
Natural Numbers

Notation. We will use N to denote natural numbers. 1

Definition of N

• Axiom 1. 1∈N;

• Axiom 2. For each x∈N there exists exactly one x′∈N, called the “successor” of x;

• Axiom 3. ∀x∈N, x′� 1;

• Axiom 4. If x′= y ′ then x= y;

• Axiom 5. (Axiom of Induction): Let M⊆N satisfy

1. 1∈M;

2. If x∈M then x′∈M.

Then M =N.

Remark 1. John von Neumann suggested the following construction of N:

Define

18 {∅}, 28 1∪ {1}, 38 2∪ {2},
 (1)

Note that this does not establish the existence of N. The existence of N is in fact an axiom:

We accept that there is at least one set S satisfying

i. 1∈S;

ii. x∈S� x∪{x}∈S.

Now let W be a collection of all such sets. Define N8 ∩S∈WS.

Theorem 2. x′� x.

Proof. Let M8 {x∈NP x′� x}. Then by Axiom 3, 1∈M. Now we show that x∈M� x′∈M. Once this
is done the conclusion follows from Axiom 5.

Assume there is x ∈ M such that x′ � M. That is x′ � x, but (x′)′ = x′. However by Axiom 4 we have
(x′)′ =x′� x′= x. Contradiction. �

Lemma 3. If x� y then x′� y ′.

Exercise 1. Prove Lemma 3.

1. There is much debate whether 0 should be included in natural numbers. My personal opinion is that 0 is definitely not

as “natural” as 1,2,3,... and therefore shouldn’t be included. Thus in this note 0 does not belong to N.

1



Lemma 4. If x� 1, then there is exactly one u such that u′= x.

Exercise 2. Prove Lemma 4 (Hint: Let M= {1}∪ {all numbers with this property}.

Addition

We need to define x+ y for every pair of x, y ∈N.

• First define this for y = 1: x + 18 x′;

• Now assume that this is done for y. We define x+ y ′:=(x+ y)′. This way addition is defined for each
ordered pair (x, y).

Theorem 5. The way of defining x+ y such that x+ 1= x′, x + y ′= (x+ y)′ is unique.

Proof. Let +,⊕ be two ways of defining addition. Fix an arbitrary x∈N, let M = {y ∈NP x + y = x⊕ y}.
Then 1∈M. Now for every y ∈M, we have

x + y ′=(x+ y)′ =(x⊕ y)′= x⊕ y ′. (2)

By Axiom of induction M =N. Thus such definition, if it exists, is unique.

Similarly we can prove that such definition indeed exists. Left as exercise. �

Exercise 3. Use induction to prove that x + y can be defined for all x, y ∈N.

Theorem 6. (x+ y)+ z = x+ (y + z).

Proof. For any x, y ∈N, let M8 {z ∈NP (x + y)+ z = x +(y + z)}. Then we check

(x+ y)+ 1= (x + y)′= x+ y ′= x+ (y + 1) (3)

so 1∈M.

For every z ∈M, we have

(x + y)+ z ′= [(x + y)+ z]′= [x +(y + z)]′= x +(y + z)′= x +(y + z ′). (4)

Thus ends the proof. �

Theorem 7. x + y = y + x.

Proof. Fix any y ∈N. First we prove 1+ y = y +1. Let M8 {y ∈NP 1 + y = y + 1}. We have 1+1 =1+ 1
so 1∈M. Now if y ∈M, we check

1+ y ′= 1+ (y + 1)= (1 + y)+ 1 = (y +1)+ 1= y ′+ 1 (5)

so y ′∈M too. Consequently 1 + y = y +1 for all y ∈N.

Now we prove that if x+ y = y + x, then x′+ y = y + x′. We have

x′ + y = (x +1)+ y =x + (1 + y) =x +(y +1)= (x + y) +1 = (y + x)+ 1 = y + (x +1)= y + x′. (6)
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Thus ends the proof. �

Lemma 8. If y � z then x+ y � x+ z. Or equivalently x + y = x + z� y = z.

