Natural Numbers

Notation. We will use \mathbb{N} to denote natural numbers. ${ }^{1}$

Definition of \mathbb{N}

- Axiom 1. $1 \in \mathbb{N}$;
- Axiom 2. For each $x \in \mathbb{N}$ there exists exactly one $x^{\prime} \in \mathbb{N}$, called the "successor" of x;
- Axiom 3. $\forall x \in \mathbb{N}, x^{\prime} \neq 1$;
- Axiom 4. If $x^{\prime}=y^{\prime}$ then $x=y$;
- Axiom 5. (Axiom of Induction): Let $\mathfrak{M} \subseteq \mathbb{N}$ satisfy

1. $1 \in \mathfrak{M}$;
2. If $x \in \mathfrak{M}$ then $x^{\prime} \in \mathfrak{M}$.

Then $\mathfrak{M}=\mathbb{N}$.

Remark 1. John von Neumann suggested the following construction of \mathbb{N} :
Define

$$
\begin{equation*}
1:=\{\varnothing\}, \quad 2:=1 \cup\{1\}, \quad 3:=2 \cup\{2\}, \ldots \tag{1}
\end{equation*}
$$

Note that this does not establish the existence of \mathbb{N}. The existence of \mathbb{N} is in fact an axiom:
We accept that there is at least one set S satisfying
i. $1 \in S$;
ii. $x \in S \Longrightarrow x \cup\{x\} \in S$.

Now let W be a collection of all such sets. Define $\mathbb{N}:=\cap_{S \in W} S$.

Theorem 2. $x^{\prime} \neq x$.

Proof. Let $\mathfrak{M}:=\left\{x \in \mathbb{N} \mid x^{\prime} \neq x\right\}$. Then by Axiom $3,1 \in \mathfrak{M}$. Now we show that $x \in \mathfrak{M} \Longrightarrow x^{\prime} \in \mathfrak{M}$. Once this is done the conclusion follows from Axiom 5.

Assume there is $x \in \mathfrak{M}$ such that $x^{\prime} \notin \mathfrak{M}$. That is $x^{\prime} \neq x$, but $\left(x^{\prime}\right)^{\prime}=x^{\prime}$. However by Axiom 4 we have $\left(x^{\prime}\right)^{\prime}=x^{\prime} \Longrightarrow x^{\prime}=x$. Contradiction.

Lemma 3. If $x \neq y$ then $x^{\prime} \neq y^{\prime}$.

Exercise 1. Prove Lemma 3.

[^0]Lemma 4. If $x \neq 1$, then there is exactly one u such that $u^{\prime}=x$.

Exercise 2. Prove Lemma 4 (Hint: Let $\mathfrak{M}=\{1\} \cup\{$ all numbers with this property $\}$.

Addition

We need to define $x+y$ for every pair of $x, y \in \mathbb{N}$.

- First define this for $y=1: x+1:=x^{\prime}$;
- Now assume that this is done for y. We define $x+y^{\prime}:=(x+y)^{\prime}$. This way addition is defined for each ordered pair (x, y).

Theorem 5. The way of defining $x+y$ such that $x+1=x^{\prime}, x+y^{\prime}=(x+y)^{\prime}$ is unique.

Proof. Let,$+ \oplus$ be two ways of defining addition. Fix an arbitrary $x \in \mathbb{N}$, let $\mathfrak{M}=\{y \in \mathbb{N} \mid x+y=x \oplus y\}$. Then $1 \in \mathfrak{M}$. Now for every $y \in \mathfrak{M}$, we have

$$
\begin{equation*}
x+y^{\prime}=(x+y)^{\prime}=(x \oplus y)^{\prime}=x \oplus y^{\prime} \tag{2}
\end{equation*}
$$

By Axiom of induction $\mathfrak{M}=\mathbb{N}$. Thus such definition, if it exists, is unique.
Similarly we can prove that such definition indeed exists. Left as exercise.

Exercise 3. Use induction to prove that $x+y$ can be defined for all $x, y \in \mathbb{N}$.

Theorem 6. $(x+y)+z=x+(y+z)$.

