ for some } x \in \mathbb{N}\}$. Denote $\frac{1}{1}$ by 1. For any $X \in S$, define $X' := X + \frac{1}{1}$. Then S satisfies Axioms 1 – 5 of \mathbb{N} and is therefore \mathbb{N} .

Notation. In the following we will stop using capital letters to denote rational numbers.

Dedekind cuts

Definition 12. A subset $\xi \subseteq \mathbb{Q}^+$ is called a "cut" if and only if

- *i. it contains a rational number, but does not contain all rational numbers;*
- ii. every rational number in the set is smaller than every rational number not in the set;
- *iii.* it does not contain a greatest rational number.

Exercise 5. Let $\xi \subseteq \mathbb{Q}$ be a cut. Prove that

$$[x \in \xi] \Longrightarrow [\forall y < x, y \in \xi]; \qquad [x \notin \xi] \Longrightarrow [\forall y > x, y \notin \xi].$$

$$(5)$$

Exercise 6. Let $x \in \mathbb{Q}$. Then $\xi := \{y \in \mathbb{Q} | y < x\}$ is a cut.

Definition 13. Two cuts ξ , η are said to be equal, denoted $\xi = \eta$, if they are equal as sets.

Theorem 14. "=" is an equivalence relation, that is

$$\xi = \xi; \qquad \xi = \eta \Longrightarrow \eta = \xi; \qquad \xi = \eta, \eta = \zeta \Longrightarrow \xi = \zeta. \tag{6}$$

Definition 15. Let ξ , η be two cuts. Say $\xi < \eta$ if and only if $\xi \subseteq \eta$. Say $\xi > \eta$ if and only if $\eta < \xi$. Say $\xi \leq \eta$ if $\xi \subseteq \eta$ and $\xi \ge \eta$ if $\eta \leq \xi$.

Exercise 7. For any ξ , η exactly one of the following is true: $\xi = \eta$; $\xi > \eta$; $\xi < \eta$.

Exercise 8. If $\xi \leq \eta$ and $\eta \leq \xi$, then $\xi = \eta$.

Addition of cuts

Theorem 16. Let ξ, η be cuts. Then

$$\zeta := \{ x + y | x \in \xi, y \in \eta \}$$

$$\tag{7}$$

is also a cut.

Proof. Since ξ , η are cuts they are not empty. Thus ζ is not empty. On the other hand, ξ , η are not \mathbb{Q} , therefore there is $a, b \in \mathbb{Q}$ such that $a \notin \xi, b \notin \eta$. By definition of cuts we have

$$\forall x \in \xi, x < a; \qquad \forall y \in \eta, y < b.$$
(8)

This gives

$$\forall z \in \zeta, z < a + b. \tag{9}$$

Therefore ζ is not \mathbb{Q} .

Next we prove that if $z \in \zeta$ then all z' < z also belongs to ζ . Let $z \in \zeta$. Then there are $x \in \xi, y \in \eta$ such that z = x + y. Now for any z' < z, we have $\frac{z'}{z}x < x \Longrightarrow \frac{z'}{z}x \in \xi$ and similarly $\frac{z'}{z}y \in \eta$. Now we have

$$\frac{z'}{z}x + \frac{z'}{z}y = z'.$$
(10)

Now we prove that if $z \notin \zeta$ and z' > z, then $z' \notin \zeta$. This is obvious through proof by contradiction and what we have just proved.

Finally since neither ξ nor η has a greatest number, for any $z \in \zeta$ there is always $z' \in \zeta$ satisfying z' > z. \Box

Definition 17. Let ξ, η be cuts. Then define their sum to be

$$\xi + \eta := \{ x + y | x \in \xi, y \in \eta \}.$$
(11)

Exercise 9. Prove $\xi + \eta > \xi$.

Exercise 10. Prove $\xi + \eta = \eta + \xi$.

Exercise 11. Prove $(\xi + \eta) + \zeta = \xi + (\eta + \zeta)$.

Exercise 12. Let ξ be a cut. Let $a \in \mathbb{Q}^+$. Then there are $x \in \xi$, $y \notin \xi$ such that y - x = a. (Hint: Consider x + n a for $n \in \mathbb{N}$)

Theorem 18. If $\xi > \eta$, then there is a unique ζ such that $\eta + \zeta = \xi$.

Proof. Uniqueness is trivial. We prove existence. Since $\xi > \eta$, the set

$$A := \{ x \in \mathbb{Q}^+ | x \in \xi, x \notin \eta \}$$

$$\tag{12}$$

is not empty. Define

$$\zeta := \{ x - y | x, y \in A, x > y \}.$$
(13)

We first prove that it is a cut.

i. First we prove ζ is not empty.

