(Positive) Rational Numbers
Definition
Definition 1. Consider all ordered pairs (x1,x2) with x1, 22 € N. Define the equivalance

(1, 22) ~ (Y1, Y2) <= X1 Y2 = T2 Y1.

Theorem 2. ~ is indeed an equivalence relation, that is

1. (z1,x2) ~ (21, T2);

2. (z1,22) ~ (Y1, y2) <= (Y1, y2) ~ (@1, 72);

3. (x1,22) ~ (y1,y2) and (y1,y2) ~ (21, 22) then (x1,22) ~ (21, 22).
Proof. Exercise.

Exercise 1. (z1,x2) ~ (z1x,z22) for any = € N.

Notation. From now on we will denote (x1,x2) by i—;, or x1/xs.

Definition 3. % > Z—l if and only if 1Yo > Y1 9. =< % if and only if % >4,
2 Y2 Y2 Y2
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Theorem 4. FEzxactly one of the following three holds:

T x x
Ty I n Y
T2 Y2 T2 Y2 T2 Y2

Exercise 2. If = < = and = < = then = < —.

Definition 5. 2 > % if and only i —>—0r2~£. ﬂi and only i —<— r I
2 7 Yo f yif Y2 Tz Y2 w2 Y f yif Y2 z
Exercise 3. Ifﬂ< EE and y1 then LSS

xo xo 2o
Exercise 4. If 21 >¥ and Y2 > 2L then & =¥
x Y2 y2 T2 Y2

Theorem 6. If i—; un - then there is z—; such that —< <
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Proof. Set
21 =121+ Y1, Z2 =122+ Yo.

Then it satisfies the requirement.

Y1
~—,

Y2

Problem 1. Define addition, subtraction, multiplication, division, and justify their properties, in particular those related

to order.



Definition 7. We define a positive rational number X to be an equivalence class of all pairs % equivalent

to a fized pair i—; We denote the set of positive rational numbers Q.

Definition 8. Two rational numbers X ,Y are equal, denoted X =Y, if there are z—;e X and % €Y such that
1 Y1
z2 Y2’

Remark 9. We can easily define X <Y, X <Y, X>Y X>Y.

Theorem 10. Let X,Y be rational numbers. Then there is an natural number z such that z X >Y.

Proof. Take i—; eX, % €Y. We need to prove that there is z € N such that zz; yo > x2 y1. More generally,
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we prove that for anyl:v, y €N, there is z such that zz > y.
Fix z, Let M:={yeN|FzeN,zz > y}.

o 1e&M. Two cases.
o x=1. Then we have 1" -z =x+z>z=1.
o x#1. Then there is v € N such that z =v'=14u>1.
Therefore 1 € 9.

o yeM then y' M.
Since y € M there is z € N such that zz > y. Thus there is © € N such that zx =y + u. Now consider
Z’r=zr+x=y+u+x. Itiseasy to see that u+x # 1 thus there is v € N such that v+ x=v’. This
gives
Zr=ytutz=y+v' =y +v>y (4)
Thus ends the proof. O

Theorem 11. Define S := {X eRT X ~ % for some x € IN}. Denote % by 1. For any X € S, define
X’::X—i—%. Then S satisfies Azioms 1 — 5 of N and is therefore IN.

Notation. In the following we will stop using capital letters to denote rational numbers.
Dedekind cuts

Definition 12. A subset £ C Q™" is called a “cut” if and only if
1. it contains a rational number, but does not contain all rational numbers;
1. every rational number in the set is smaller than every rational number not in the set;

1. 1t does mot contain a greatest rational number.

Exercise 5. Let £ C Q be a cut. Prove that
[zegl=[Vy<z,yeg; [z¢ = [Vy>z,y¢ &) (5)

Exercise 6. Let z € Q. Then £:={yeQy <z} is a cut.



Definition 13. Two cuts &, n are said to be equal, denoted £ =n, if they are equal as sets.

Theorem 14. “="1is an equivalence relation, that is
£=& E=n=n=& === §{=C (6)

Definition 15. Let &, n be two cuts. Say & <n if and only if € Cn. Say € >n if and only if n<&. Say E<n
fECn and E>n if n< &

Exercise 7. For any &£, n exactly one of the following is true: E=n; £ >n; £ <.

Exercise 8. If £ <n and n <&, then £=1.

Addition of cuts

Theorem 16. Let &, m be cuts. Then
CG={z+ylzel yen} (7)
s also a cut.

Proof. Since &, n are cuts they are not empty. Thus ¢ is not empty. On the other hand, £, n are not @,
therefore there is a, b€ Q such that a ¢ £,b¢ 7. By definition of cuts we have

Veeé, x<a; Yyen,y<b. (8)
This gives
Vze(,z<a+b. (9)

Therefore ¢ is not Q.
Next we prove that if z € ¢ then all 2’ < z also belongs to (. Let z € . Then there are x € £, y € 5 such that

z=x+y. Now for any 2’ < z, we have =1 <x = < 2 € ¢ and similarly = y € . Now we have
’ z z z

ZI /!

il Zy=2z. 10
Cotly= (10)

Now we prove that if z ¢ ¢ and 2’ > z, then 2z’ ¢ (. This is obvious through proof by contradiction and what
we have just proved.