Proof. For any $x, y \in \mathbb{N}$, let $\mathfrak{M}:=\{z \in \mathbb{N} \mid(x+y)+z=x+(y+z)\}$. Then we check

$$
\begin{equation*}
(x+y)+1=(x+y)^{\prime}=x+y^{\prime}=x+(y+1) \tag{3}
\end{equation*}
$$

so $1 \in \mathfrak{M}$.
For every $z \in \mathfrak{M}$, we have

$$
\begin{equation*}
(x+y)+z^{\prime}=[(x+y)+z]^{\prime}=[x+(y+z)]^{\prime}=x+(y+z)^{\prime}=x+\left(y+z^{\prime}\right) \tag{4}
\end{equation*}
$$

Thus ends the proof.

Theorem 7. $x+y=y+x$.

Proof. Fix any $y \in \mathbb{N}$. First we prove $1+y=y+1$. Let $\mathfrak{M}:=\{y \in \mathbb{N} \mid 1+y=y+1\}$. We have $1+1=1+1$ so $1 \in \mathfrak{M}$. Now if $y \in \mathfrak{M}$, we check

$$
\begin{equation*}
1+y^{\prime}=1+(y+1)=(1+y)+1=(y+1)+1=y^{\prime}+1 \tag{5}
\end{equation*}
$$

so $y^{\prime} \in \mathfrak{M}$ too. Consequently $1+y=y+1$ for all $y \in \mathbb{N}$.
Now we prove that if $x+y=y+x$, then $x^{\prime}+y=y+x^{\prime}$. We have

$$
\begin{equation*}
x^{\prime}+y=(x+1)+y=x+(1+y)=x+(y+1)=(x+y)+1=(y+x)+1=y+(x+1)=y+x^{\prime} . \tag{6}
\end{equation*}
$$

Thus ends the proof.

Lemma 8. If $y \neq z$ then $x+y \neq x+z$. Or equivalently $x+y=x+z \Longrightarrow y=z$.

Exercise 4. Prove Lemma 8.

Ordering

Theorem 9. For any $x, y \in \mathbb{N}$, exactly one of the following is true:
i. $x=y$;
ii. There is exactly one $u \in \mathbb{N}$ such that $x=y+u$;
iii. There is exactly one $v \in \mathbb{N}$ such that $y=x+v$.

Proof.
First we prove that for any $x, y \in \mathbb{N}$, at most one of the three holds. Three cases:

- $\quad x=y$ and $x=y+u$ hold. Then we have $y=y+u \Longrightarrow y+1=y^{\prime}=(y+u)^{\prime}=y+u^{\prime}$ which by Lemma 8 gives $1=u^{\prime}$ which contradicts Axiom 3 .
- $\quad x=y$ and $y=x+v$ hold. Similar to the above case.
- $\quad x=y+u$ and $y=x+v$ hold. Then we have $x+v=(y+u)+v=y+(u+v)$ which by similar argument as above contradicts Axiom 3.

Fix an arbitrary $x \in \mathbb{N}$. We prove that for any $y \in \mathbb{N}$, at least one of the above holds.
Let $\mathfrak{M}:=\{y \in \mathbb{N} \mid$ exactly one of $x=y, x=y+u, y=x+v\}$ holds.

- $\quad 1 \in \mathfrak{M}$. There are two cases.
- $\quad x=1$. Then $x=y$.
- $\quad x \neq 1$. Then by Lemma 4 there is $u \in \mathbb{N}$ such that $x=u^{\prime}$. Thus $x=u+1=1+u=y+u$.
- If $y \in \mathfrak{M}$ then $y^{\prime} \in \mathfrak{M}$. There are three cases.
- $\quad x=y$. Then $y^{\prime}=y+1=x+1$ and therefore $y^{\prime} \in \mathfrak{M}$.
- $x=y+u$. Then there are two cases.
$-\quad u=1$. Then $x=y^{\prime}$.
- $\quad u \neq 1$. Then by Lemma 4 there is $v \in \mathbb{N}$ such that $u=v^{\prime}$. This gives

$$
\begin{equation*}
x=y+u=y+v^{\prime}=(y+v)^{\prime}=y^{\prime}+v . \tag{7}
\end{equation*}
$$

So $y^{\prime} \in \mathfrak{M}$.