Since $\xi > \eta$, we have $\eta \subsetneq \xi$ and thus there is $y \in \xi, y \notin \eta$. Now as ξ is a cut, there is $x \in \xi$ such that x > y. Since y is a cut, $x > y \notin \eta \Longrightarrow x \notin \eta$. Thus we have two numbers $x, y \in A$ with x > y. By definition $x - y \in \zeta$.

ii. Next we prove $\zeta \neq \mathbb{Q}^+$.

Since ξ is a cut, there is $z \in \mathbb{Q}^+$ such that $z \notin \xi$. Now for any $w \in \zeta$, there are $x, y \in \xi$ such that w = x - y < x < z. Thus $z \notin \zeta$.

iii. Then we prove $\forall x \in \zeta, y \notin \zeta, x < y$.

Assume the contrary, that is $x \in \zeta$, $y \notin \zeta$ but x > y (x = y is ruled out by $y \notin \zeta$). Since $x \in \zeta$, there are $u, v \in A$ such that x = u - v. Thus we have

$$u = x + v > y + v. \tag{14}$$

As $u \in \xi$ is a cut, $y + v \in \xi$. One the other hand, $v \notin \eta$ which is a cut implies $y + v \notin \eta$ since y + v > v. Thus we have $y + v \in A$. But now

$$y = (y+v) - v \in \zeta \tag{15}$$

Contradiction.

iv. Finally we prove that ζ does not have a greatest element.

Take any $y \in \zeta$. By definition there are $u, v \in A$ such that y = u - v. Now since ξ is a cut and $u \in \xi$, there is $w \in \xi$ such that w > u. Since η is a cut and $u \notin \eta$, $w \notin \eta$. Thus $w \in A$ and we have

$$\zeta \ni x := w - v > u - v = y. \tag{16}$$

Therefore y is not a greatest element of ζ .

Definition 19. Denote that ζ in the above theorem as $\xi - \eta$.

Multiplication of cuts

Theorem 20. Let ξ , η be cuts. Then

$$\zeta := \{ x \, y | \, x \in \xi, \, y \in \eta \} \tag{17}$$

is also a cut.

Proof. Left as exercise.

Definition 21. The ζ above is called the product of ξ , η , denoted $\xi \cdot \eta$ (or $\xi \eta$ if no confusion arises)

Exercise 13. $\xi \eta = \eta \xi;$ **Exercise 14.** $(\xi \eta) \zeta = \xi (\eta \zeta);$ **Exercise 15.** $\xi(\eta + \zeta) = \xi \eta + \xi \zeta$. **Exercise 16.** If $\xi > \eta$, then $\xi \zeta > \eta \zeta$.

Theorem 22. Let **1** be the cut $\{x \in \mathbb{Q}^+ | x < 1\}$. Then for any cut ξ , we have $\mathbf{1} \cdot \xi = \xi \cdot \mathbf{1} = \xi$.

Proof. Exercise.

Theorem 23. For any ξ , there is a unique η such that $\xi \eta = 1$.

Proof. Take

$$\eta := \left\{ \frac{y}{z} | \ y \in \mathbf{1}, z \notin \xi \right\}.$$
(18)

Then η is the cut we need.

Exercise 17. Finish the above proof.

Exercise 18. ξ , η are cuts. Then there is a unique v such that $\xi v = \eta$.

Exercise 19. Define division.

Problem 2. Let $x \in \mathbb{Q}$. Define $\xi_x := \{y \in \mathbb{Q} | y < x\}$. Then it is a cut. Prove that such "rational cuts" satisfy the same arithmetic rules as rational numbers.

Problem 3. Let $n \in \mathbb{N}$. Defind $\xi_n := \{y \in \mathbb{Q} | y < n\}$. Then it is a cut. Prove that such "integral cuts" satisfy the axioms for natural numbers.

Problem 4. If $\xi < \eta$, then there is a rational number Z such that $\xi < Z < \eta$.

Exercise 20. For each ζ , the equation $\xi^2 := \xi \cdot \xi = \zeta$ has exactly one solution.

Definition 24. Any cut which is not a rational number is called an irrational number.

Theorem 25. There exists an irrational number.

Proof. It suffices to show that the solution to $\xi^2 = 1'$ (recall that this is the successor of 1) is irrational. Otherwise we would have $\xi = \frac{x}{y}$ where $x, y \in \mathbb{N}$. Take x, y such that y is smallest. We easily see that y < x < 1'y. Set x - y = u, then u < y. Next set y - u = t. Then

$$\begin{aligned} x x + tt &= (y + u) (y + u) + tt \\ &= (y y + 1' y u) + (u u + tt) \\ &= (y y + 1' u (u + t)) + (u u + tt) \\ &= (y y + 1' (u u)) + (u u + 1' u t + tt) \\ &= y y + 1' u u + y y \\ &= 1' y y + 1' u u \\ &= x x + 1' u u. \end{aligned}$$
(19)

Thus

$$\frac{t}{u} \cdot \frac{t}{u} = 1'. \tag{20}$$

But u < y. Contradiction.

Exercise 21. Re-write the above proof using human (mathematical) language.