Exercise 4. Prove Lemma 8.

Ordering

Theorem 9. For any x, y ∈N, exactly one of the following is true:

i. x = y;

ii. There is exactly one u∈N such that x= y +u;

iii. There is exactly one v ∈N such that y = x+ v.

Proof.

First we prove that for any x, y ∈N, at most one of the three holds. Three cases:

• x = y and x = y +u hold. Then we have y = y + u� y + 1 = y ′= (y + u)′= y + u′ which by Lemma
8 gives 1 =u′ which contradicts Axiom 3.

• x = y and y = x+ v hold. Similar to the above case.

• x= y +u and y =x+v hold. Then we have x+v =(y +u)+v = y +(u+v) which by similar argument
as above contradicts Axiom 3.

Fix an arbitrary x∈N. We prove that for any y ∈N, at least one of the above holds.

Let M8 {y ∈NP exactly one of x= y, x= y +u, y = x+ v} holds.

• 1∈M. There are two cases.

◦ x= 1. Then x = y.

◦ x� 1. Then by Lemma 4 there is u∈N such that x= u′. Thus x =u + 1= 1+ u = y + u.

• If y ∈M then y ′∈M. There are three cases.

◦ x= y. Then y ′= y + 1= x+ 1 and therefore y ′∈M.

◦ x= y + u. Then there are two cases.

− u= 1. Then x = y ′.

− u� 1. Then by Lemma 4 there is v ∈N such that u = v ′. This gives

x = y + u = y + v ′= (y + v)′= y ′+ v. (7)

So y ′∈M.

◦ y = x+ v. Then

y ′=(x+ v)′= x+ v ′ (8)
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and y ′∈M.

Thus y ′∈M and the proof ends. �

Definition 10. (Ordering) If x= y +u, denote x > y; If y = x+ v, denote x < y.

Theorem 11. For any given x, y, we have exactly one of the following: x= y, x < y, x > y.

Exercise 5. If x < y then y > x.

Definition 12. Define x> y as x > y or x = y. Define x 6 y as x < y or x = y.

Exercise 6. If x 6 y then y >x; If x > y then y 6x.

Exercise 7. If x 6 y and y 6x then x = y.

Exercise 8. If x < y, y < z then x < z; If x 6 y, y < z then x < z; If x < y, y 6z then x < z; If x 6 y, y 6z then x 6z.

Exercise 9. If x > y, z > u then x + z > y + u.

Exercise 10. If x < y, then x + 1 6 y.

Theorem 13. Let A⊆N be nonempty. Then there is a unique least element, that is a∈A such that for all
b∈A, a 6 b.

Proof.

• If 1∈A then 1 is the least element, since for all x∈N, x� 1, there is u such that x=u′= 1+u > 1.

• If 1 � A, let M8 {x∈NP ∀b∈A, x6 b}. Now if for every x∈M we have x+ 1∈M, by the Axiom of
induction M =N and A= ∅. Contradiction. Thus there is a∈M satisfying:

a∈M, a + 1 � M. (9)

We claim a∈A. Since otherwise, by definition of 6, for every b∈A there must hold a<b which implies
a + 1 6 b. Consequently a + 1∈M. Contradiction.

Now a∈M� ∀b∈A,a6 b so a is a least element. Uniqueness follows from a6 b, b6 a� a= b. �

Multiplication

Theorem 14. To every pair of x, y ∈N, we can assign in exactly one way a z ∈N, denoted x ·y (or x y

when no confusion may arise), such that

i. x · 1= x for every x;

ii. x · y ′= x · y + x for every x and every y.

Proof. Left as exercise. �

Exercise 11. x · y = y · x.
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Exercise 12. x (y + z)= x y + x z.

Exercise 13. (x y) z = x (y z).

Exercise 14. If x > y(=y, <y) then x z > y z(=y z, <y z). If x y > y z(=y z, <y z) then x > y(=y, <y).

Exercise 15. If x > y, z > u then x z > y u.
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