Finally since neither & nor n has a greatest number, for any z € { there is always 2z’ € ( satisfying 2z’ >z. O
Definition 17. Let £, n be cuts. Then define their sum to be
§+ni={zt+ylzel,yen}. (11)

Exercise 9. Prove £+ 1> ¢.
Exercise 10. Prove £+ n=n+¢.
Exercise 11. Prove (§+ 1)+ (=& (n+ Q).

Exercise 12. Let ¢ be a cut. Let a € Q. Then there are z € £,y ¢ € such that y — x=a. (Hint: Consider = +n a for n € N)



Theorem 18. If £ >, then there is a unique ¢ such that n+ (=¢.

Proof. Uniqueness is trivial. We prove existence. Since £ > 7, the set

A={reQfre x¢n} (12)

is not empty. Define

Ci={x—ylz,ye A,z >y} (13)

We first prove that it is a cut.

i.

ii.

iii.

1v.

First we prove ( is not empty.

Sincer £ >, we have n C € and thus there is y € £, y ¢ 1. Now as £ is a cut, there is « € £ such that
x>y. Since y is a cut, x >y ¢ n=—x ¢ 1. Thus we have two numbers x,y € A with x > y. By definition

r—yEC(.
Next we prove ( #+ Q™.

Since ¢ is a cut, there is z € QT such that z ¢ £. Now for any w € ¢, there are z, y € £ such that
w=z—y<z<z Thus z¢ (.

Then we prove Ve € (,y ¢ ¢,z < y.

Assume the contrary, that is x € (,y ¢ ¢ but z >y (z =y is ruled out by y ¢ (). Since z € (, there
are u,v € A such that z =u —v. Thus we have

u=zx+v>y+u. (14)

Asuefisacut, y+wvef. One the other hand, v ¢ n which is a cut implies y+ v ¢ 71 since y+v > wv.
Thus we have y+v € A. But now

y=(y+v)—ve( (15)

Contradiction.

Finally we prove that ¢ does not have a greatest element.

Take any y € (. By definition there are u,v € A such that y=u —v. Now since & is a cut and u € &,
there is w € £ such that w >w. Since 71 is a cut and u¢ 7, w¢ n. Thus w € A and we have

(x:=w—v>u—v=y. (16)

Therefore y is not a greatest element of (. O

Definition 19. Denote that ¢ in the above theorem as & — 1.

Multiplication of cuts

Theorem 20. Let &, m be cuts. Then

C:={zylze§,yen} (17)

1s also a cut.



Proof. Left as exercise. O
Definition 21. The ¢ above is called the product of £, n, denoted &-n (or £n if no confusion arises)

Exercise 13. {n=n¢;

Exercise 14. (§71) (=£(n();
Exercise 15. £ (n+¢)=&n+&C.
Exercise 16. If £ > 7, then £¢(>n(.

Theorem 22. Let 1 be the cut {x € Q| x<1}. Then for any cut &, we have 1-§=¢-1=¢.
Proof. Exercise. O
Theorem 23. For any &, there is a unique n such that én=1.

Proof. Take
n::{%|y€1,z¢§}. (18)

Then n is the cut we need. O

Exercise 17. Finish the above proof.
Exercise 18. £, n are cuts. Then there is a unique v such that {v=n.
Exercise 19. Define division.

Problem 2. Let € Q. Define &, := {y € Q| y < z}. Then it is a cut. Prove that such “rational cuts” satisfy the same
arithmetic rules as rational numbers.

Problem 3. Let n € N. Defind &, :={y € Q| y <n}. Then it is a cut. Prove that such “integral cuts” satisfy the axioms
for natural numbers.

Problem 4. If £ <n, then there is a rational number Z such that £ <Z < n.

Exercise 20. For each (, the equation £2:= ¢ - £ = ¢ has exactly one solution.
Definition 24. Any cut which is not a rational number is called an irrational number.
Theorem 25. There exists an irrational number.

Proof. It suffices to show that the solution to £€2 =1’ (recall that this is the successor of 1) is irrational.
Otherwise we would have £ = % where x, y € N. Take z, y such that y is smallest. We easily see that
y<ax<l'y. Set x — y=u, then u < y. Next set y —u=t. Then

rr+itt = (y+u)(y+u)+tt
= (yy+1yu)+(uu+tt)
(yy+1"u(u+t)+ (uu+tt)
= (yy+ 1 (vw)+ (vu+1'ut+tt)
= yy+luu+yy
= V'yy+1'uu
= zz+1uu. (19)

Thus
t_
o 1’. (20)

e |

But u < y. Contradiction. O

Exercise 21. Re-write the above proof using human (mathematical) language.