- $y=x+v$. Then

$$
\begin{equation*}
y^{\prime}=(x+v)^{\prime}=x+v^{\prime} \tag{8}
\end{equation*}
$$

and $y^{\prime} \in \mathfrak{M}$.
Thus $y^{\prime} \in \mathfrak{M}$ and the proof ends.

Definition 10. (Ordering) If $x=y+u$, denote $x>y$; If $y=x+v$, denote $x<y$.

Theorem 11. For any given x, y, we have exactly one of the following: $x=y, x<y, x>y$.

Exercise 5. If $x<y$ then $y>x$.

Definition 12. Define $x \geqslant y$ as $x>y$ or $x=y$. Define $x \leqslant y$ as $x<y$ or $x=y$.

Exercise 6. If $x \leqslant y$ then $y \geqslant x$; If $x \geqslant y$ then $y \leqslant x$.
Exercise 7. If $x \leqslant y$ and $y \leqslant x$ then $x=y$.
Exercise 8. If $x<y, y<z$ then $x<z$; If $x \leqslant y, y<z$ then $x<z$; If $x<y, y \leqslant z$ then $x<z$; If $x \leqslant y, y \leqslant z$ then $x \leqslant z$.
Exercise 9. If $x>y, z>u$ then $x+z>y+u$.
Exercise 10. If $x<y$, then $x+1 \leqslant y$.

Theorem 13. Let $A \subseteq \mathbb{N}$ be nonempty. Then there is a unique least element, that is $a \in A$ such that for all $b \in A, a \leqslant b$.

Proof.

- If $1 \in A$ then 1 is the least element, since for all $x \in \mathbb{N}, x \neq 1$, there is u such that $x=u^{\prime}=1+u>1$.
- If $1 \notin A$, let $\mathfrak{M}:=\{x \in \mathbb{N} \mid \forall b \in A, x \leqslant b\}$. Now if for every $x \in \mathfrak{M}$ we have $x+1 \in \mathfrak{M}$, by the Axiom of induction $\mathfrak{M}=\mathbb{N}$ and $A=\varnothing$. Contradiction. Thus there is $a \in \mathfrak{M}$ satisfying:

$$
\begin{equation*}
a \in \mathfrak{M}, a+1 \notin \mathfrak{M} \tag{9}
\end{equation*}
$$

We claim $a \in A$. Since otherwise, by definition of \leqslant, for every $b \in A$ there must hold $a<b$ which implies $a+1 \leqslant b$. Consequently $a+1 \in \mathfrak{M}$. Contradiction.

Now $a \in \mathfrak{M} \Longrightarrow \forall b \in A, a \leqslant b$ so a is a least element. Uniqueness follows from $a \leqslant b, b \leqslant a \Longrightarrow a=b$.

Multiplication

Theorem 14. To every pair of $x, y \in \mathbb{N}$, we can assign in exactly one way a $z \in \mathbb{N}$, denoted $x \cdot y$ (or $x y$ when no confusion may arise), such that
i. $x \cdot 1=x$ for every x;
ii. $x \cdot y^{\prime}=x \cdot y+x$ for every x and every y.

Proof. Left as exercise.

Exercise 11. $x \cdot y=y \cdot x$.

Exercise 12. $x(y+z)=x y+x z$.

Exercise 13. $(x y) z=x(y z)$.
Exercise 14. If $x>y(=y,<y)$ then $x z>y z(=y z,<y z)$. If $x y>y z(=y z,<y z)$ then $x>y(=y,<y)$.
Exercise 15. If $x>y, z>u$ then $x z>y u$.

[^0]: 1. There is much debate whether 0 should be included in natural numbers. My personal opinion is that 0 is definitely not as "natural" as 1,2,3,... and therefore shouldn't be included. Thus in this note 0 does not belong to \mathbb{N}.
