Natural Numbers

Notation. We will use N to denote natural numbers. !

Definition of IN
e Axiom 1. 1eN;
e Axiom 2. For each x € N there exists exactly one z’ € N, called the “successor” of z;
e Axiom 3. VxeN, z'#1;
e Axiom 4. If z’=9' then z=1y;
e Axiom 5. (Axiom of Induction): Let 9 CIN satisfy
1. 1eMm;
2. If x €9 then ' € M.

Then MM =N.

Remark 1. John von Neumann suggested the following construction of IN:
Define
1:={o}, 2:=1U{1}, 3:=2U{2},... (1)
Note that this does not establish the existence of N. The existence of N is in fact an axiom:
We accept that there is at least one set S satisfying
i. 1eS;
ii. zeS=azU{z}eSs.

Now let W be a collection of all such sets. Define N:=NgecwS.

Theorem 2. z'+#z.

Proof. Let M:={x € N|z'#2}. Then by Axiom 3, 1 € M. Now we show that z € M=z’ € M. Once this

is done the conclusion follows from Axiom 5.

Assume there is € 9 such that 2’ ¢ M. That is «’ £ z, but (z')’ = 2’. However by Axiom 4 we have

(2") =2’ = 2’ = 2. Contradiction.
Lemma 3. If x#y then '+ y'.

Exercise 1. Prove Lemma 3.

1. There is much debate whether 0 should be included in natural numbers. My personal opinion is that 0 is definitely not

as “natural” as 1,2,3,... and therefore shouldn’t be included. Thus in this note 0 does not belong to N.



Lemma 4. If x+# 1, then there is exactly one u such that u’'=zx.

Exercise 2. Prove Lemma 4 (Hint: Let 9t= {1} U {all numbers with this property}.

Addition

We need to define x + y for every pair of z,y € N.
e First define this for y=1: x +1:=12';

e Now assume that this is done for y. We define x + y’: =(x + y)’. This way addition is defined for each
ordered pair (z,y).

Theorem 5. The way of defining x +y such that x+1=2a', x +y'= (v +y)’ is unique.

Proof. Let +,® be two ways of defining addition. Fix an arbitrary z € N, let M={yeN|z+y=zd y}.
Then 1 €91. Now for every y € M, we have

rty'=(x+y) =0y =0y (2)

By Axiom of induction 9t =N. Thus such definition, if it exists, is unique.

Similarly we can prove that such definition indeed exists. Left as exercise. O
Exercise 3. Use induction to prove that 4+ y can be defined for all x, y € N.
Theorem 6. (z+y)+z=z+ (y+2).

Proof. For any z,y €N, let M:={z€N|(z+y)+2z=2+(y+2)}. Then we check

(+y)+l=(z+y)=z+y =z+(y+1) (3)
so 1€ IM.
For every z € 91, we have
@+y)+2'=lz+y)+z]' =+ y+2)]'=c+y+2)=z+(y+2). (4)
Thus ends the proof. O

Theorem 7. x+y=y+x.

Proof. Fix any y € N. First we prove 1+ y=y+ 1. Let M:={yeN|1+y=y+1}. Wehave 1+1=1+1
so 1€ M. Now if y €I, we check

l+y'=1+@y+)=10+y)+1=(y+1)+1=y"+1 (5)

so 3y’ € M too. Consequently 1 +y=y+1 for all y € N.
Now we prove that if x + y=y+ z, then '+ y=y+ 2’. We have

r+y=@+)+y=2+1+y)=a+w+)=@+y) +1=(y+z)+1l=y+(@+1)=y+z' (6)



Thus ends the proof. O
Lemma 8. Ify#z then x+y#x+ 2. Or equivalently x+y=c+ 2= y==z.

Exercise 4. Prove Lemma 8.

Ordering

Theorem 9. For any x,y € N, exactly one of the following is true:
1. T=1Y;
1i. There is exactly one u € N such that x =y +u;
i11. There is exactly one v €N such that y=x +v.
Proof.
First we prove that for any x,y € N, at most one of the three holds. Three cases:

e z=yand z=y+u hold. Then we have y=y+u=—y+1=y'=(y+u) =y + ' which by Lemma
8 gives 1 =u’ which contradicts Axiom 3.

e x=y and y=x+v hold. Similar to the above case.

e z=y+wuand y=x+v hold. Then we have z +v=(y+u)+v=y+ (u+v) which by similar argument
as above contradicts Axiom 3.

Fix an arbitrary x € N. We prove that for any y € N, at least one of the above holds.
Let 9 := {y € N| exactly one of t=y,z=y+u,y=x+v} holds.

e 1e&M. There are two cases.
o x=1. Then z=y.
o x#1. Then by Lemma 4 there is v € N such that t=v'. Thus z=u+1=14+u=y+u.
o If ye 9 then y’' € M. There are three cases.
o x=vy. Then y'=y+1=x+1 and therefore y’ € M.
o x=1y+u. Then there are two cases.
— wu=1. Then z =1y
— wu#1. Then by Lemma 4 there is v € N such that u=v’. This gives
r=yt+u=y+v'=(y+v) =y +v. (7)
So y' e M.
o y=xz+v. Then

y'=(@+v) =z+0 (8)



and y' € M.

Thus 3’ € 9 and the proof ends. O
Definition 10. (Ordering) If x =y +u, denote x >y; If y=x + v, denote x < y.
Theorem 11. For any given x,y, we have exactly one of the following: x=vy,x <y, x> y.
Exercise 5. If = <y then y > z.
Definition 12. Definex >y asx >y orx=y. Definex<yasc <y orx=y.

Exercise 6. If x <y then y>xz; If x >y then y <=z.

Exercise 7. If x <y and y <z then z =y.

Exercise 8. If t<y,y<zthenz<z;If x <y, y<zthenz<z;If z<y,y<zthenz<z; If Ly, y <z then z <z.
Exercise 9. If x> y,z>u then x4+ 2>y +u.

Exercise 10. If z <y, thenz+1<y.

Theorem 13. Let ACN be nonempty. Then there is a unique least element, that is a € A such that for all
beA, a<b.

Proof.
e If 1€ A then 1 is the least element, since for all x € N, z# 1, there is u such that r=u'=1+u>1.

o If1¢A let M={zeN|VbecA,z<b}. Now if for every = € M we have z + 1 €M, by the Axiom of
induction M =N and A= @. Contradiction. Thus there is a € M satisfying:

acMa+1¢M. 9)

We claim a € A. Since otherwise, by definition of <, for every b € A there must hold a < b which implies
a+1<b. Consequently a+ 1€ M. Contradiction.

Now a €M =—=Vbe A,a<bso ais a least element. Uniqueness follows from a <b, b6 <a=—=a=0>b. O
Multiplication

Theorem 14. To every pair of x,y € N, we can assign in exactly one way a z € N, denoted x -y (or x y
when no confusion may arise), such that

i. x-1=x for every x;

. v-y'=x-y+x for every x and every y.
Proof. Left as exercise. O

Exercise 11. z-y=y-x.



Exercise 12.

Exercise 13.

Exercise 14.

Exercise 15.

z(y+z)=zy+z=.
(zy)z==(y2).
If > y(=y,<y) thenzz>yz(=yz,<yz). If zy>yz(=yz,<yz) then z > y(=y, <y).

If x>y,z>u then zz>yu.



