Natural Numbers

Notation. We will use \mathbb{N} to denote natural numbers.¹

Definition of ${\mathbb N}$

- Axiom 1. $1 \in \mathbb{N}$;
- Axiom 2. For each $x \in \mathbb{N}$ there exists exactly one $x' \in \mathbb{N}$, called the "successor" of x;
- Axiom 3. $\forall x \in \mathbb{N}, x' \neq 1;$
- Axiom 4. If x' = y' then x = y;
- Axiom 5. (Axiom of Induction): Let $\mathfrak{M} \subseteq \mathbb{N}$ satisfy
 - 1. $1 \in \mathfrak{M};$
 - 2. If $x \in \mathfrak{M}$ then $x' \in \mathfrak{M}$.

Then $\mathfrak{M} = \mathbb{N}$.

Remark 1. John von Neumann suggested the following construction of \mathbb{N} :

Define

$$1 := \{\emptyset\}, \qquad 2 := 1 \cup \{1\}, \qquad 3 := 2 \cup \{2\}, \dots$$
(1)

Note that this does not establish the existence of \mathbb{N} . The existence of \mathbb{N} is in fact an axiom:

We accept that there is at least one set S satisfying

i.
$$1 \in S$$
;
ii. $x \in S \Longrightarrow x \cup \{x\} \in S$.

Now let W be a collection of all such sets. Define $\mathbb{N} := \bigcap_{S \in W} S$.

Theorem 2. $x' \neq x$.

Proof. Let $\mathfrak{M} := \{x \in \mathbb{N} | x' \neq x\}$. Then by Axiom 3, $1 \in \mathfrak{M}$. Now we show that $x \in \mathfrak{M} \Longrightarrow x' \in \mathfrak{M}$. Once this is done the conclusion follows from Axiom 5.

Assume there is $x \in \mathfrak{M}$ such that $x' \notin \mathfrak{M}$. That is $x' \neq x$, but (x')' = x'. However by Axiom 4 we have $(x')' = x' \Longrightarrow x' = x$. Contradiction.

Lemma 3. If $x \neq y$ then $x' \neq y'$.

Exercise 1. Prove Lemma 3.

^{1.} There is much debate whether 0 should be included in natural numbers. My personal opinion is that 0 is definitely not as "natural" as $1, 2, 3, \ldots$ and therefore shouldn't be included. Thus in this note 0 does not belong to \mathbb{N} .

Lemma 4. If $x \neq 1$, then there is exactly one u such that u' = x.

Exercise 2. Prove Lemma 4 (Hint: Let $\mathfrak{M} = \{1\} \cup \{\text{all numbers with this property}\}$.

Addition

We need to define x + y for every pair of $x, y \in \mathbb{N}$.

- First define this for y = 1: x + 1 := x';
- Now assume that this is done for y. We define x + y' := (x + y)'. This way addition is defined for each ordered pair (x, y).

Theorem 5. The way of defining x + y such that x + 1 = x', x + y' = (x + y)' is unique.

Proof. Let $+, \oplus$ be two ways of defining addition. Fix an arbitrary $x \in \mathbb{N}$, let $\mathfrak{M} = \{y \in \mathbb{N} | x + y = x \oplus y\}$. Then $1 \in \mathfrak{M}$. Now for every $y \in \mathfrak{M}$, we have

$$x + y' = (x + y)' = (x \oplus y)' = x \oplus y'.$$
(2)

By Axiom of induction $\mathfrak{M} = \mathbb{N}$. Thus such definition, if it exists, is unique.

Similarly we can prove that such definition indeed exists. Left as exercise. \Box

Exercise 3. Use induction to prove that x + y can be defined for all $x, y \in \mathbb{N}$.

Theorem 6. (x+y) + z = x + (y+z).

Proof. For any $x, y \in \mathbb{N}$, let $\mathfrak{M} := \{z \in \mathbb{N} | (x+y) + z = x + (y+z)\}$. Then we check

$$(x+y) + 1 = (x+y)' = x + y' = x + (y+1)$$
(3)

so $1 \in \mathfrak{M}$.

For every $z \in \mathfrak{M}$, we have

$$(x+y) + z' = [(x+y) + z]' = [x + (y+z)]' = x + (y+z)' = x + (y+z').$$
(4)

Thus ends the proof.

Theorem 7. x + y = y + x.

Proof. Fix any $y \in \mathbb{N}$. First we prove 1 + y = y + 1. Let $\mathfrak{M} := \{y \in \mathbb{N} | 1 + y = y + 1\}$. We have 1 + 1 = 1 + 1 so $1 \in \mathfrak{M}$. Now if $y \in \mathfrak{M}$, we check

$$1 + y' = 1 + (y + 1) = (1 + y) + 1 = (y + 1) + 1 = y' + 1$$
(5)

so $y' \in \mathfrak{M}$ too. Consequently 1 + y = y + 1 for all $y \in \mathbb{N}$.

Now we prove that if x + y = y + x, then x' + y = y + x'. We have

$$x' + y = (x+1) + y = x + (1+y) = x + (y+1) = (x+y) + 1 = (y+x) + 1 = y + (x+1) = y + x'.$$
 (6)

Thus ends the proof.

Lemma 8. If $y \neq z$ then $x + y \neq x + z$. Or equivalently $x + y = x + z \Longrightarrow y = z$.

Exercise 4. Prove Lemma 8.

Ordering

Theorem 9. For any $x, y \in \mathbb{N}$, exactly one of the following is true:

- *i.* x = y;
- *ii.* There is exactly one $u \in \mathbb{N}$ such that x = y + u;
- *iii.* There is exactly one $v \in \mathbb{N}$ such that y = x + v.

Proof.

First we prove that for any $x, y \in \mathbb{N}$, at most one of the three holds. Three cases:

- x = y and x = y + u hold. Then we have $y = y + u \Longrightarrow y + 1 = y' = (y + u)' = y + u'$ which by Lemma 8 gives 1 = u' which contradicts Axiom 3.
- x = y and y = x + v hold. Similar to the above case.
- x = y + u and y = x + v hold. Then we have x + v = (y + u) + v = y + (u + v) which by similar argument as above contradicts Axiom 3.

Fix an arbitrary $x \in \mathbb{N}$. We prove that for any $y \in \mathbb{N}$, at least one of the above holds.

Let $\mathfrak{M} := \{y \in \mathbb{N} | \text{ exactly one of } x = y, x = y + u, y = x + v\}$ holds.

- $1 \in \mathfrak{M}$. There are two cases.
 - \circ x=1. Then x=y.
 - $x \neq 1$. Then by Lemma 4 there is $u \in \mathbb{N}$ such that x = u'. Thus x = u + 1 = 1 + u = y + u.
- If $y \in \mathfrak{M}$ then $y' \in \mathfrak{M}$. There are three cases.
 - x = y. Then y' = y + 1 = x + 1 and therefore $y' \in \mathfrak{M}$.
 - \circ x = y + u. Then there are two cases.
 - u = 1. Then x = y'.
 - $u \neq 1$. Then by Lemma 4 there is $v \in \mathbb{N}$ such that u = v'. This gives

$$x = y + u = y + v' = (y + v)' = y' + v.$$
(7)

So $y' \in \mathfrak{M}$.

 $\circ y = x + v$. Then

$$y' = (x+v)' = x+v'$$
(8)

and $y' \in \mathfrak{M}$.

Thus $y' \in \mathfrak{M}$ and the proof ends.

Definition 10. (Ordering) If x = y + u, denote x > y; If y = x + v, denote x < y.

Theorem 11. For any given x, y, we have exactly one of the following: x = y, x < y, x > y.

Exercise 5. If x < y then y > x.

Definition 12. Define $x \ge y$ as x > y or x = y. Define $x \le y$ as x < y or x = y.

Exercise 6. If $x \leq y$ then $y \geq x$; If $x \geq y$ then $y \leq x$.

Exercise 7. If $x \leq y$ and $y \leq x$ then x = y.

Exercise 8. If x < y, y < z then x < z; If $x \leq y, y < z$ then x < z; If $x \leq y, y \leq z$ then x < z; If $x \leq y, y \leq z$ then x < z; If $x \leq y, y \leq z$ then $x \leq z$.

Exercise 9. If x > y, z > u then x + z > y + u.

Exercise 10. If x < y, then $x + 1 \leq y$.

Theorem 13. Let $A \subseteq \mathbb{N}$ be nonempty. Then there is a unique least element, that is $a \in A$ such that for all $b \in A$, $a \leq b$.

Proof.

- If $1 \in A$ then 1 is the least element, since for all $x \in \mathbb{N}$, $x \neq 1$, there is u such that x = u' = 1 + u > 1.
- If $1 \notin A$, let $\mathfrak{M} := \{x \in \mathbb{N} | \forall b \in A, x \leq b\}$. Now if for every $x \in \mathfrak{M}$ we have $x + 1 \in \mathfrak{M}$, by the Axiom of induction $\mathfrak{M} = \mathbb{N}$ and $A = \emptyset$. Contradiction. Thus there is $a \in \mathfrak{M}$ satisfying:

$$a \in \mathfrak{M}, a+1 \notin \mathfrak{M}. \tag{9}$$

We claim $a \in A$. Since otherwise, by definition of \leq , for every $b \in A$ there must hold a < b which implies $a + 1 \leq b$. Consequently $a + 1 \in \mathfrak{M}$. Contradiction.

Now $a \in \mathfrak{M} \Longrightarrow \forall b \in A, a \leq b$ so a is a least element. Uniqueness follows from $a \leq b, b \leq a \Longrightarrow a = b$. \Box

Multiplication

Theorem 14. To every pair of $x, y \in \mathbb{N}$, we can assign in exactly one way a $z \in \mathbb{N}$, denoted $x \cdot y$ (or x y when no confusion may arise), such that

- i. $x \cdot 1 = x$ for every x;
- ii. $x \cdot y' = x \cdot y + x$ for every x and every y.

Proof. Left as exercise.

Exercise 11. $x \cdot y = y \cdot x$.

Exercise 12. x(y+z) = xy + xz.

Exercise 13. (x y) z = x (y z).

Exercise 14. If x > y(=y, <y) then $x \ge y \ge (=y \ge x, <y \ge)$. If $x \ge y \ge (=y \ge x, <y \ge)$ then x > y(=y, <y).

Exercise 15. If x > y, z > u then x z > y u.